Grade 6 Mini-Assessment

“The Making of a Scientist” by Richard Feynman
(Literary Nonfiction)

This grade 6 mini-assessment is based on an essay titled “The Making of a Scientist” by Richard Feynman, a famous American physicist. This text is considered to be a text worthy of students’ time to read and also meets the expectations for text complexity at grade 6. Assessments aligned to the Common Core State Standards (CCSS) will employ quality, complex texts such as this one.

Questions aligned to the CCSS should be worthy of students’ time to answer and therefore do not focus on minor points of the texts. Questions also may address several standards within the same question because complex texts tend to yield rich assessment questions that call for deep analysis. In this mini-assessment there are selected-response questions and one highlighting question that address the Reading Standards for Informational Texts.

We encourage educators to give students the time that they need to read and closely and analyze deeply. While we know that it is helpful to have students complete the mini-assessment in one class period, we encourage educators to allow additional time as necessary.

Note for teachers of English Language Learners (ELLs): This assessment is designed to measure students’ ability to read and write in English. Therefore, educators will not see the level of scaffolding typically used in instructional materials to support ELLs—these would interfere with the ability to understand their mastery of these skills. If ELL students are receiving instruction in grade-level ELA content, they should be given access to unaltered practice assessment items to gauge their progress. Passages and items should not be modified; however, additional information about accommodations you may consider when administering this assessment to ELLs is available in the teacher section of this resource.

The questions align to the following standards:

RI.6.1	Cite textual evidence to support analysis of what the text says explicitly as well as inferences drawn from the text.
RI.6.2	Determine a central idea of a text and how it is conveyed through particular details; provide a summary of the text distinct from personal opinions or judgments.
RI.6.3	Analyze in detail how a key individual, event, or idea is introduced, illustrated, and elaborated in a text (e.g., through examples or anecdotes).
RI.6.4	Determine the meaning of words and phrases as they are used in a text, including figurative, connotative, and technical meanings.
RI.6.5	Analyze how a particular sentence, paragraph, chapter, or section fits into the overall structure of a text and contributes to the development of the ideas.
RI.6.6	Determine an author’s point of view or purpose in a text and explain how it is conveyed in the text.
RI.6.8	Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not.
Contents

Grade 6 Mini-Assessment – “The Making of a Scientist”: Print for students4

Quantitative and Qualitative Analyses of the Text ...11

Correct Answers, Standards, and Distractor Rationales ..13

Using the Mini-Assessments with English Language Learners... 18

Additional Resources for Assessment and CCSS Implementation ...21

The assessment questions in this document align with the CCSS and reflect the instructional shifts implied by the standards. To learn more about these topics, please go to the following link:

www.achievethecore.org
Grade 6 Mini-Assessment – “The Making of a Scientist” (Literary Nonfiction)

Today you will read “The Making of a Scientist,” an essay by Richard Feynman. Dr. Feynman was a famous American physicist, a scientist who studies matter and energy. After you read the essay, you will answer several questions. I will be happy to answer questions about the directions, but I will not help you with the answers to any questions. You will notice as you answer the questions that some of the questions have two parts. You should answer Part A of the question before you answer Part B.

Take as long as you need to read and answer the questions. If you do not finish when class ends, come see me to discuss when you may have additional time.

Now read the passage and answer the questions. I encourage you to write notes in the margin as you read the passage.

“The Making of a Scientist” by Richard Feynman

Raised in an era when expectations for boys were different than those of girls, Dr. Feynman explains his original interest in science.

1 Before I was born, my father told my mother, “If it’s a boy, he’s going to be a scientist.” When I was just a little kid, very small in a highchair, my father brought home a lot of little bathroom tiles—seconds—of different colors. We played with them, my father setting them up vertically on my highchair like dominoes, and I would push one end so they would all go down.

2 Then after a while, I’d help set them up. Pretty soon, we’re setting them up in a more complicated way: two white tiles and a blue tile, two white tiles and a blue tile, and so on. When my mother saw that she said, “Leave the poor child alone. If he wants to put a blue tile, let him put a blue tile.”

