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Number and Operations in
Base Ten, K–5

Overview
Students’ work in the base-ten system is intertwined with their work
on counting and cardinality, and with the meanings and properties
of addition, subtraction, multiplication, and division. Work in the
base-ten system relies on these meanings and properties, but also
contributes to deepening students’ understanding of them.

Position The base-ten system is a remarkably efficient and uni-
form system for systematically representing all numbers. Using only
the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, every number can be repre-
sented as a string of digits, where each digit represents a value that
depends on its place in the string. The relationship between values
represented by the places in the base-ten system is the same for
whole numbers and decimals: the value represented by each place
is always 10 times the value represented by the place to its imme-
diate right. In other words, moving one place to the left, the value
of the place is multiplied by 10. In moving one place to the right,
the value of the place is divided by 10. Because of this uniformity,
standard algorithms for computations within the base-ten system for
whole numbers extend to decimals.

Base-ten units Each place of a base-ten numeral represents a
base-ten unit: ones, tens, tenths, hundreds, hundredths, etc. The
digit in the place represents 0 to 9 of those units. Because ten
like units make a unit of the next highest value, only ten digits are
needed to represent any quantity in base ten. The basic unit is
a one (represented by the rightmost place for whole numbers). In
learning about whole numbers, children learn that ten ones com-
pose a new kind of unit called a ten. They understand two-digit
numbers as composed of tens and ones, and use this understanding
in computations, decomposing 1 ten into 10 ones and composing a
ten from 10 ones.

The power of the base-ten system is in repeated bundling by
ten: 10 tens make a unit called a hundred. Repeating this process of
creating new units by bundling in groups of ten creates units called
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NBT, K–5 3

thousand, ten thousand, hundred thousand . . . In learning about
decimals, children partition a one into 10 equal-sized smaller units,
each of which is a tenth. Each base-ten unit can be understood in
terms of any other base-ten unit. For example, one hundred can be
viewed as a tenth of a thousand, 10 tens, 100 ones, or 1,000 tenths.
Algorithms• for operations in base ten draw on such relationships

• From the Standards glossary:
Computation algorithm. A set of predefined
steps applicable to a class of problems that gives
the correct result in every case when the steps are
carried out correctly. See also: computation strat-
egy.

In mathematics, an algorithm is defined by its steps and not by the
way those steps are recorded in writing. This progression gives
examples of different recording methods and discusses their ad-
vantages and disadvantages.

among the base-ten units.

Computations Standard algorithms• for base-ten computations with

• The Standards do not specify a particular standard algorithm for
each operation. This progression gives examples of algorithms
that could serve as the standard algorithm and discusses their
advantages and disadvantages.

the four operations rely on decomposing numbers written in base-
ten notation into base-ten units. The properties of operations then
allow any multi-digit computation to be reduced to a collection of
single-digit computations. These single-digit computations some-
times require the composition or decomposition of a base-ten unit.

Beginning in Kindergarten, the requisite abilities develop grad-
ually over the grades. Experience with addition and subtraction
within 20 is a Grade 1 standard1.OA.6 and fluency is a Grade 2

1.OA.6Add and subtract within 20, demonstrating fluency for addi-
tion and subtraction within 10. Use strategies such as counting
on; making ten (e.g., 8` 6 “ 8` 2` 4 “ 10` 4 “ 14); decom-
posing a number leading to a ten (e.g., 13 ´ 4 “ 13 ´ 3 ´ 1 “
10´1 “ 9); using the relationship between addition and subtrac-
tion (e.g., knowing that 8` 4 “ 12, one knows 12´ 8 “ 4); and
creating equivalent but easier or known sums (e.g., adding 6` 7
by creating the known equivalent 6` 6` 1 “ 12` 1 “ 13).

standard.2.OA.2 Computations within 20 that “cross 10,” such as 9` 8

2.OA.2Fluently add and subtract within 20 using mental strate-
gies.1 By end of Grade 2, know from memory all sums of two
one-digit numbers.

or 13 ´ 6, are especially relevant to NBT because they afford the
development of the Level 3 make-a-ten strategies for addition and
subtraction described in the OA Progression. From the NBT per-
spective, make-a-ten strategies are (implicitly) the first instances of
composing or decomposing a base-ten unit. Such strategies are a
foundation for understanding in Grade 1 that addition may require
composing a ten1.NBT.4 and in Grade 2 that subtraction may involve

1.NBT.4Add within 100, including adding a two-digit number and a
one-digit number, and adding a two-digit number and a multiple
of 10, using concrete models or drawings and strategies based
on place value, properties of operations, and/or the relationship
between addition and subtraction; relate the strategy to a writ-
ten method and explain the reasoning used. Understand that
in adding two-digit numbers, one adds tens and tens, ones and
ones; and sometimes it is necessary to compose a ten.

decomposing a ten.2.NBT.7

2.NBT.7Add and subtract within 1000, using concrete models or
drawings and strategies based on place value, properties of op-
erations, and/or the relationship between addition and subtrac-
tion; relate the strategy to a written method. Understand that
in adding or subtracting three-digit numbers, one adds or sub-
tracts hundreds and hundreds, tens and tens, ones and ones;
and sometimes it is necessary to compose or decompose tens or
hundreds.

