Grade 5 Informational Mini-Assessment
“Looking for Lunar Ice”

This grade 5 mini-assessment is based on the text “Looking for Lunar Ice,” an excerpt from Far-Out Guide to the Moon by Mary Kay Carson. This text is considered to be worthy of students’ time to read and also meets the expectations for text complexity at grade 5. Assessments aligned to the Common Core State Standards (CCSS) will employ quality, complex texts such as this one.

Questions aligned to the CCSS should be worthy of students’ time to answer and therefore do not focus on minor points of the text. Questions also may address several standards within the same question because complex texts tend to yield rich assessment questions that call for deep analysis. In this mini-assessment there are six selected-response questions and one paper/pencil equivalent of technology enhanced items that address the Reading Standards listed below. Additionally, there is an optional writing prompt, which is aligned to Reading, Writing, and Language standards.

We encourage educators to give students the time that they need to read closely and write to the source. While we know that it is helpful to have students complete the mini-assessment in one class period, we encourage educators to allow additional time as is necessary.

Note for teachers of English Language Learners (ELLs): This assessment is designed to measure students’ ability to read and write in English. Therefore, educators will not see the level of scaffolding typically used in instructional materials to support ELLs—these would interfere with the ability to understand their mastery of these skills. If ELL students are receiving instruction in grade-level ELA content, they should be given access to unaltered practice assessment items to gauge their progress. Passages and items should not be modified; however, additional information about accommodations you may consider when administering this assessment to ELLs is available in the teacher section of this resource.

The questions align to the following standards:

<p>| RI.5.1 | Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. |
| RI.5.2 | Determine two or more main ideas of a text and explain how they are supported by key details; summarize the text. |
| RI.5.3 | Explain the relationships or interactions between two or more individuals, events, ideas, or concepts in a historical, scientific, or technical text based on specific information in the text. |
| RI.5.4 | Determine the meaning of general academic and domain-specific words and phrases in a text relevant to a grade 5 topic or subject area. |
| RI.5.8 | Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). |
| W.5.2 | Write informative/explanatory texts to examine a topic and convey ideas and information clearly. |</p>
<table>
<thead>
<tr>
<th>W.5.4</th>
<th>Produce clear and coherent writing in which the development and organization are appropriate to task, purpose, and audience.</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.5.9</td>
<td>Draw evidence from literary or informational texts to support analysis, reflection, and research.</td>
</tr>
<tr>
<td>L.5.1</td>
<td>Demonstrate command of the conventions of standard English grammar and usage when writing or speaking.</td>
</tr>
<tr>
<td>L.5.2</td>
<td>Demonstrate command of the conventions of standard English capitalization, punctuation, and spelling when writing.</td>
</tr>
<tr>
<td>L.5.3</td>
<td>Use knowledge of language and its conventions when writing, speaking, reading, or listening.</td>
</tr>
</tbody>
</table>
Contents

Grade 5 Mini-Assessment – “Looking for Lunar Ice” *Print for students* ... 4

Information for Teachers: Quantitative and Qualitative Analyses of the Text .. 13

Question Annotations: Correct Answer(s) and Distractor Rationales .. 15

Using the Mini-Assessments with English Language Learners .. 20

Additional Resources for Assessment and CCSS Implementation .. 23

The assessment questions in this document align with the CCSS and reflect the instructional shifts implied by the standards. To learn more about these topics, please go to the following link:

www.achievethecore.org
Grade 5 Mini-Assessment – “Looking for Lunar Ice”

Today you will read a passage about scientists’ search for water on the Moon. You will then answer several questions based on the text. I will be happy to answer questions about the directions, but I will not help you with the answers to any questions. You will notice as you answer the questions that some of the questions have two parts. You should answer Part A of the question before you answer Part B, but you may go back and change your answer to Part A if you want to.

Take as long as you need to read and answer the questions. If you do not finish when class ends, come see me to discuss the ways you may have additional time.

Now read the passage and answer the questions. I encourage you to write notes in the margin as you read the passage.

Looking for Lunar Ice

from Far-Out Guide to the Moon by Mary Kay Carson

1 Lunar rocks lost their water long ago. So the Moon is a totally dry world, right? Not necessarily. Remember that the Moon is covered in impact craters. Many of those impacting comets, asteroids, and meteoroids delivered some water ice to the Moon. The ice carried by space rocks scattered across the lunar surface upon impact. Sunlight quickly evaporated most of the ice. But scientists suspect that some of that water ice still survives on the Moon.