3 But my father said, “No, I want to show him what patterns are like and how interesting they are. It’s a kind of elementary mathematics.” So he started very early to tell me about the world and how interesting it is.

4 We had the Encyclopaedia Britannica at home. When I was a small boy he used to sit me on his lap and read to me from the Britannica. We would be reading, say, about dinosaurs. It would be talking about the Tyrannosaurus rex, and it would say something like, “This dinosaur is twenty-five feet high and its head is six feet across.”
My father would stop reading and say, “Now, let’s see what that means. That would mean that if he stood in our front yard, he would be tall enough to put his head through our window up here.” (We were on the second floor.) “But his head would be too wide to fit in the window.” Everything he read to me he would translate as best he could into some reality.

It was very exciting and very, very interesting to think there were animals of such magnitude—and that they all died out, and that nobody knew why. I wasn’t frightened that there would be one coming in my window as a consequence of this. But I learned from my father to translate: everything I read I try to figure out what it really means, what it’s really saying.

We used to go to the Catskill Mountains, a place where people from New York City would go in the summer. The fathers would all return to New York to work during the week and come back only for the weekend. On weekends, my father would take me for walks in the woods and he’d tell me about interesting things that were going on in the woods. When the other mothers saw this, they thought it was wonderful and that the other fathers should take their sons for walks. They tried to work on them but they didn’t get anywhere at first. They wanted my father to take all the kids, but he didn’t want to because he had a special relationship with me. So it ended up that the other fathers had to take their children for walks the next weekend.

The next Monday, when the fathers were all back at work, we kids were playing in a field. One kid says to me, “See that bird? What kind of bird is that?”

I said, “I haven’t the slightest idea what kind of a bird it is.”

He says, “It’s a brown-throated thrush. Your father doesn’t teach you anything!”

But it was the opposite. He had already taught me: “See that bird?” he says. “It’s a Spencer’s warbler.” (I knew he didn’t know the real name.) “Well, in Italian, it’s a Chutto Lapittida. In Portuguese it’s a Bom da Peida. In Chinese, it’s a Chung-long-tah, and in Japanese, it’s a Katano Tekeda. You can know the name of the bird in all the languages of the world, but when you’re finished, you’ll know absolutely nothing whatever about the bird. You’ll only know about humans in different places, and what they call the bird. So let’s look at the bird and see what it’s doing—that’s what counts.” (I learned very early the difference between knowing the name of something and knowing something.)
He said, “For example, look: the bird pecks at its feathers all the time. See it walking around, pecking at its feathers?”

“Yeah.”

He says, “Why do you think birds peck at their feathers?”

I said, “Well, maybe they mess up their feathers when they fly, so they’re pecking them in order to straighten them out.”

“All right,” he says. “If that were the case, then they would peck a lot just after they’ve been flying. Then, after they’ve been on the ground a while, they wouldn’t peck so much anymore—you know what I mean?”

“Yeah.”

He says, “Let’s look and see if they peck more just after they land.”

It wasn’t hard to tell: there was not much difference between the birds that had been walking around a bit and those that had just landed. So I said, “I give up. Why does a bird peck at its feathers?”

“Because there are lice bothering it,” he says. “The lice eat flakes of protein that come off its feathers.”

He continued, “Each louse has some waxy stuff on its legs, and little mites eat that. The mites don’t digest it perfectly, so they emit from their rear ends a sugarlike material, in which bacteria grow.”

Finally he says, “So you see, everywhere there’s a source of food, there’s some form of life that finds it.”

Now, I knew that it may not have been exactly a louse, that it might not be exactly true that the louse’s legs have mites. That story was probably incorrect in detail, but what he was telling me was right in principle.

Not having experience with many fathers, I didn’t realize how remarkable he was. How did he learn the deep principles of science and the love of it, what’s behind it, and why it’s worth doing? I never really asked him, because I just assumed that those were things that fathers knew.

