Common Core Knowledge and Practice Survey Report Companion

Math Grades 6-8

About
The Common Core Knowledge and Practice Survey (Survey) is a tool for educators to use to reflect on their instructional practice and understanding of the Common Core State Standards (CCSS). Designed for use in a professional learning community (PLC) setting within a school, the Survey is meant to spark conversation, identify areas for growth, and offer concrete ways for teams of teachers to continue to align their practice to the Shifts. Following the administration of the Survey in a PLC, this resource can be used by coaches and teachers to better understand the Survey questions and their relationship to the Shifts.

The Survey was intentionally designed to take no more than 30 minutes. As a result, there are a limited number of questions pertaining to each aspect of the Shifts. When considering the performance of an individual or group on a Shift, it is important to look closely at the questions to tease out which aspect(s) of the Shift may be creating confusion. This resource is broken into two parts.

PART 1 : SURVEY
The Survey uses a variety of question types and formats to highlight specific features of the Standards and Shifts. It is intended to capture information from educators about their understanding of different elements of the Standards and how the Shifts manifest in planning and classroom instruction. Each Survey question will be followed by commentary. The ‘Purpose’ section will offer information about why the question was included in the Survey. The ‘Rationale’ section will explain the different response options.

Some of the Survey questions have correct answers because they ask about items that can be objectively verified. Other questions ask participants to apply their knowledge of the Shifts and Standards to a specific example or classroom scenario. For these questions, there may be circumstances in the course of instruction where any number of answer choices could be correctly applied; however, for the purpose of this Survey the correct answers are those actions that most closely tie instruction practice to the expectations of the Standards and Shifts. Finally, a subset of the questions about practice are designed to help illuminate what’s currently happening in classrooms and schools, in order to facilitate conversation about what training or structures might support future work.

Each question will have a label to indicate which category the question relates to – one of the Shifts (Focus, Coherence, Rigor) or ‘Practice-Content Connections.’ Questions that have one or more correct answers will have the correct response(s) indicated.

<table>
<thead>
<tr>
<th>Shift of Focus</th>
<th>Shift of Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus strongly where the Standards focus</td>
<td>Think across grades, and link to major topics within grades</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shift of Rigor</th>
<th>Practice-Content Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>In major topics pursue: conceptual understanding, procedural skill and fluency, and application with equal intensity.</td>
<td>Knowledge of the Mathematical Practice Standards and strategic connection of the Practice and Content standards in materials and instruction</td>
</tr>
</tbody>
</table>

PART 2 : SHIFTS SUMMARY
Part two shows which questions relate to each category. Part two also includes discussion questions and resource recommendations intended to drive conversation and provide a starting point for next steps and long-term professional learning.
Part 1: Survey

Q. 4
Shift of Focus

Question
Which of the following belongs to the Major Work of the indicated grade or course? Please select all that apply.

Correct Answer - 5th Grade: a, b; 6th Grade: a, d; 7th Grade: b, c; 8th Grade: b, c; 9th Grade: c, d
PURPOSE
Rather than racing to cover topics in a mile-wide, inch-deep curriculum, the Standards require us to significantly narrow and deepen the way time and energy is spent in the math classroom. By focusing deeply on the Major Work of each grade, students can gain strong foundations: solid conceptual understanding, a high degree of procedural skill and fluency, and the ability to apply the math they know to solve problems inside and outside the math classroom. This question addresses teachers’ knowledge of the Major Work of the grade. More information can be found at www.achievethecore.org/focus.

RATIONALE
This question showed different grade levels depending on the grade the teacher selected at the beginning of the Survey. The selected grade, one grade level below, and one grade level above were displayed for this question.

5th grade
a) Apply and extend previous understandings of multiplication and division to multiply and divide fractions - Major Work of 5th grade
b) Understand the place value system - Major Work of 5th grade
c) Understand and calculate probability of single events - 7th grade standard
d) Identify line of symmetry in two dimensional figures - 4th grade standard
e) I don’t know.

6th grade
a) Understand ratio concepts and use ratio reasoning to solve problems - Major Work of 6th grade
b) Identify the measures of central tendency and distribution - not in the Standards
c) Identify and utilize rules of divisibility - not in the Standards
d) Apply and extend previous understandings of arithmetic to algebraic expressions - Major Work of 6th grade
e) I don’t know.

7th grade
a) Examine transformations on the coordinate plane - a 5th grade standard
b) Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers - Major Work of 7th grade
c) Use properties of operations to generate equivalent expressions - Major Work of 7th grade
d) Generate the prime factorization of numbers to solve - not in the Standards
e) I don’t know.

