Math Milestones
The math of your grade on a single page

Welcome! Share in the chat:
- Name, Role/Title, Location
- What are you hoping to learn about today?
Change your Zoom name to the GRADE-LEVEL you would like to participate in breakouts today.
About Student Achievement Partners

At SAP we design actions based on evidence that substantially improve student achievement.

We design and share evidence-based literacy and mathematics guidance and resources that center students, particularly those who experience racial, cultural, or linguistic inequities. We do this because we believe that education can be reimagined and redesigned to eradicate inequity. Achieving this vision requires the perspectives of many, so we work in partnership with content experts, policy makers, and educators to design practical tools and resources that support teachers and students.
Your Hosts Tonight from the Math Milestones Team

Sandra Alberti
Harold Asturias
Phil Daro
Jun Li
John Staley
Webinar Agenda

- The Purpose of Math Milestones
- Explore a Math Milestones Grid
- What they are/aren’t
- Tour of the Resources
- Opportunities for Engagement
What problem are we trying to solve?

● As a teacher, I want to
 ○ know what’s most important to teach at this grade level.
 ○ know what assets student bring from prior years that I can build on while teaching grade level math this year.
 ○ have a clear picture of how to help students with unfinished learning.
● How do I think about grade-level math while also considering language supports and opportunities to build identity and agency in my students?
● Change “answer getting” habits to “learning by making sense” habits.

NOT summative assessment; designed to prompt rich and revealing discussion
Standards need example Tasks

Milestones complement Standards. Standards should set targets, priorities...help us see what’s more important and less. But they seem like a list of topics to cover. Yet ‘covering’ is the disease, not the cure. We need examples.

Tasks prompt us to think about students “doing” the mathematics...students as they learn.

Milestones puts the most important mathematics of the grade level on a single page as a grid of tasks. The richness is in the students’ thinking which becomes the topic worth talking about.
Milestones lift student thinking out of dependency on the implicit scaffolds of the lessons

When students work on problems in their curriculum, their work is heavily scaffolded by the lesson and unit in which they are immersed. If it is a lesson on ‘division’, they assume they are going to divide without even having to read the problem. They assume each problem is like the last.

What students learn inside their curriculum is heavily dependent on the lesson’s implicit scaffolds. Too often, the learning doesn’t transfer or connect to a coherent system of knowledge: mathematics. In other situations it is uncertain, easily confused; it fades. Deep learning means the student can transfer and connect new knowledge to old.

Milestones transcend the implicit scaffolds of a curriculum and lift student thinking into the grade level mathematics itself. Milestones give you a lens to see student thinking, using their mathematics in most important kinds of problems of the grade level.
Our Theory of Action

WHAT

If we use the Math Milestones to...
- Engage students in learning grade-level, relevant, and meaningful mathematics.
- Build students’ sense of self belief as critical thinkers and doers of mathematics.
- Make intentional and effective decisions about prioritizing learning.
- Discover student assets and use them to teach grade-level mathematics.

HOW

We will be better able to create opportunities for students to...
- Develop a habit of reasoning about relevant grade-level math.
- Learn to use language for academic purposes.
- Develop a sense of belonging and a strong math identity.

WHY

- Experience academic success,
- Understand their own and others’ culture,
- Develop a social consciousness, and
- Thrive in a world of constant change.
Building students' mathematical identity

Develop academic language

Understand the progressions of grade-level mathematics

Building students' mathematical identity
What are the Math Milestones?
Looking at the grid for your grade level

READ—don’t solve—as many of the tasks on your grade-level grid. [5 min]

CHOOSE one task and solve it. [5 min]

DISCUSS with your small group. Capture key ideas on the padlet. [5 min]

How do you envision using Math Milestones in your role?
What are Math Milestones?

<table>
<thead>
<tr>
<th>Math Milestones Are</th>
<th>Math Milestones Are Not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualization of grade level mathematics</td>
<td>Curriculum Map</td>
</tr>
<tr>
<td></td>
<td>● Scope and Sequence</td>
</tr>
<tr>
<td></td>
<td>● Check list</td>
</tr>
<tr>
<td>Cognitively demanding</td>
<td>Assessment</td>
</tr>
<tr>
<td>Low floor - high ceiling tasks</td>
<td>● Summative</td>
</tr>
<tr>
<td>Entry point for student thinking</td>
<td>● Pre/Post Test</td>
</tr>
<tr>
<td>Asset identifier</td>
<td>● Placement</td>
</tr>
<tr>
<td></td>
<td>● “Gap” identifier</td>
</tr>
</tbody>
</table>
Tour of the Resources
Grids, Teacher Notes, Student Handouts, and Interview Protocol

HOW TO NAVIGATE THE SITE
5.1 A school needed 240 four-packs of juice boxes for a field trip. However, the school accidentally bought 240 six-packs of juice boxes. How many extra juice boxes did the school buy?

5.2 After a hurricane, the 12 residents of a nursing home didn’t have any clean water to drink. Their neighbors donated 40 gallons of bottled water, which would provide ___ gallons for each resident.

5.3 A neighborhood garden will have 6 wooden planting boxes. Every box will have the same shape (see diagram). Soil can be bought by the truckload; a truckload is 54 ft³ of soil. How many truckloads of soil will fill all of the boxes?