My father taught me to notice things. One day, I was playing with an “express wagon,” a little wagon with a railing around it. It had a ball in it, and when I pulled the wagon, I noticed something about the way the ball moved.
I went to my father and said, “Say, Pop, I noticed something. When I pull the wagon, the ball rolls to the back of the wagon. And when I’m pulling it along and I suddenly stop, the ball rolls to the front of the wagon. Why is that?”

“That, nobody knows,” he said. “The general principle is that things which are moving tend to keep on moving, and things which are standing still tend to stand still, unless you push them hard. This tendency is called ‘inertia,’ but nobody knows why it’s true.” Now, that’s a deep understanding. He didn’t just give me the name.

He went on to say, “If you look from the side, you’ll see that it’s the back of the wagon that you’re pulling against the ball, and the ball stands still. As a matter of fact, from the friction it starts to move forward a little bit in relation to the ground. It doesn’t move back.”

I ran back to the little wagon and set the ball up again and pulled the wagon. Looking sideways, I saw that indeed he was right. Relative to the sidewalk, it moved forward a little bit.

That’s the way I was educated by my father, with those kinds of examples and discussions: no pressure—just lovely, interesting discussions. It has motivated me for the rest of my life, and makes me interested in all the sciences. (It just happens I do physics better.)

I’ve been caught, so to speak—like someone who was given something wonderful when he was a child, and he’s always looking for it again. I’m always looking, like a child, for the wonders I know I’m going to find—maybe not every time, but every once in a while.

Used by permission of W.W. Norton & Company.
QUESTIONS:

1. The following question has two parts. Answer Part A and then answer Part B.

Part A: How do paragraphs 1–3 of this passage help the reader understand the rest of the passage?

A. by explaining why Feynman’s father loved science
B. by describing how Feynman’s father preferred to play games with his son rather than teach him
C. by introducing how Feynman’s father taught him through observation
D. by showing that Feynman’s father disagreed with his mother on how to raise children

Part B: Which sentence provides the best evidence for the answer to Part A?

A. “Before I was born, my father told my mother, ‘If it’s a boy, he’s going to be a scientist.’”
B. “We played with them, my father setting them up vertically on my highchair like dominoes, and I would push one end so they would all go down.”
C. “If he wants to put a blue tile, let him put a blue tile.”
D. “So he started very early to tell me about the world and how interesting it is.”

2. In paragraphs 8–10 of the text, Feynman recalls a conversation he and another boy had about a bird. How do these paragraphs contribute to the development of the central idea of the text?

A. The paragraphs present important information Feynman learned about the bird.
B. The paragraphs explain why all the fathers took their sons on walks in the woods.
C. The paragraphs show that the other boy knew more about the bird than Feynman did.
D. The paragraphs highlight the differences in what the fathers thought was important to know.

3. The following question has two parts. Answer Part A and then answer Part B.

Part A: In paragraph 23 of the text, what is the meaning of the word principle?

A. a kind manner
B. a general rule
C. a confusing idea
D. an entertaining story
Part B: Which other incident in the passage best shows Feynman’s father talking about a principle?

A. Feynman’s father bringing home colored tiles
B. Feynman’s father reading to his son from an encyclopedia
C. Feynman’s father telling him some foreign names for the bird they see
D. Feynman’s father explaining inertia based on the movement of the ball in the wagon

4. Which two details from the passage best explain the methods Feynman’s father used to encourage his son to be interested in science?

A. “Before I was born, my father told my mother, ‘If it’s a boy, he’s going to be a scientist.’”
B. “I never really asked him, because I just assumed that those were things fathers knew.”
C. “My father taught me to notice things.”
D. “This tendency is called inertia.”
E. “He didn’t just give me the name.”
F. “Looking sideways, I saw that indeed he was right.”

5. The following question has two parts. Answer Part A and then answer Part B.

Part A: With which statement would Feynman most likely agree?