8th grade
a) Represent and analyze quantitative relationships between dependent and independent variables - 6th grade standard
b) Define, compare, and evaluate functions
c) Understand and apply the Pythagorean Theorem - Major Work of 8th grade
d) Understand and calculate probability of single events - 7th grade standard
e) I don’t know.

Typical 9th grade course (e.g., Algebra I)
a) Quadratic inequalities - content likely to be in a more advanced HS course
b) Examine transformations on the coordinate plane - 8th grade standard
c) Linear and quadratic functions - Widely Applicable Prerequisite for HS
d) Create equations to model situations - Widely Applicable Prerequisite for HS
e) I don’t know.
Question
Over the past school year, how frequently have you done the following?

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Almost never/Never</th>
<th>About once a month</th>
<th>Several times a month</th>
<th>About weekly</th>
<th>Several times a week</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Discussed Common Core State Standards for Mathematics with teachers in other grades</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Discussed Common Core State Standards for Mathematics with teachers in your own grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Looked at student mathematical work with other teachers for the purposes of professional development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Received suggestions from colleagues for curricular materials aligned to the Common Core State Standards for Mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correct Answers - N/A

PURPOSE
Supportive environments in which teachers are able to discuss, question, and work collectively to study student expectations support a deeper understanding of the coherence of the Standards. Teacher collaboration can facilitate more consistency in both instructional materials and instruction, and allows teachers to see connections across grades more clearly and make those connections in their classrooms. This question addresses the frequency of teacher collaboration around the Standards.

RATIONALE
There is no correct amount of time required for teachers to spend working together; however, teacher collaboration can support high quality CCSS-aligned instruction.

a) Vertical collaboration helps teachers develop a deeper understanding of the expectations of their own grade and provides an understanding of the progression of the standards in the surrounding grades.
b) Teachers collaborating within a grade allows for a collective reflection on specific content standards, lesson, and activities that are applicable to the content of the grade.
c) Examining student work with other teachers is useful in identifying key misconceptions and discussing how to make classroom adjustments.
d) Finding and sharing aligned resources with colleagues is useful for many schools/districts in which instructional materials are not aligned to the Standards.
Question
Carefully examine each standard below and select which aspect of rigor is being targeted.

<table>
<thead>
<tr>
<th>Conceptual Understanding</th>
<th>Procedural Skill and Fluency</th>
<th>Application</th>
<th>I don’t know</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a = 0.05a - 0.05a$ means that “increase by 5% is the same as multiply by 1.05.”</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| b) Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
| c) Use proportional relationships to solve multi-step ratio and percent problems. Compare simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
| d) Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.
| e) Fluently divide multidigit numbers using the standard algorithm. |

PURPOSE
In order to reach the depth of the Standards, a balance of conceptual understanding, procedural skill/fluency, and application is required in the classroom. Each standard embodies at least one aspect of rigor; often the language in the standard indicates which aspect is being targeted (e.g., “fluently” identifies a procedural standard; “understand” identifies a conceptual understanding standard, and “real world problems” identifies an application standard). This question asks teachers to identify the aspect of rigor in the standard; understanding the intended aspect of rigor in a particular standard is critical for teachers to plan and execute lessons that address the expected learning of the Standards.

RATIONALE
a) “Understanding that re-writing an expression in different forms... can shed light on the problem” targets conceptual understanding.

b) “Solve real-world problems... by graphing all 4 points” indicates students are using their knowledge of the coordinate plane and applying it in a real-world context; this standard targets application.
c) “Using multi-step proportional relationships to solve multi-step ratio and percent problems. Examples: simple interest, tax…” indicates students are applying their understanding of proportional relationships to a real-world context; this standard targets application.

d) “Solve systems of two linear equations” targets procedural skill/fluency.

e) “Fluently divide multi-digit numbers using the standard algorithm” targets procedural skill/fluency.

Q. 7

Shifts of Focus, Coherence and Rigor

Question

Please indicate the extent to which you agree or disagree with the following statements as they relate to your mathematics teaching this school year.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Strongly Disagree</th>
<th>Somewhat Disagree</th>
<th>Somewhat Agree</th>
<th>Strongly Agree</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I choose which standards to teach based on the major work of the grade.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. I try to incorporate conceptual understanding into every lesson that I teach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. I try to incorporate real-world applications into every lesson that I teach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. I use the textbook to determine the order of the standards that I teach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. I use the wording of the standards to determine if procedural skills, conceptual understanding, and/or real-world applications are emphasized in my lessons.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. I order lessons based on the order of the standards at my grade.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. I spend less time in the classroom on additional/supporting standards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. I organize which standards to teach based on how they connect to one another within and across units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. I seek to balance my unit across procedural skills, conceptual knowledge and real-world applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. I consider student prior knowledge when writing my lesson and learning objective.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. I try to give equal importance to all topics throughout the year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correct Answers - N/A
PURPOSE

There are many pedagogical choices a teacher can make when supporting students in mathematics. This question details an array of instructional practices and asks teachers to identify which behaviors they exhibit in the classroom. Given the variety of decisions that can be made in different educational contexts, many of the statements above could be valid. However, some instructional practices better support Standards-based instruction and a teacher fully implementing the Standards would be more likely to emphasize those practices over others. To learn more about the Shifts, go to www.achievethecore.org/shifts-mathematics.