2 “The only way water can be preserved on the Moon...is in extremely cold areas,” explains lunar scientist Alan Binder. The coldest places on the Moon are where the Sun never shines. Some of the Moon’s deep craters cast permanent shadows. The Moon’s north and south poles have some always-dark craters. How much ice survives in these “cold trap” craters? Scientists are working to find out. Finding a lot of ice on the Moon would be a big deal. If humans are going to build a moon base someday, they will need water. Not having to bring water from Earth would be a big help.
SEARCHING THE SHADOWS

3 Two decades passed without a single lunar visitor after the last astronaut walked on the Moon in 1972. Another spacecraft finally headed to our orbiting neighbor in 1994. No humans were aboard *Clementine* when it launched. It was a robotic space probe. *Clementine* mapped the Moon’s surface. It found permanently dark craters near the Moon’s poles. *Clementine’s* radar also found hints of ice in those craters. But when radar telescopes on Earth looked, they could not find the lunar ice. So was it really there?

4 *Lunar Prospector* went to find out in 1998. The small space probe scanned the Moon’s surface. Seven weeks after orbiting, *Lunar Prospector* scientists made a big announcement. “We have found water at both lunar poles,” Alan Binder told reporters in March of 1998. He was in charge of the *Lunar Prospector* mission. Water ice crystals seemed to be mixed in with the dusty lunar soil. *Lunar Prospector* scientists said that a small lake’s worth of water lay scattered as frost near the Moon’s poles.

5 How could scientists be sure this time? They sacrificed their spacecraft to find out. In July of 1999, engineers sent *Lunar Prospector* crashing into a dark crater at the Moon’s south pole. Scientists figured that the crash’s dust cloud would have some water vapor in it. But no water showed up. The mystery of water of the Moon would take another ten years to solve.

MORE THAN EXPECTED

6 When the robotic explorer *Lunar Reconnaissance Orbiter* flew to the Moon in 2009, another spacecraft piggybacked on it. The *Lunar Crater Observation and Sensing Satellite (LCROSS)* aimed to finally answer whether or not there is ice on the Moon. Soon after launch, *LCROSS* separated from its ride and headed for crater Cabeus near the Moon’s south pole. First *LCROSS* sent its booster rocket crashing into the crater. The spacecraft quickly radioed back what it saw in the debris cloud. Only minutes later *LCROSS* slammed itself into the crater, too, as astronomers on Earth searched the kicked-up cloud for water—and found it.
“Yes, we found water,” LCROSS scientist Anthony Colaprete told reporters during the big announcement in late 2009. “And we didn’t find just a little bit.” They’d found enough water to fill a dozen two-gallon buckets. There’s likely a lot of ice on the Moon.

While LCROSS solved the Moon’s water mystery, it created another one. Scientists haven’t been able to identify some of the materials kicked-up into the debris cloud—yet. Scientists hope to find out what else might be hiding in them.

QUESTIONS

1. The following item has two parts. Answer Part A and then answer Part B.

 Part A: What is the best definition of the word **impact** as it is used in paragraph 1 of the article?

 A. dangerous force
 B. hard smash
 C. sudden change
 D. falling motion

 Part B: What are two ways that the word **impact** helps develop important ideas in the article?

 A. It shows that space is full of different types of debris.
 B. It proves that the moon is made of soft material.
 C. It explains how the moon’s deep craters were formed.
 D. It explains why there is little water on the moon’s surface.
 E. It tells how water was carried to the moon.
 F. It tells how the moon is affected by the sun.

2. Based on the article, what were the **two** strongest reasons for investigating whether there is water on the moon?

 A. to study how water differs from place to place
 B. to solve an interesting mystery about the moon
 C. to better understand how craters form
 D. to prepare for the possibility of a base
 E. to find new water sources for people on Earth
 F. to test out the latest space probes
3. The following item has two parts. Answer Part A and then answer Part B.

Part A: Why did scientists make the Lunar Prospector crash into a crater?

A. They wanted to dispose of the probe because it was no longer useful.
B. They wanted to know exactly how deep the crater was.
C. They wanted to see if it could locate the Clementine in the crater.
D. They wanted to create a dust cloud they could study.

Part B: In what way did the crash of the Lunar Prospector cause a problem for the scientists?