A. Books are necessary to learn about science.
B. Parents should allow children to study what they want.
C. There is a difference between knowing about something and truly understanding it.
D. Talking to someone about science makes it more interesting.

Part B: Which sentence provides the best evidence for the answer to Part A?

A. “When my mother saw that she said, ‘Leave the poor child alone.’”
B. “When I was a small boy he used to sit me on his lap and read to me from the Britannica.”
C. “My father would stop reading and say, ‘Now, let’s see what that means.’”
D. “When the other mothers saw this, they thought it was wonderful and that the other fathers should take their sons for walks.”
6. How does the story of the bathroom tiles fit into the overall structure of the passage?

A. It introduces a chronological account of the main events in the author’s childhood.
B. It introduces a cause and effect structure by providing the primary reason for the events that follow.
C. It introduces a structure of comparison and contrast by showing an early event that is different from later events.
D. It introduces one of the four main examples that the author uses to illustrate his central ideas.

7. The title of this passage is “The Making of a Scientist.” Although the passage explains some of the science lessons Feynman’s father taught him, it could be argued that the life lessons Feynman learned are more valuable. In the text, underline two sentences that show lessons Feynman’s father taught him about life.
Regular practice with complex texts is necessary to prepare students for college and career readiness, as outlined in Reading Standard 10. The excerpt for this mini-assessment has been placed at grade 6, and the process used to determine this grade-level placement is described below. Appendix A to the CCSS and the “Supplement to Appendix A: New Research on Text Complexity” lay out a research-based process for selecting complex texts.

1. Place a text or excerpt within a **grade band** based on at least one quantitative measure according to the research-based conversion table provided in the “Supplement to Appendix A: New Research on Text Complexity” (www.corestandards.org/resources).
2. Place a text or excerpt at a **grade-level** based on a qualitative analysis.

Quantitative Analysis

<table>
<thead>
<tr>
<th>“The Making of a Scientist”</th>
<th>Quantitative Measure #1</th>
<th>Quantitative Measure #2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FK: 5.7</td>
<td>Lexile: 1160</td>
</tr>
</tbody>
</table>

After gathering the quantitative measures, the next step is to place the quantitative scores in the Conversion Table found in the “Supplement to Appendix A” (www.corestandards.org/resources) and determine the **grade band** of the text. Figure 1 reproduces the conversion table from the “Supplement to Appendix A,” showing how the initial results from Flesch-Kincaid and the Lexile measure were converted to grade bands.

Figure 1: Updated Text Complexity Grade Bands and Associated Ranges from Multiple Measures

<table>
<thead>
<tr>
<th>Common Core Band</th>
<th>ATOS</th>
<th>Degrees of Reading Power®</th>
<th>Flesch-Kincaid¹</th>
<th>The Lexile Framework®</th>
<th>Reading Maturity</th>
<th>Source/Rater</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd–3rd Grade</td>
<td>2.75–5.14</td>
<td>42–54</td>
<td>1.98–5.34</td>
<td>420–820</td>
<td>3.53–6.13</td>
<td>0.05–2.48</td>
</tr>
<tr>
<td>4th–5th Grade</td>
<td>4.97–7.03</td>
<td>52–60</td>
<td>4.51–7.73</td>
<td>740–1,010</td>
<td>5.42–7.92</td>
<td>0.84–5.75</td>
</tr>
<tr>
<td>9th–10th Grade</td>
<td>9.67–12.01</td>
<td>62–72</td>
<td>8.32–12.12</td>
<td>1,050–1,335</td>
<td>8.41–10.81</td>
<td>9.02–13.93</td>
</tr>
</tbody>
</table>

Note that in this instance, the measures disagree in regard to grade band. It is recommended a third measure then be used. Pearson’s Reading Maturity Metric is shown as the third measure here, demonstrating overlap with Flesch-Kincaid at 4/5 and with Lexile at 6/8, pointing to either of these bands as possible and demonstrating a need for careful qualitative analysis.