RATIONALE

The practices associated with the italicized sections below are those that a teacher fully implementing the Standards is likely to emphasize.

a) Major Work of the grade is prioritized content within the Standards and requires more class time. Making instructional decisions based on the Major Work of the grade is important for ensuring that students spend the time necessary to master the concepts and skills that lead to algebra.

b) Conceptual understanding is one of the three aspects of rigor and should be incorporated into lessons appropriately – based on the expectation of the standard. Not all standards focus on the development of mathematical concepts; lessons based on standards that set expectations of fluencies or the application of math should not target conceptual understanding.

c) Application is one of the three aspects of rigor and should be incorporated to lessons appropriately – based on the expectation of the standard. Not all standards focus on applying mathematical concepts; lessons based on standards that set expectations of fluencies or building mathematical concepts should not target application.

d) While the textbook might present a sound mathematical sequence of topics, the curriculum should be carefully reviewed for alignment to the Shifts. Tools such as the Instructional Materials Evaluation Tool (IMET) can help determine whether adjustments should be made. For more information go to www.achievethecore.org/imet.

e) The Standards require a balance of conceptual understanding, procedural skill/fluency, and real-world application across the year, but the realization of these in the classroom should be specific to the intent of the standard being addressed. As noted in the rationale for Q6, the language of a standard indicates the aspect(s) of rigor targeted by the standard. Each of the aspects of rigor does not need to be attended to every day or in every lesson. For more information go to www.achievethecore.org/rigor.

f) The standards within each grade are organized by domain, not in a suggested instructional sequence. Decisions around how to sequence topics should be made thoughtfully based on the coherence of the content of the grade and the progressions of mathematical ideas.

g) Teachers should spend the majority of instructional time on the Major Work of the grade, and strategically connect Supporting Work to strengthen an understanding of the Major Work. For more information go to www.achievethecore.org/focus.

h) The Standards are built on mathematical progressions that support the development of concepts and skills across grades.

i) The three aspects of rigor should be balanced across a full year in order to ensure students master the full depth of the Shifts. Units might have a balance of the aspects of rigor, but the relative time on each aspect will depend on which standards are being addressed in that unit.

j) Building upon students’ prior knowledge helps to make connections across grades clear to students, which, in turn, strengthens student understanding. For more information go to www.achievethecore.org/coherence.

k) The Shift of Focus highlights that some content is more important for students to succeed and progress towards algebra. Teachers should spend the majority of instructional time on the Major Work of the grade, and strategically connect Supporting Work to strengthen an understanding of the Major Work. For more information go to www.achievethecore.org/focus.
Q. 8
Shift of Coherence

Question
Consider this standard.

PURPOSE
The Standards are designed around coherent progressions that develop across grades. Understanding how content builds and connects to grades before and after is critical for teachers to properly support all students. This question asks teachers to choose the closest related standard that would precede the standard in the box; the standard comes from a prior grade in a related domain.

RATIONALE
a) Writing simple expressions and interpreting numerical expressions is conceptually a precursor to the standard in the box, in which students are using variables to represent numbers and writing expressions to solve real-world or mathematical problems.
b) Applying properties of operations as strategies to manipulate linear expressions would be introduced after students learn to use variables in expressions.
c) Solving linear equations in one variable and analyzing expressions for possible solutions indicates students have a comprehensive understanding of expressions and appears after the standard in the box.
d) “Solve simple rational and radical equations in one variable...give examples showing how extraneous solutions may arise” would be introduced after the standard in the box since it includes radical numbers and indicates a more sophisticated understanding of how to solve equations.

correct Answers - a
Q. 9
Shift of Coherence

Question
Consider this standard.

Solve linear equations in one variable.
 i. Give examples of linear equations in one variable with one solution, infinitely many solutions, or no
 solutions. Show which of these possibilities is the case by successively transforming the given equation
 into simpler forms, until an equivalent equation of the form \(x = a \), \(a = a \), or \(a = b \) results (where \(a \) and \(b \) are
 different numbers).
 ii. Solve linear equations with rational number coefficients, including equations whose solutions require
 expanding expressions using the distributive property and collecting like terms.