A. It failed to reveal water on the moon.
B. It resulted in the loss of a valuable spacecraft.
C. It revealed materials they did not recognize.
D. It made conditions on the moon bad for future probes.

4. How is the main idea in the first two paragraphs of the article related to the main idea in the rest of the article?

A. The first two paragraphs give reasons there could be water ice on the moon, and the rest of the article explains how scientists have explored this possibility.
B. The first two paragraphs describe which parts of the moon are the coldest, and the rest of the article explains how scientists have gathered data about temperatures of water on the moon.
C. The first two paragraphs show how water on the moon could help people, and the rest of the article explains why LCROSS was sent into space to help gather information about ice on the moon.
D. The first two paragraphs describe the problem scientists face in trying to collect information about water on the moon, and the rest of the article lists solutions that have helped overcome this problem.
5. Each spacecraft in the chart below had a role in helping scientists determine whether or not there is water on the moon. From the list of contributions below, select the most important way that each of these four crafts provided support for the exploration of the moon. Write each of your choices in the proper place on the chart.

<table>
<thead>
<tr>
<th>Spacecraft</th>
<th>Biggest Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clementine</td>
<td></td>
</tr>
<tr>
<td>Lunar Prospector</td>
<td></td>
</tr>
<tr>
<td>Lunar Reconnaissance Orbiter</td>
<td></td>
</tr>
<tr>
<td>LCROSS</td>
<td></td>
</tr>
</tbody>
</table>

List of Contributions

- found ice crystals in soil near poles
- scanned moon’s surface
- revealed water by crashing into crater
- sent booster rocket into crater
- found hints of ice in dark craters
- mapped moon’s surface
- carried craft designed to solve water mystery
6. Based on the article, what are two things we still do not know about the moon?

A. Whether there is water anywhere but the poles
B. Whether ice on the moon can melt
C. Why certain craters are so cold and deep
D. How much water is on the moon
E. What some of the materials at the bottom of craters are
F. How lunar rocks became scattered across the moon

7. The following question has two parts. Answer Part A and then answer Part B.

Part A: Why did scientists choose the crater Cabeus as the site to crash the LCROSS and its booster rocket?

A. The crater is an impact crater near the Moon’s south pole, where more water ice is likely to have been scattered.
B. The inside of the crater is always dark, making it cold enough to keep water ice from evaporating.
C. The crater is one of the smaller ones on the Moon, where less evaporation of the water ice takes place.
D. The outside of the crater is not in complete darkness, making it easier for scientists to see the water ice.

Part B: Which detail from the first two paragraphs of the article best supports the response to Part A?

A. “Remember that the Moon is covered in impact craters. Many of those impacting comets, asteroids, and meteoroids delivered some water ice to the Moon. “
B. “The ice carried by space rocks scattered across the lunar surface upon impact. Sunlight quickly evaporated most of the ice.”
C. “But scientists suspect that some of that water ice still survives on the Moon.”
D. “The coldest places on the Moon are where the Sun never shines. Some of the Moon’s deep craters cast permanent shadows.”

10
8. (Optional writing prompt): Explain how scientists finally answered the question of whether or not there is water on the moon. Describe how the idea first came to the attention of scientists, how it was supported or challenged by evidence, and what scientists believe now. Be sure to use details from the article to support your response. Write your response using the lines on the next page.

Your response will be scored on how well you:

- Demonstrate your understanding of the ideas of the text
- Use evidence from the text to help develop and support your ideas
- Organize your response in a logical manner
- Demonstrate an appropriate writing style through the use of precise word choice and varied sentences
- Use standard conventions for writing
Information for Teachers: Quantitative and Qualitative Analyses of the Text

Regular practice with complex texts is necessary to prepare students for college and career readiness. The excerpt for this mini-assessment is placed at grade 5 for the purpose of this exemplar. This section of the exemplar explains the process that was used to place the text at grade 5 and the reasons that it meets the expectations for text complexity in Reading Standard 10. “Appendix A of the Common Core” and the “Supplement to Appendix A: New Research on Text Complexity” lay out a research-based process for selecting complex texts.

1. Place a text or excerpt within a grade band based on at least one quantitative measure according to the research-based conversion table provided in the “Supplement to Appendix A: New Research on Text Complexity” (www.corestandards.org/resources).