¹ For higher-stakes tests, it is recommended that two corresponding text complexity measures be used to place a text in a grade-band. When two measures are used, both placing the text in the same **band**, the results provide additional assurance that the text selected is appropriate for the band.
To find the grade-level of the text within the two potential grade bands, engage in a systematic analysis of the characteristics of the text. The characteristics that should be analyzed during a qualitative analysis can be found in Appendix A of the CCSS. (www.corestandards.org) and are illustrated in the chart below.

<table>
<thead>
<tr>
<th>Qualitative Analysis</th>
<th>“The Making of a Scientist”</th>
<th>Where to place within the band?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Notes and comments on text, support for placement in this band</td>
<td>Too low for grade band</td>
</tr>
<tr>
<td>Structure (both story structure or form of piece)</td>
<td>The structure of the text is challenging: Although the underlying structure is chronological in order of events, the events are a series of flashbacks from the author’s childhood, separated by the lessons he learned from each. They are not linked in a causal manner (one event leading to another) but rather all are presented as pieces of evidence of how the author’s father chose to instill a love of science as well as a curiosity about the world.</td>
<td>![Arrow]</td>
</tr>
<tr>
<td>Language Clarity and Conventions</td>
<td>There are many challenging words in the text (e.g., emit, tendency, inertia, consequences, principle). However, these words are surrounded by strong contextual clues that will aid students with understanding. There are also several complex sentences present, but the conversational tone of the text and strong context clues should help students with comprehension, making the text challenging but accessible.</td>
<td>![Arrow]</td>
</tr>
<tr>
<td>Knowledge Demands (life, content, cultural/literary)</td>
<td>Students need no prior knowledge to navigate the text. The lessons learned are well developed through textual evidence.</td>
<td>![Arrow]</td>
</tr>
<tr>
<td>Levels of Meaning (chiefly literary)/ Purpose (chiefly informational)</td>
<td>There is one main purpose in the text: The author is explaining that he learned from his father the traits that made him a good scientist, as indicated by the title of the piece.</td>
<td>![Arrow]</td>
</tr>
<tr>
<td>Overall placement: Grade 6</td>
<td>Although the vocabulary, syntax, and structure are complex, the conversational tone of the text helps add a level of accessibility. Given that no prior knowledge is needed, the text has been placed at the high end of grade 6. Advanced students should be ready for the text at any time during the year, while others may only be ready for the text at the end of grade 6 or even during grade 7.</td>
<td>![Arrow]</td>
</tr>
<tr>
<td>Question Number</td>
<td>Correct Answer(s)</td>
<td>Standards</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **1 Part A** | C | RI.6.5, RI.6.2, RI.6.1 | A. This option is incorrect. Although it is apparent that Feynman’s father loves science, the reader never learns why.
B. This option is incorrect. Although we know that Feynman’s father played with the tiles with him, it wasn’t really a game but rather a lesson. Feynman’s father was much more interested in creating opportunities for observation than in playing games, so the fact that he played a game once does not help develop the central ideas of the story.
C. This is the correct answer. The fact that Feynman’s father started honing his son’s skills of observation at an early age helps introduce the main ideas in the passage.
D. This option is incorrect. Although we see that Feynman’s mother wanted his environment to be a bit more relaxed, this fact is not important to the development of the central ideas. |
| **1 Part B** | D | | A. This option is incorrect. Although Feynman’s father does intend to make his son a scientist, this sentence does not imply that he’s going to teach the specific skills needed for careful observation.
B. This option is incorrect. Although Feynman’s description of the tile activity shows early intervention on his father’s part, this statement does not directly support the fact that his father was emphasizing the power of observation.
C. This option is incorrect. Although this statement addresses the tile activity, the quotation comes from Feynman’s mother, who appears to be less interested in the father’s goals for their son and just wants to allow him to play.
D. This is the correct answer. Feynman’s statement that his father started very early to spark his interest in the world is established in Paragraphs 1-3 and then further developed throughout the text. |
A. This option is incorrect. The conversation with the boy regarding the bird serves to illustrate how differently Feynman’s father teaches lessons to his son. Feynman does not learn important information from the boy.