This standard prepares students for which of the following standards? (Select one.)

- a) Use variables to represent numbers and write expressions when solving a real-world or mathematical
 problem; understand that a variable can represent an unknown number, or, depending on the purpose at
 hand, any number in a specified set.
- b) Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with
 rational coefficients.
- c) Solve simple rational and radical equations in one variable, and give examples showing how extraneous
 solutions may arise.
- d) Write simple expressions that record calculations with numbers, and interpret numerical expressions
 without evaluating them. For example, express the calculation “add 8 and 7, then multiply by 2” as \(2 \times (8
 + 7) \). Recognize that \(3 \times (18532 + 921) \) is three times as large as \(18532 + 921 \), without having to calculate the
 indicated sum or product.
- e) I don’t know

Correct Answers - c

PURPOSE
This question asks teachers to choose the closest related standard that would follow the standard in the box. The correct answer comes from the next grade in a related domain.

RATIONALE
a) Understanding the concept of a variable and how to use it in expressions conceptually precedes the
 standard in the box in which students are solving linear equations.
b) Applying properties of operations as strategies to manipulate linear expressions would be introduced
 before learning to solve linear equations.
c) “Solve simple rational and radical equations in one variable... give examples showing how extraneous
 solutions may arise” conceptually follows the standard in the box since it includes radical numbers and
 indicates a more sophisticated understanding of how to solve equations.
d) Writing simple expressions and interpreting numerical expressions precedes the standard in the box, in
 which students are solving linear equations in one variable.
Q. 10
Shift of Coherence

Question
From the list of five standards below, choose three (in any order) that could be taught together in a coherent unit.

- a) Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks ½ mile in each ¼ hour, compute the unit rate as the complex fraction ½ / ¼ miles per hour, equivalently 2 miles per hour.
- b) Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.
- c) Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
- d) Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
- e) Recognize and represent proportional relationships between quantities.
 - i. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
 - ii. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
 - iii. Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t = np$.
 - iv. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0, 0)$ and $(1, r)$ where r is the unit rate.
- f) Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

Correct Answers - a, c, e

PURPOSE
Understanding how standards relate to one another and support each other is a powerful tool in the classroom to ensure each lesson is not treated as a discrete topic and students are given the opportunity to build upon their understanding and prior knowledge. This question asks teachers to identify coherence within a grade as opposed to across grades as seen in questions 8 and 9.

RATIONALE
The standards listed in a, c, and e all relate to rates and ratios and could reasonably be taught together in a coherent unit. The other standards listed in b, d, and f address describing figures, manipulating linear expressions, and statistical distributions which do not directly relate to rates and ratios.

- a) “Computing unit rates associates with ratios of fractions...of lengths, areas...” relates to computing lengths and areas of a scale drawing and proportional relationships.
- b) Analyzing two-dimensional figures that result from slicing three-dimensional figures does not relate to the other standards listed.
- c) Solving problems involving scale drawings and reproducing at a different scale relates to computing unit rates and ratios along with representing proportional relationships between quantities.
- d) Applying properties of operations to add, subtract, factor does not relate to the other standards listed.
- e) Recognizing and representing proportional relationships between quantities relates to representing and reproducing scale drawings and computing unit rates and ratios.
- f) The concept of statistical distribution does not relate to the other standards listed.
Q. 11
Shift of Coherence

Question
Please briefly explain your reasoning for your selections in Q. 10

PURPOSE
This question is not scored. It allows teachers to attach a rationale to their responses. We recommend teachers share their ideas and reflections on developing a coherent unit with their PLCs as a collaborative learning opportunity.

Q. 12
Shift of Focus

Question
Yesterday, Mr. Jones taught a math lesson to his 8th grade class and he would like comments on a few elements of his lesson.

Mr. Jones wants to be sure his lesson plan was Common Core-aligned. This was the objective for his class:
“Students will sort and classify equations by carrying out algebraic manipulations and by substituting numbers into algebraic statements in order to test their validity in special cases.”

This objective is:

Correct Answers - b

PURPOSE
A large majority of class time should be devoted to the Major Work of the grade, as it is the content most central to grade-level understanding. The lesson objective is often used to convey the intent of the lesson, and it is frequently where information about the standard(s) in the lesson can be found. This question asks teachers to use the lesson objective to identify the standard in the lesson and identify how that standard relates to the focus of the grade (specifically, whether it is appropriate for the grade and whether it is Major or Supporting Work). For more information, see Criterion #1 of the K–8 Publishers’ Criteria for the Common Core at www.achievethecore.org/publisherscriteria-math-k-8.
RATIONALE
The lesson objective refers to students sorting and classifying algebraic expressions, which is Major Work of 8th grade and a direct precursor to students’ work in Algebra.