2. Place a text or excerpt at a grade level based on a qualitative analysis.

<table>
<thead>
<tr>
<th>“Looking for Lunar Ice”</th>
<th>Quantitative Measure #1</th>
<th>Quantitative Measure #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexile: 860</td>
<td>Flesch-Kinkaid: 6.1</td>
<td></td>
</tr>
</tbody>
</table>

After gathering the quantitative measures, the next step is to place the quantitative scores in the Conversion Table found in the “Supplement to Appendix A” (www.corestandards.org/resources) and determine the grade band of the text. NOTE: With scientific texts, there are often many scientific terms that drive the readability ratings up. Careful attention should be paid to the complexity of the topic itself in these cases so that the scientific terms don’t force the passage into a grade level that is too high for the concept. Figure 1 reproduces the conversion table from the Supplement to Appendix A, showing how the initial results from Flesch-Kinkaid and the Lexile measure were converted to grade bands.

1 For higher stakes tests, it is recommended that two corresponding text complexity measures be used to place a text in a grade band. When two measures are used, both placing the text in the same band, the results provide additional assurance that the text selected is appropriate for the band.
To find the **grade level** of the text within the designated grade band, engage in a systematic analysis of the characteristics of the text. The characteristics that should be analyzed by doing a qualitative analysis are included below and discussed fully in Appendix A of the CCSS. (www.corestandards.org).

<table>
<thead>
<tr>
<th>Qualitative Analysis</th>
<th>“Looking for Lunar Ice”</th>
<th>Where to place within the band?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Notes and comments on text, support for placement in this band</td>
<td>Too Low</td>
</tr>
<tr>
<td>Structure: (both story structure or form of piece)</td>
<td>This excerpt is organized in an accessible manner. The author presents a problem (an unsolved mystery) and then describes the ways NASA set out to find answers. The details about how NASA conducted its fact finding are provided in chronological order, guiding readers through the various lunar missions. The conclusion introduces a secondary mystery, leaving readers wondering about how much water is on the moon. Subheadings should help enhance the reader’s understanding of content, and a supplementary illustration directly supports the text. Together, these aspects of the structure help make the text accessible at grade 5.</td>
<td></td>
</tr>
<tr>
<td>Language Clarity and Conventions</td>
<td>The language conventions in the text are explicit and straightforward. The excerpt includes simple and compound sentences, mixed with a number of more complex constructions (e.g., When the robotic explorer Lunar Reconnaissance Orbiter flew to the Moon in 2009, another spacecraft piggybacked on it.). Vocabulary is mostly contemporary and familiar. There are instances of tier 3 words that may be unfamiliar to students (asteroids, meteoroids, orbiting); however, there is sufficient context for readers to grasp the meaning of the subject-specific vocabulary.</td>
<td></td>
</tr>
<tr>
<td>Knowledge Demands (life, content, cultural/literary)</td>
<td>To understand the text, it would be helpful for students to have a basic understanding of space exploration and the Moon’s environment. But even without that knowledge, the information needed to answer the test questions lies within the four corners of the text.</td>
<td></td>
</tr>
<tr>
<td>Levels of Meaning (chiefly literary)/ Purpose (chiefly informational)</td>
<td>The main purpose of the text is implicit but readily accessible: After many years and several lunar explorations investigating the presence of lunar ice, scientists confirmed that water is present on the Moon. Their next mystery is also presented: How much water is there?</td>
<td></td>
</tr>
<tr>
<td>Overall placement: Grade 5</td>
<td>Justification: This text is moderately complex in regard to sentence structure, vocabulary, and knowledge demands. The domain-specific vocabulary may be challenging, but is still likely to be accessible to the average 5th grader. This mini-assessment may be most appropriate for advanced 5th graders early in the year or all 5th graders later in the year.</td>
<td></td>
</tr>
</tbody>
</table>
Question Annotations: Correct Answer(s) and Distractor Rationales