5.4 (1) Circle T for true or F for false.
(a) 9 thousands + 5 tenths > 3 hundredths + 2 tenths
(b) 92 hundredths + 4 thousandths > 0.924
(c) 0.465 < 0.5

(2) Write each number in the requested form.
(a) 7 thousands + 5 tenths = ___ (decimal)
(b) 0.1 tenths = ___ (decimal)
(c) ___ (tenths) = ___ (0.01)

5.5 Write the requested values.
4016 ÷ 53 = ?
246 ÷ 914 = ?
974 ÷ 122 = ?
1661 ÷ 6 = ?
4 ÷ (8 - 4) = ?

5.6 (1) Aya and Lily’s house is ¾ of a mile from the store.
(a) Aya ran ___ of the way from her house to the store. How far, in miles, did Aya run?
(b) Lily ran ___ of the way from her house to the store. How far, in miles, did Lily run?
(c) It is ___ mile from Leon’s house to the store. (a) Leon ran ___ of the way from his house to the store. How far, in miles, did Leon run?
(b) Compare how far Leon and Lily ran; what do you notice, and why is it true?

5.7 The map shows an ocean near a coastline.

5.8 A scale drawing is a triangle in which the sides all have different lengths. Thinking about this, Alan decided there should also be a name for quadrilaterals in which the sides all have different lengths. She said, “I’ll name them after myself.” She defined an alona-gon to be a quadrilateral in which the four sides all have different lengths.

5.9 On Saturday there was a walkathon.

- I walked ___ mile farther than Leslie.
- I walked ___ mile.

How many miles did Leslie walk?

5.10 (1) Solve: 0.1 + ?
(2) Is there a number greater than 0.1 and less than 0.2? If you think so, find such a number. If you think there is no such number, explain why.
(3) Show one of the above problems and its solution on a number line.

5.11 Juliet said, “I’m thinking of a rectangle. Its area is 1 square unit. Its perimeter is more than 1 million units.”
(1) Is Juliet thinking of something possible or impossible? Use math to decide for sure.
(2) Explain your reasoning to your classmates.

5.12 Before it rained, the teacher went outside and placed identical baking pans on the ground. After it rained, the teacher brought the pans inside, and students measured how much water was collected in each pan.

If all the water collected were shared equally among the pans, how much water would be in each pan?

5.13 In a snack shop there is a frozen yogurt machine. When there is 3/4 of frozen yogurt in the machine, the machine is 1/4 full. How much frozen yogurt is in the machine when it is 1/4 full?

5.14 Brandon was reading his math book. He saw the equation 2 ÷ 4 = 1/2. He said, “I don’t get it—where did the 3 and the 2 come from?” Write an explanation that could answer Brandon’s question.
Water Relief

After a hurricane, the 12 residents of a nursing home didn't have any clean water to drink. Their neighbors donated 40 gallons of bottled water, which would provide _____ gallons for each resident.

Answer: _____
Elements of Teacher Notes

Central math concepts

What is a central math concept?

How might I use relevant prior knowledge?

How might students drive the conversation further?
Elements of Teacher Notes

Related Math Milestones tasks

3:1 Volleyball Players, 3:4 Corn Seeds, and 3:9 Bulletin Board Pictures form a kind of survey of the essential early meanings of multiplication and division; the requested equation models can support learning about the relationship between the operations. Multiplication is useful in task 3:3 Length and Area Quantities.

3:2 Hidden Rug Design

Teacher Notes

Anticipating and responding to student thinking about the task

Imagine how students might think about the task, and what you might see and hear while they work.

Solution Paths
- What solution paths might you expect to see?
- What representations might you see? What correspondences between those representations might be noticed by students (or be worth pointing out to students) and discussed by them?
- What misconceptions or partial understandings might be revealed as students work on the task? How could you respond to these positively and productively?

Language
- What might you expect to hear from students engaged with the task? What does that language reveal about their mathematical thinking, and how might you respond to different ways of thinking?

Why is it important to know about related Math Milestones tasks?

How might I anticipate and respond to student thinking about the task?
Opportunities for Engagement
We Want You!

How do these resources work in classrooms?

What instructional resources might support teachers to integrate Math Milestones tasks into their instructional plans to complement the district curriculum?

This work will involve grade-level cohorts and the cultivation of resources including student artifacts, educator reflections, and more.
The Math Milestones Community

- MM Users
- MM Educator Network
- MM Co-Designers
Who We’re Looking for as Co-Designers

- Classroom environment that supports visible thinking
- Lesson design informed by students’ prior knowledge and other assets
- School environment supportive of innovative instructional design
- Commitment to eliminating barriers for students
Math Milestones Co-Designers

We’re looking for teachers who want to help us co-design resources by trying out the tasks in SY 22-23 and collaborating with us to design supporting resources.

- **July 19-21, 2022**
 Kick-off the co-design process with professional learning and intensive collaboration around the work.

- **SY 2022-23**
 Monthly Network meetings with focus tasks to try out and share the results with your network colleagues.

- **December 2022 & June 2023**
 Post the first sets of instructional resources to the website.
How to get involved

- MM Users
- MM Educator Network
- MM Co-Designers

Sign up on our website

Apply by May 15
District, State and Partner Engagement Opportunities

More information to come!

Please reach out for further discussion:

salberti@studentsachieve.net
Thank you!