The Supporting Work of 8th grade—“investigating patterns of association in bivariate data” and “understanding there numbers that are not rational…”—could be connected to the Major Work of the grade around radicals or the Major Work around proportional relationships and functions.

Q. 13
Practice-Content Connections

Question
Which activity would be appropriate for this lesson objective? Select one.

a	Present students with a situation that can be modeled with a linear equation, have them write and solve the equation.
b	Give students a set of linear equations and have them identify whether they are always, sometimes, or never true.
c	Investigate the graphs of systems of linear equations to determine whether they are intersecting, parallel, or overlapping.
d	Determine the transformations that move one shape onto another on the coordinate plane.
e	I don’t know.

Correct Answers - b

PURPOSE
Different standards require different types of activities or tasks depending upon what understanding or application a student needs to demonstrate in order to exhibit mastery. It is important that any activity students are asked to do supports the learning and practice of the lesson’s target. This question asks teachers to choose the appropriate lesson activities for a targeted standard.

RATIONALE
a) Modeling a system with linear equations would not meet the lesson objective of classifying equations according to their solution type.
b) Giving students a set of equations and having them identify their solution types would support the lesson objective.
c) Investigating the graphs of systems of linear equations does not relate to the classification of equations.
d) Conducting transformations on a coordinate plane is geometric work that does not relate to the classification of equations.
Question
In the lesson plan below, which type(s) of student learning is/are addressed? Please select all that apply.

Lesson: Sorting and Classifying Equations Part 1
Objective: Students will sort and classify equations by carrying out algebraic manipulations and by substituting numbers into algebraic statements in order to test their validity in special cases.
Setup:
Set up the task by telling students they are going to be put in groups and given a number of equations to sort into three categories:
1. One solution
2. No solution
3. Infinitely many solutions

While working on the group task, the team must reach a consensus for each equation. All team members must be prepared to justify and explain their solutions and teams must show all work.
Activity: Sort the class into teams of two or three and pass out materials to each team. Ask students to divide their large sheet into three columns and title the columns: One solution, No solution, Infinitely many solutions.
Students move through the list of equations, placing each one in the appropriate column. While students are working, walk around and listen to team conversations.
When all groups are finished, have a whole class discussion. Discuss strategies that students used to make decisions. Challenge students to use mathematics to prove where the equations belong.

In the lesson plan above, which type(s) of student learning is/are addressed? (Please check ALL that apply.)
- a) Conceptual understanding is addressed.
- b) Procedural skill is addressed.
- c) Application is addressed.
- d) None of the above is addressed.
- e) I don’t know.

Correct Answers - a

PURPOSE
It is important to identify the aspect(s) of rigor targeted in a standard in order to know what type of activities are most appropriate for the instructional materials. This question asks teachers to analyze the lesson plan and identify which aspect of rigor is addressed in the objective and activities.

RATIONALE
a) In the above lesson plan, the objective is for students to “sort and classify equations to test their validity of certain cases” which requires students to explore their conceptual understanding of equations and equivalent equations and express arguments around their reasoning.
b) While students are manipulating equations, which is procedural in nature, they are doing so to sort and develop a stronger understanding of equations and their solutions.
c) The lessons and activities do not require students to manipulate equations in a real-world context or model with mathematics so therefore application is not addressed in the objective or activities.
Q. 15
Shift of Focus

Question
Which standard is addressed in the lesson plan?

Correct Answers - b

PURPOSE
Building lesson objectives from the language of the targeted standard(s) is critical to ensuring the lesson will meet the expectations of that standard. This question asks teachers to use the lesson objective to identify the standard addressed.

RATIONALE
a) Understanding why the solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs does not directly relate to the lesson objective about classifying equations.
b) Giving examples of equations in one variable with one solution, infinitely many solutions, or no solutions directly relates to the lesson objective about classifying equations.
c) Knowing and applying the properties of integer exponents to generate equivalent expressions conceptually relates to manipulating and classifying equations; however it does not directly align to the lesson objective.
d) Solving real-world and mathematical problems leading to two linear equations in two variables does not directly relate to the lesson objective about classifying equations.
Question
Briefly, how would you improve upon the lesson plan to more thoroughly address this standard?

PURPOSE
This lesson was chosen because it offered specific sample material for the questions being asked, not because it is an exemplary lesson and should be used as a model. This question is not scored; it offers teachers an opportunity to submit revisions and reflect on improvements for the lesson. We recommend teachers share the ideas and reflections on the lesson with their PLCs as a collaborative learning opportunity.