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer(s)</th>
<th>Standards</th>
<th>Rationales for Answer Options</th>
</tr>
</thead>
</table>
| 1 Part A | B | RI.5.4, RI.5.1 | A. Although an impact might serve as a “dangerous force,” in paragraph 1 the word “impact” is used to show that an object smashed forcefully into the moon.
B. This is the correct answer. “Hard smash” refers to the force with which the space rocks land.
C. “Sudden change” refers to how quickly the space rocks affected the lunar surface rather than the force of their landing.
D. “Falling motion” refers to how the space rocks moved rather than the force of their landing. |
| 1 Part B | C, E | RI.5.4, RI.5.1 | A. The word “impact” helps develop how space rocks affected the moon, rather than what other types of debris exist in space.
B. The word “impact” suggests that space rocks changed the surface of the moon because of their great force, not because of the composition of the moon.
C. This is a correct answer. The powerful force of the space rocks hitting the surface of the moon caused deep craters to form.
D. The amount of water on the lunar surface is dependent on factors other than the force of space rocks hitting the moon.
E. This is a correct answer. The space rocks that impacted the surface of the moon delivered water to the moon.
F. “Impact” focuses on the effect of space rocks on the moon, not the effect of the sun on the moon. |
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer(s)</th>
<th>Standards</th>
<th>Rationales for Answer Options</th>
</tr>
</thead>
</table>
| 2 | B, D | RI.5.3, RI.5.1 | A. Although scientists were interested in learning about water on the moon, their purpose was not to compare water from multiple places.
B. This is a correct answer. Scientists wanted to determine the truth about water on the moon after receiving conflicting information from different space missions.
C. Although space rocks formed craters, scientists were interested in the water brought by the rocks, not the formation of the craters.
D. This is a correct answer. In paragraph 2, the author states, “Not having to bring water from Earth would be a big help” to building a moon base.
E. Although the author states that people will need water, the reference is to people living on a moon base, rather than people inhabiting Earth.
F. Although the space probes were developed specifically to investigate water on the moon, they would not have been developed if there had not been a mystery or problem to solve. |
| 3 Part A | D | RI.5.2, RI.5.1 | A. Although the Lunar Prospector was unusable after its mission, scientists purposefully crashed it to create a dust cloud, not to dispose of the craft.
B. Although scientists crashed the Lunar Prospector into a crater, the purpose of the probe was to scan the moon’s surface, not measure crater depth.
C. Although the Clementine probe went to the moon before the Lunar Prospector, there is no evidence to suggest that the Clementine was in the crater.
D. This is the correct answer. Paragraph 5 states, “engineers sent Lunar Prospector crashing into a dark crater at the Moon’s south pole” and “Scientists figured that the crash’s dust cloud would have some water vapor in it.” |
| 3 Part B | A | | A. This is the correct answer. According to paragraph 5, “Scientists figured that the crash’s dust cloud would have some water vapor in it. But no water showed up.”
B. Although their plan would ruin the probe, engineers purposefully crashed the Lunar Prospector.
C. The LCROSS crash, not the Lunar Prospector, revealed substances scientists could not identify.
D. The article does not suggest that the Lunar Prospector crash changed moon conditions for future probes. |
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer(s)</th>
<th>Standards</th>
<th>Rationales for Answer Options</th>
</tr>
</thead>
</table>
| 4 | A | RI.5.2, RI.5.1 | A. This is the correct answer. Paragraphs 1 and 2 explain how and where water is on the moon, while the rest of the article describes space explorations that studied water on the moon.
B. Although paragraph 2 identifies which parts of the moon are coldest, this is a minor detail supporting the main idea that there may be water present on the moon.
C. Although paragraph 2 explains a benefit of finding water on the moon, this is a minor detail supporting the main idea of why scientists have explored this possibility.
D. Although it is clear that collecting information about the moon is not easy, the focus of the article is not the difficulty of collecting information but the question of whether or not there is water ice on the moon. |
<p>| 5 | See answers and rationales in right-hand column. | RI.5.2, RI.5.3, RI.5.1 |