B. This option is incorrect. Although the paragraphs do help the reader understand why the other fathers started taking their kids for walks in the woods, this information is unimportant to the development of the story.

C. This option is incorrect. Although the other boy believes he knows more about the bird, Feynman uses the example to show that the boy, in fact, just knows information that is different from and less meaningful than what Feynman has been taught.

D. This is the correct answer. Paragraphs 8-10 illustrate how different Feynman’s learning is from that of the other boy, thus demonstrating the types of information each father believed it was important to know.

A. This option is incorrect. Although Feynman’s father taught him in a “kind manner,” that is not the meaning of the word “principle.”

B. This is the correct answer. A “principle” is a general rule. In this text, Feynman’s father is interested in teaching him principles established through observations instead of just providing labels and basic information.

C. This option is incorrect. Although some principles can be confusing, such as Feynman’s understanding of inertia before his father explained it, “principle” does not mean “a confusing idea.”

D. This option is incorrect. Although Feynman’s father made learning interesting, the word “principle” means “a general rule.”
Part B

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>This option is incorrect. Although Feynman’s father brings home tiles to help his son learn basic mathematics, the act of bringing them home does not illustrate the teaching of a principle.</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>This option is incorrect. Although Feynman’s father reads to him from an encyclopedia, the act of reading doesn’t show the teaching of a principle.</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>This option is incorrect. Although Feynman’s father does tell him all of the foreign names of the bird in the woods, he does so to emphasize that that type of knowledge is not very meaningful when compared to truly understanding a subject based on one’s observations.</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>This is the correct answer. When Feynman’s father explains inertia using the wagon and ball as an observation, he is teaching a principle.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>This option is incorrect. Although Feynman’s father states before the birth of his son that he intends him to be a scientist, this sentence does not show how he promotes this interest.</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>This option is incorrect. Although this sentence acknowledges that Feynman’s father knew many scientific principles, it doesn’t explain how he uses that knowledge to spark his son’s interest.</td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>This is a correct answer. The statement explains that Feynman’s father taught him to pay attention and notice the things around him. The father wanted his son to remain alert and interested in science and learn through observation.</td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>This option is incorrect. With this statement, Feynman’s father is simply labeling the concept of inertia, which is not meant to spark interest. When the father goes on to use the wagon and the ball as an example and encourages his son to observe, he is then encouraging interest.</td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td>This is a correct answer. When Feynman acknowledges that his father “didn’t just give me the name,” he is recognizing that the father’s willingness to explain further and encourage observation was what helped spark Feynman’s interest in science.</td>
<td></td>
</tr>
<tr>
<td>F.</td>
<td>This option is incorrect. Although this statement shows Feynman using his powers of observation, it does not demonstrate the father’s role of sparking interest. It just confirms the father’s explanation.</td>
<td></td>
</tr>
<tr>
<td>5 Part A</td>
<td>C</td>
<td>RI.6.1, RI.6.2, RI.6.6</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>A. This option is incorrect. Although Feynman appears to enjoy hearing his father read, he actually emphasizes that much of his learning came through observing things in his environment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. This option is incorrect. Although Feynman would probably agree that kids should learn about what they want, there is no textual evidence to support this statement. In fact, he implies that kids should learn through ordinary activities by observing carefully.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. This is the correct answer. Feynman would most likely agree that knowing about something and truly understanding it are different, as illustrated by his anecdote about how the two fathers approach teaching about the bird in the woods. He provides ample evidence that observation is necessary to true understanding.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. This option is incorrect. Although it appears Feynman enjoys hearing his father talk about science, it’s the act of his father walking him through how to observe something and what things to question that sparks his interest, not just the discussion in general.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Part B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. This option is incorrect. This sentence details the mother’s feelings about how Feynman’s father was teaching him while they played, but does not help support the idea in Part A that knowing about something is not the same as truly understanding it.</td>
<td></td>
</tr>
<tr>
<td>B. This option is incorrect. Although the sentence shows that Feynman’s father was interested in teaching his son, it does not show that knowing about something is different from truly understanding it.</td>
<td></td>
</tr>
<tr>
<td>C. This is the correct answer. This sentence shows that after Feynman’s father read to him, he would stop and explain things to him to illustrate what textual information really meant. So while Feynman could have probably stated the material he’d just heard, he didn’t really understand it until he stopped to think about the meaning of the words.</td>
<td></td>
</tr>
<tr>
<td>D. This option is incorrect. Although it is clear the other mothers saw the value of Feynman and his father spending time together in the woods, the story of the conversation between the two young boys demonstrates that no one really understood the type of learning that was taking place. This option does not support the idea that knowing about something isn’t the same as understanding it.</td>
<td></td>
</tr>
</tbody>
</table>
Question 6