Q. 17
Practice-Content Connections

Question
Given the sample lesson plan, which statement(s) below reflect the lesson? Please select all that apply.

- a) The lesson asks students to attend to precision.
- b) The lesson asks students to reason abstractly and quantitatively.
- c) The lesson asks students to construct arguments and critique reasoning in others.
- d) The lesson requires students to model with mathematics.
- e) The lesson has students look for and express repeated reasoning.
- f) The lesson builds on previous knowledge.
- g) The lesson encourages students to use appropriate tools strategically.
- h) I don't know.

Correct Answers - a, e, f

PURPOSE
The mathematical practices describe the varieties of expertise math teachers should seek to develop in their students. These student behaviors and actions are elicited by a teacher in the classroom within a lesson and in connection to the classroom norms. The content and/or approach of a particular lesson should support the development of particular practices. This question asks teachers for the practices required based on the description of the activities in the lesson plan.

RATIONALE
a) The lesson activities require students to attend to precision as they manipulate and classify equations, attending to the nuances of the representations.
b) The lesson activities do not focus on students reasoning abstractly or quantitatively.
c) Students are not constructing arguments or critiquing reasoning in this lesson.
d) The lesson activities do not require students to solve real-world problems.
e) Classifying the equations according to their solutions requires students to look for and express repeated reasoning.
f) The lesson activities build on previous student knowledge because they are using their understanding of equivalent expressions and skill of manipulating expressions to classify them according to their solutions.
g) The lesson activities do not require students to use appropriate tools strategically.

Q. 18
Shift of Coherence

Question
Which prerequisite content will prepare students for this lesson? Select one.

- a) Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.
- b) Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
- c) Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
- d) Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.
- e) None of the above.
- f) I don't know.

Correct Answers - c

PURPOSE
Considering how the content of the standards connects to one another and builds across grades is important for understanding the coherence of the Standards and for supporting differentiation within the classroom. This question asks teachers to reflect on the content addressed in the lesson in order to identify which mathematical concepts students would need to understand prior to the lesson.

RATIONALE
a) This standard addresses unit rates and ratios of fractions, and does not directly build towards manipulating and classifying equations.
b) This standard about adding and subtracting rational numbers does not directly build towards manipulating and classifying equations.
c) Solving multi-step problems and applying properties of operations to calculate numbers in any form, converting between forms, and assessing the reasonableness of answers are direct precursors to performing similar manipulations with equations as is required by the standard in the lesson.
d) This standard is about converting a rational number to decimal and is not a direct precursor to manipulating and classifying equations.
Q. 19
Shift of Coherence

Question
This lesson most directly prepares students to learn which of the following standards? (Select one.)

- a) Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.
- b) Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
- c) Understand that polynomials for a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
- d) Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
- e) None of the above.
- f) I don’t know.

Correct Answers - b

PURPOSE
This question asks teachers to reflect on the content addressed in the lesson in order to identify which mathematical concepts students would be prepared to learn next.

RATIONALE
a) This standard addresses deriving a formula for the sum of a finite geometric series and does not directly relate to classifying equations.
b) Solving simple rational and radical equations in one variable and giving examples of extraneous solutions is a standard that would follow classifying equations.
c) This standard about understanding polynomials in a system does not directly relate to classifying equations.
d) This standard about understanding and expressing each step in a simple equation and constructing viable arguments to justify a solution method does not directly relate to classifying equations.
Q. 20

Practice-Content Connections

Question
Thinking about the last complete unit that you taught, how often did you do the following?

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Rarely</th>
<th>Sometimes</th>
<th>Often</th>
<th>In all or most lessons</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Build on prior skills and knowledge when teaching new content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td>Ground procedures and formulas in conceptual understanding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td>Make the mathematics of the lesson explicit by using explanations, representations, and/or examples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td>The repeated practice to improve students’ computational skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td>Have students do work with and practice grade-level problems and exercises</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td>Employ one solution method to strengthen all students’ understanding of the concept</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g)</td>
<td>Have students choose and use appropriate tools when solving a problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h)</td>
<td>Check for understanding throughout the lesson using informal, but deliberate methods (such as questioning or assigning short problems)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td>Summarize the mathematics with references to student work to reinforce the focus of the lesson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j)</td>
<td>Predominantly use questions and problems that are from the textbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k)</td>
<td>Review standards from previous grades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l)</td>
<td>Ask students to explain and justify their work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m)</td>
<td>Provide feedback to help students revise initial work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correct Answers - N/A

PURPOSE
As with question 7, this question details an array of choices a teacher can make when supporting students with mathematics and asks teachers to identify which behaviors they exhibit in the classroom. Given the variety of decisions that can be made in different educational contexts, many of the statements above could be valid. However, some instructional practices better support the content and structure of the Standards, and a teacher fully implementing the Standards would be more likely to emphasize those practices over others. To learn more about Shifts-aligned instructional practice, go to www.achievethecore.org/instructional-practice.