| | | |

| Clementine | Answer: found hints of ice in dark craters | Rationale: According to paragraph 3, “Clementine’s radar also found hints of ice in those craters.” |
| Lunar Prospector | Answer: found ice crystals in soil near poles | Rationale: According to paragraph 4, “Water ice crystals seemed to be mixed in with the dusty lunar soil.” |
| Lunar Reconnaissance Orbiter | Answer: carried craft designed to solve water mystery | Rationale: According to paragraph 6, “When the robotic explorer Lunar Reconnaissance Orbiter flew to the Moon in 2009, another spacecraft piggybacked on it.” |
| LCROSS | Answer: revealed water by crashing into crater | Rationale: According to paragraph 6, “Only minutes later LCROSS slammed itself into the crater, too, as astronomers on Earth searched the kicked-up cloud for water—and found it.” |</p>
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer(s)</th>
<th>Standards</th>
<th>Rationales for Answer Options</th>
</tr>
</thead>
</table>
| 6 | D, E | RI.5.8, RI.5.1 | A. According to paragraph 2, water could be found only on the coldest parts of the moon, the poles, so we know there cannot be water elsewhere on the moon.
B. According to paragraph 1, “Sunlight evaporated most of the ice” brought to the moon by space rocks. To be evaporated, the ice would need to melt first.
C. According to paragraph 2, “The coldest places on the Moon are where the Sun never shines” because of the depth of the craters, so we know why certain craters are cold and deep.
D. This is a correct answer. According to paragraph 7, “There’s likely a lot of ice on the Moon,” but based on the findings of so far of “a dozen two-gallon buckets” of water, we do not know for sure.
E. This is a correct answer. According to paragraph 8, “Scientists haven’t been able to identify some of the materials kicked-up into the debris cloud—yet.”
F. According to paragraph 1, “The ice carried by space rocks scattered across the lunar surface upon impact,” so we know how rocks were scattered across the moon. |
| 7 Part A | B | RI.5.3, RI.5.1 | A. Although the Cabeus is near the Moon’s south pole, the article does not indicate how it was formed or how much water ice scientists expected to be inside it.
B. This is the correct answer. According to paragraph 2, water ice is most likely found in deep craters that do not receive sunlight.
C. Although the article states that deeper craters receive less sunlight and thus experience less evaporation of water ice, there is no indication that smaller craters preserve water ice.
D. Although the LCROSS “radioed back what it saw,” there is no evidence to suggest better visibility outside of the Cabeus crater. |
| 7 Part B | D | | A. Although the first two paragraphs discuss water ice on the Moon, they focus on how water traveled to the moon rather than how it could remain on the surface.
B. Although the first two paragraphs discuss water ice on the Moon, they focus on how water was scattered and mostly evaporated on the Moon, not how it remains on the surface.
C. Although the first two paragraphs discuss water ice on the Moon, they do not identify where scientists expected to find water ice.
D. This is the correct answer. This detail connects the ideas that the depth of craters and the lack of sunlight allow water ice to remain on the surface of the moon. |
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer(s)</th>
<th>Standards</th>
<th>Rationales for Answer Options</th>
</tr>
</thead>
</table>
| 8 | See top-score bullets in right-hand column. | W.5.2, W.5.4, W.5.9, RI.5.3, RI.5.2, RI.5.1, L.5.1, L.5.2, L.5.3 | A top score will include:
 • Evidence of water on moon first found in 1994
 • Spacecraft *Clementine* found hints of ice in craters
 • Earth’s radar telescopes could not see ice
 • Scientists sent *Lunar Prospector* in 1998
 • It found ice crystals in lunar soil at poles
 • Scientists were convinced there was water, told media
 • To confirm, scientists let *Lunar Prospector* crash into crater
 • Crash did not reveal water as expected
 • LCROSS was sent in 2009
 • Crashed into crater
 • Dust cloud revealed water—mystery solved! |
Mini-Assessment Design and English Language Learners

Each mini-assessment is designed using the best practices of test design. English Language Learners will benefit from the opportunity to independently practice answering questions about grade-level complex texts.

Prior to delivering the mini-assessment, teachers should read through each item. If there is language in the question stems specific to the standards (e.g., plot, theme, point of view), make sure that students have been introduced to these concepts prior to taking the assessment. Teachers should not pre-teach specific vocabulary words tested in the assessment (e.g., words students are asked to define) and should only pre-teach language that would impede students from understanding what the question is asking.

The mini-assessments attend to the needs of all learners, and ELLs specifically, by including texts that:

- **Are brief and engaging**: Texts vary in length, but no individual text is more than three pages long.
- **Embed student-friendly definitions**: Footnotes are included for technical terms or words that are above grade level when those words are not surrounded by context that would help students determine meaning.