Possible correct answers:

- “But I learned from my father to translate: everything I read I try to figure out what it really means, what it’s really saying.” (paragraph 6)

- “I learned very early the difference between knowing the name of something and knowing something.” (paragraph 11)

- It has motivated me for the rest of my life, and makes me interested in all the sciences. (paragraph 29)

- I’ve been caught, so to speak—like someone who was given something wonderful when he was a child, and he’s always looking for it again. (paragraph 30)

- I’m always looking, like a child, for the wonders I know I’m going to find—maybe not every time, but every once in a while. (paragraph 30)

Rationale:

- A. This is an incorrect answer. Although the bathroom tile story takes place early in Feynman’s life, the other incidents are not necessarily told in chronological order, so the scene doesn’t help with the development of the story.

- B. This is an incorrect answer. The scene with the bathroom tiles does not establish an event that leads to later events. Instead, it serves as one example of how the author’s father introduced learning.

- C. This is an incorrect answer. The scene does not demonstrate how the incident with the bathroom tiles is different from later events, but that the event is one of the first of similar events that the father used to teach his son.

- D. This is the correct answer. The scene with the bathroom tiles introduces the first of four examples the author uses to demonstrate how his father imparted learning, the central idea of the passage.

Question 7

Possible correct answers:

- All of the sentences under “Possible correct answers” show life lessons Feynman learned through his father’s approach to teaching him about science and life in general. They all emphasize that curiosity about the world, combined with close observation, is key to truly understanding life.
Using the Mini-Assessments with English Language Learners (ELLs)

Mini-Assessment Design and English Language Learners
Each mini-assessment is designed using the best practices of test design. English Language Learners will benefit from the opportunity to independently practice answering questions about grade-level complex texts.

Prior to delivering the mini-assessment, teachers should read through each item. If there is language in the question stems specific to the standards (e.g., plot, theme, point of view), make sure that students have been introduced to these concepts prior to taking the assessment. Teachers should not pre-teach specific vocabulary words tested in the assessment (e.g., words students are asked to define) and should only pre-teach language that would impede students from understanding what the question is asking.

The mini-assessments attend to the needs of all learners, and ELLs specifically, by including texts that:

- **Are brief and engaging:** Texts vary in length, but no individual text is more than three pages long.
- **Embed student-friendly definitions:** Footnotes are included for technical terms or words that are above grade level when those words are not surrounded by context that would help students determine meaning.

Informational text sets, such as those included in the mini-assessment, specifically attend to the needs of ELLs by:

- **Building student knowledge:** Mini-assessments often include multiple texts or stimuli on the same topic:
 - For sets with two texts or stimuli, the first text is generally broader, providing a foundation in the content and introducing key vocabulary, and the second text provides more detail or contrast on the same topic. This allows ELLs to dig into the features of the passage being assessed rather than being inundated with dissimilar content and vocabulary.
 - For sets with more than two texts or stimuli, there is an “anchor” text that provides introductory information on the topic.