RATIONALE
The practices associated with the italicized sections below are those that a teacher fully implementing the Standards is likely to emphasize.

a) **Building on previous work ensures that students see math as cohesive as opposed to a set of discrete skills.**

b) **Grounding procedures and formulas in conceptual understanding ensures that students understand why a procedure works and will be able to apply it to more complex mathematics.**

c) **Using a variety of explanations, representations, and examples to make the mathematics of the lesson clear helps to reinforce student understanding. Representations display concepts or problems by using drawings or**
models, whereas examples may show different strategies or methods to solve a particular problem.
d) Repeated practice is important for students to build towards the fluency and procedural skill expectations of their grade-level standards.
e) All students need consistent practice with grade-level problems and exercises in order to meet the expectations of the Shifts.
f) A variety of student solution methods should be shared and examined together to support mathematical understanding for all students.
g) MP.5 explicitly states that students should choose appropriate tools strategically. Students must have the opportunity to select tools, when appropriate.
h) Checks for understanding throughout the lesson allow a teacher to assess progress of all students and make adjustments to instruction, as needed.
i) A lesson that includes a summary with references to student work and discussion reinforces the mathematics of the lesson and supports student learning.
j) All materials should be carefully reviewed for alignment to the Shifts. If the text is found to be aligned to the Shifts, using its tasks frequently is appropriate. However, if the text is not aligned to the Shifts, educators should explore supplementing with other resources for questions and problems.
k) While there may be appropriate times to briefly review the standards of a previous grade, the majority of instruction should be on grade-level standards.
l) Asking students to regularly explain and justify work and providing feedback that helps students revise initial work supports student in developing mathematical proficiency.
m) Providing feedback on student work and allowing students to revise and correct/improve their answers supports students in perseverance and developing strong arguments and evidence in their mathematical reasoning.

Practice-Content Connections

Q. 21

Question
A teacher walking around the classroom overhears the comments below during student group work. Which comment shows students demonstrating the practice standard “construct viable arguments and critique the reasoning of others”? Select one.

- a) “That could be the answer, or the answer could be -17.5.”
- b) “No, the answer can’t be -12.5, because when you add, you keep the sign of the number that’s farther from 0.”
- c) “Yep, I agree that the answer is 4.5.”
- d) “I don’t think the answer is 4.5. I’m going to ask the teacher.”
- e) I don’t know

Correct Answers - b

PURPOSE
Understanding how the mathematical practices are translated into the classroom and student behavior is important for ensuring CCSS-aligned instruction. This question asks teachers to select the activity that best embodies MP.3.
Purpose
Understanding how the mathematical practices are translated into classroom activities and student behavior is important for ensuring aligned instruction. This question asks teachers to select the activity that best embodies MP.4.

Rationale

a) The student’s explanation does not include any reasoning.
b) The student clearly communicates reasoning in her response.
c) The student agrees with no justification or reasoning.
d) The student relies on the teacher for identifying and/or understanding the correct answer.

Question
Which scenario shows students demonstrating the practice standard “model with mathematics”? Select one.

- a) Students completing a worksheet on dividing multi-digit numbers.
- b) Students explaining the slope formula to each other.
- c) Students redesigning the playground at school using scale drawings.
- d) Students answering a set of routine word problems on linear relationships.
- e) I don’t know

Correct Answers - c

Rationale

a) Students are performing procedural skill/fluency and are not applying mathematics in a real-world situation.
b) Students are expressing their understanding, but do not apply their knowledge of mathematics to a real-world situation.
c) Students are using mathematics to solve a real-world problem.
d) Students are not solving real-world problems.
Part 2: Shifts Summary

In the following section, each category will be shown along with the questions from the Survey that comprise that data. These are followed by discussion questions and recommended resources. The discussion questions are meant to provide guidance for coaches and teachers to collectively reflect on classroom practice in relation to the Shifts. We recommend that these be used in a professional learning community or professional development setting in which educators can have an open and honest dialogue about the current state of aligning instruction and practice to the Standards. These conversations will help educators continue to develop strategies and make progress towards effective implementation of the Shifts.

The recommended resources are meant to provide a starting point to support the discussion between instructional leaders/coaches and teachers, and to help educators continue to learn about the Shifts and how they can be translated into classroom practice. You can find these and many other professional development and classroom resources at www.achievethecore.org.