Informational text sets, such as those included in the mini-assessment, specifically attend to the needs of ELLs by:

- **Building student knowledge**: Mini-assessments often include multiple texts or stimuli on the same topic:
 - For sets with two texts or stimuli, the first text is generally broader, providing a foundation in the content and introducing key vocabulary, and the second text provides more detail or contrast on the same topic. This allows ELLs to dig into the features of the passage being assessed rather than being inundated with dissimilar content and vocabulary.
 - For sets with more than two texts or stimuli, there is an “anchor” text that provides introductory information on the topic.
- **Containing ideas that lend themselves to discussion from a variety of perspectives**: Often these pairs or sets of texts present multiple perspectives on the same topic.
The mini-assessments attend to the needs of all learners, and ELLs specifically, by including questions that:

- *Feature a variety of academic words:*
 - Each mini-assessment contains at least one vocabulary item. Items assessing vocabulary test one of the following:
 - The meaning of Tier 2 academic words in context.
 - The meaning of a figurative word/phrase in context.
 - The impact of word choice on meaning and/or tone.
 - MOST vocabulary items test Tier 2 words.
 - All tested words are chosen because:
 - They are central to the meaning of the text.
 - They are surrounded by sufficient context to allow students to determine meaning.

- *Highlight “juicy” sentences that feature grade-appropriate complex structures, vocabulary, and language features:* Most mini-assessments include at least one item assessing Reading for Literature or Reading: Informational text standard 5. These items point students to analyze the structure of the text. While standard 5 items specifically focus on the structure of the text, other items require the analysis of language features, vocabulary, and relationships between ideas, all of which build student understanding of texts.

- *Provide graphic organizers to help students capture and reflect on new knowledge:* Most mini-assessments include at least one item mimicking a “technology enhanced item.” These items include things like tables and charts.

- *Provide writing activities that allow students to use new vocabulary and demonstrate knowledge of new concepts:* Most mini-assessments include an optional writing prompt that allows students to write about the text(s).

Administration Guidelines for ELLs

When assessing ELL students, appropriate accommodations may be considered. Modifications to the assessment itself should not be made. According to the *Accommodations Manual: How to Select, Administer, and Evaluate Use of Accommodations for Instruction and Assessment of English Language Learners, First Edition:*

- “Modifications refer to practices or materials that change, lower, or reduce state-required learning expectations. Modifications may change the underlying construct of an assessment.”
• “Accommodations are accessibility supports [that] do not reduce learning expectations. They meet specific needs of students in instruction and assessment and enable educators to know that measures of a student’s work produce valid results.”

Teachers may choose to make accommodations that meet the unique needs of ELLs. Prior to delivering any practice assessment, especially if the mini-assessment is to be used in a more formal setting (e.g., as part of a district benchmark assessment), teachers should research what accommodations will be available to students during their state’s summative assessment. For example, some states allow ELLs to use a bilingual dictionary during an assessment; other states do not allow this. Ensure your ELLs are practicing with the accommodations they can expect to see on the summative. Some examples of appropriate accommodations include:

- Reading the directions aloud to students multiple times.
- Providing student directions in student native language.
- Allowing students additional time to complete the mini-assessments.
- Exposing students to item types prior to the assessment.
- Reading the scoring expectations for the writing prompt aloud to students.

Because the goal of literacy mini-assessments is to measure grade-level literacy as students progress toward college- and career-readiness, teachers must be careful not to make modifications that may be commonly used in classroom instruction. Examples of modifications that should not be used include:

- Reading passages aloud for students.
- Adding student glossaries of unfamiliar terms.
- Pre-teaching tested vocabulary words.

In any testing setting, teachers must be careful to choose accommodations that suit the needs of each individual student.
Additional Resources for Assessment and CCSS Implementation

Shift 1 – Complexity: *Regular practice with complex text and its academic language*
- See Appendix B for examples of informational and literary complex texts http://www.corestandards.org/assets/Appendix_B.pdf
- See the Text Complexity Collection on www.achievethecore.org

Shift 2 – Evidence: *Reading, writing, and speaking grounded in evidence from text, both literary and informational*
- See Close Reading Exemplars for ways to engage students in close reading on http://www.achievethecore.org/steal-these-tools/close-reading-exemplars
- See the Basal Alignment Project for examples of text-dependent questions http://www.achievethecore.org/basal-alignment-project

Shift 3 – Knowledge: *Building knowledge through content-rich nonfiction*
- See Appendix B for examples of informational and literary complex texts http://www.corestandards.org/assets/Appendix_B.pdf

Sample Scoring Rubric for Text-Based Writing Prompts:
http://achievethecore.org/content/upload/Scoring_Rubric_for_Text-Based_Writing_Prompts.pdf