- **Containing ideas that lend themselves to discussion from a variety of perspectives:** Often these pairs or sets of texts present multiple perspectives on the same topic.

The mini-assessments attend to the needs of all learners, and ELLs specifically, by including questions that:

- **Feature a variety of academic words:**
Each mini-assessment contains at least one vocabulary item. Items assessing vocabulary test one of the following:

- The meaning of Tier 2 academic words in context.
- The meaning of a figurative word/phrase in context.
- The impact of word choice on meaning and/or tone.

MOST vocabulary items test Tier 2 words.

All tested words are chosen because:

- They are central to the meaning of the text.
- They are surrounded by sufficient context to allow students to determine meaning.

- **Highlight “juicy” sentences that feature grade-appropriate complex structures, vocabulary, and language features:** Most mini-assessments include at least one item assessing Reading for Literature or Reading: Informational text standard 5. These items point students to analyze the structure of the text. While standard 5 items specifically focus on the structure of the text, other items require the analysis of language features, vocabulary, and relationships between ideas, all of which build student understanding of texts.

- **Provide graphic organizers to help students capture and reflect on new knowledge:** Most mini-assessments include at least one item mimicking a “technology enhanced item.” These items include things like tables and charts.

- **Provide writing activities that allow students to use new vocabulary and demonstrate knowledge of new concepts:** Most mini-assessments include an optional writing prompt that allows students to write about the text(s).

Administration Guidelines for ELLs

When assessing ELL students, appropriate accommodations may be considered. Modifications to the assessment itself should not be made. According to the *Accommodations Manual: How to Select, Administer, and Evaluate Use of Accommodations for Instruction and Assessment of English Language Learners, First Edition*:

- “Modifications refer to practices or materials that change, lower, or reduce state-required learning expectations. Modifications may change the underlying construct of an assessment.”

- “Accommodations are accessibility supports [that] do not reduce learning expectations. They meet specific needs of students in instruction and assessment and enable educators to know that measures of a student’s work produce valid results.”

Teachers **may** choose to make accommodations that meet the unique needs of ELLs. Prior to delivering any practice assessment, especially if the mini-assessment is to be used in a more formal setting (e.g., as part of a district benchmark assessment), teachers should research what
accommodations will be available to students during their state’s summative assessment. For example, some states allow ELLs to use a bilingual dictionary during an assessment; other states do not allow this. Ensure your ELLs are practicing with the accommodations they can expect to see on the summative. Some examples of appropriate accommodations include:

- Reading the directions aloud to students multiple times.
- Providing student directions in student native language.
- Allowing students additional time to complete the mini-assessments.
- Exposing students to item types prior to the assessment.
- Reading the scoring expectations for the writing prompt aloud to students.

Because the goal of literacy mini-assessments is to measure grade-level literacy as students progress toward college- and career-readiness, teachers must be careful not to make modifications that may be commonly used in classroom instruction. Examples of modifications that should not be used include:

- Reading passages aloud for students.
- Adding student glossaries of unfamiliar terms.
- Pre-teaching tested vocabulary words.

In any testing setting, teachers must be careful to choose accommodations that suit the needs of each individual student.
Shift 1 – Complexity: *Regular practice with complex text and its academic language*

- See Appendix B for examples of informational and literary complex texts: http://www.corestandards.org/assets/Appendix_B.pdf
- See the Text Complexity Collection on www.achievethecore.org

Shift 2 – Evidence: *Reading, writing, and speaking grounded in evidence from text, both literary and informational*

- See Close Reading Exemplars for ways to engage students in close reading on http://www.achievethecore.org/steal-these-tools/close-reading-exemplars
- See the Basal Alignment Project for examples of text-dependent questions: http://www.achievethecore.org/basal-alignment-project

Shift 3 – Knowledge: *Building knowledge through content-rich nonfiction*

- See Appendix B for examples of informational and literary complex texts: http://www.corestandards.org/assets/Appendix_B.pdf