<table>
<thead>
<tr>
<th>Category</th>
<th>Topic</th>
<th>Question Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus</td>
<td>Identify Major Work of the Grade</td>
<td>4, 12, 15</td>
</tr>
<tr>
<td></td>
<td>Agreement with the statements about dedicating time to the major work of the grade.</td>
<td>7a, 7j, 7g</td>
</tr>
<tr>
<td>Rigor</td>
<td>Identification of rigor targeted by a standard and how rigor manifests in a lesson plan.</td>
<td>6, 14</td>
</tr>
<tr>
<td></td>
<td>Evaluate the quality of lessons based on aspects of rigor</td>
<td>16 (unscored)</td>
</tr>
<tr>
<td></td>
<td>Agreement with the statements about balance teaching the three aspects of rigor throughout the year.</td>
<td>7b, 7c, 7e, 7i</td>
</tr>
<tr>
<td>Coherence</td>
<td>Understanding of the progression of standards within and across grades.</td>
<td>8, 9, 18, 19</td>
</tr>
<tr>
<td></td>
<td>Recognize how standards in a grade form a coherent unit.</td>
<td>10, 11 (unscored)</td>
</tr>
<tr>
<td></td>
<td>Frequency at which teachers meet with colleagues to discuss the Common Core State Standards for Mathematics.</td>
<td>5a, 5b</td>
</tr>
<tr>
<td></td>
<td>Agreement with statements about using coherence to organize their curriculum.</td>
<td>7d, 7f, 7h, 7k</td>
</tr>
<tr>
<td>Practice-Content Connections</td>
<td>Frequency in which teachers connect the standards for mathematical practices and standards for mathematical content in the classroom.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Identification of mathematical practices elicited in a lesson plan.</td>
<td>17, 13, 21, 22</td>
</tr>
</tbody>
</table>
Shift of Focus

DISCUSSION QUESTIONS

1. What does Major Work of the grade mean? Why is it so important?
2. What is the Major Work of our grade?
3. Approximately how much time are we teaching Major Work? What’s our evidence?
4. How have we adapted our curricular materials to spend more time on the Major Work of the grade?
5. What have we stopped teaching since implementing the CCSS for Mathematics?
6. What have we taught less of since implementing the CCSS for Mathematics?

Resources
1. The Shifts (http://achievethecore.org/shifts-mathematics): Webpage containing information and resources of the three Shifts
2. Focus by Grade Level (http://achievethecore.org/focus): A collection of PDFs detailing the mathematical content emphasized in the Standards by grade level. Includes Widely Applicable Prerequisites for High School.

Shift of Coherence

DISCUSSION QUESTIONS

1. When do we work with teachers in surrounding grade levels to help students make connections across grades/courses?
2. What opportunities have we found to create coherence among the standards for our students, both within and across grades/courses?
3. Have we found ways to connect Major/Supporting work in our grade/course? When? What are examples?

Resources
1. The Shifts (http://achievethecore.org/shifts-mathematics): Webpage containing information and resources of the three Shifts
2. Progressions Documents (http://achievethecore.org/progressions): A collection of narratives that explain how mathematical content develops coherently across grades
Shift of Rigor

DISCUSSION QUESTIONS

1. What are the fluency or procedural skill standards for our grade?
2. What standards in our grade focus on conceptual understanding (in which students make meaning of the math)?
3. Which standards in our grade ask students to apply their knowledge in real-world settings?
4. Are all students given time for regular practice with the fluency standards?
5. Does our teaching reflect a balance of conceptual understanding, procedural skill/fluency, and application? What is our evidence?

Resources
1. The Shifts (http://achievethecore.org/shifts-mathematics): Webpage containing information and resources of the three Shifts
2. Annotated Tasks (http://achievethecore.org/math-tasks): Math tasks that illustrate the K-12 standards
3. Annotated Mini-Assessments (http://achievethecore.org/math-mini-assessments): A collection of mini-assessments designed for teachers to use

Practice-Content Connections

DISCUSSION QUESTIONS

1. Are we incorporating the mathematical practices in a way that ensures students learn grade-level content?
2. How do we make decisions about which mathematical practices to target within a specific lesson?
3. What evidence do we look for from students to know that they are demonstrating the mathematical practices?

Resources
1. The Standards for Mathematics Practice (http://achievethecore.org/math-practices): excerpted from the Standards, describe the behaviors and skills meant to be elicited by teachers in the math classroom.
2. Planning Tool (http://achievethecore.org/planning-tool): Lesson Planning Tool
3. Coaching Tool (http://achievethecore.org/coaching-tool): Tool to assist teachers, and those who support them, build understanding about CCSS-aligned instruction