Strategies and algorithms The Standards distinguish strategies•

• From the Standards glossary:
Computation strategy. Purposeful manipula-
tions that may be chosen for specific problems,
may not have a fixed order, and may be aimed
at converting one problem into another. See also:
computation algorithm.

Examples of computation strategies are given in this progression
and in the Operations and Algebraic Thinking Progression.

from algorithms. Work with computation begins with use of strate-
gies and “efficient, accurate, and generalizable methods.” (See Grade
1 critical areas 1 and 2, Grade 2 critical area 2; Grade 4 critical area
1.) For each operation, the culmination of this work is signaled in
the Standards by use of the term “standard algorithm.”

Initially, students compute using concrete models or drawings
and strategies based on place value, properties of operations, and/or
the relationship between addition and subtraction (or multiplication
and division). They relate their strategies to written methods and
explain the reasoning used (for addition within 100 in Grade 1; for
addition and subtraction within 1000 in Grade 2) or illustrate and
explain their calculations with equations, rectangular arrays, and/or
area models (for multiplication and division in Grade 4).

Students’ initial experiences with computation also include de-
velopment, discussion, and use of “efficient, accurate, and general-
izable methods.” So from the beginning, students see, discuss, and
explain methods that can be generalized to all numbers represented
in the base-ten system. Initially, they may use written methods
that include extra helping steps to record the underlying reasoning.
These helping step variations can be important initially for under-
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NBT, K–5 4

standing. Over time, these methods can and should be abbreviated
into shorter written methods compatible with fluent use of standard
algorithms.

Students may also develop and discuss mental or written cal-
culation methods that cannot be generalized to all numbers or are
less efficient than other methods.

Mathematical practices The Standards for Mathematical Practice
are central in supporting students’ progression from understanding
and use of strategies to fluency with standard algorithms. The ini-
tial focus in the Standards on understanding and explaining such
calculations, with the support of visual models, affords opportunities
for students to see mathematical structure as accessible, important,
interesting, and useful.

Students learn to see a number as composed of its base-ten units
(MP.7). They learn to use this structure and the properties of op-
erations to reduce computing a multi-digit sum, difference, product,
or quotient to a collection of single-digit computations in different
base-ten units. (In some cases, the Standards refer to “multi-digit”
operations rather than specifying numbers of digits. The intent is
that sufficiently many digits should be used to reveal the standard
algorithm for each operation in all its generality.) Repeated reason-
ing (MP.8) that draws on the uniformity of the base-ten system is a
part of this process. For example, in addition computations students
generalize the strategy of making a ten to composing 1 base-ten
unit of next-highest value from 10 like base-ten units.

Uniformity of the base-ten system

˜10

ˆ10

tens

˜10

ˆ10

ones

˜10

ˆ10

tenths hundredths

For any base-ten unit, 10 copies compose 1 base-ten unit of
next-highest value, e.g., 10 ones are 1 ten, 10 tens are 1
hundred, etc.

Students abstract quantities in a situation (MP.2) and use con-
crete models, drawings, and diagrams (MP.4) to help conceptual-
ize (MP.1), solve (MP.1, MP.3), and explain (MP.3) computational
problems. They explain correspondences between different meth-
ods (MP.1) and construct and critique arguments about why those
methods work (MP.3). Drawings, diagrams, and numerical record-
ings may raise questions related to precision (MP.6), e.g., does that
1 represent 1 one or 1 ten?, and to probe into the referents for sym-
bols used (MP.2), e.g., does that 1 represent the number of apples in
the problem?

Some methods may be advantageous in situations that require
quick computation, but less so when uniformity is useful. Thus, com-
paring methods offers opportunities to raise the topic of using ap-
propriate tools strategically (MP.5). Comparing methods can help
to illustrate the advantages of standard algorithms: standard al-
gorithms are general methods that minimize the number of steps
needed and, once, fluency is achieved, do not require new reason-
ing.
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Kindergarten
In Kindergarten, teachers help children lay the foundation for un-
derstanding the base-ten system by drawing special attention to 10.
Children learn to view the whole numbers 11 through 19 as ten ones
and some more ones. They decompose 10 into pairs such as 1` 9,
2`8, 3`7 and find the number that makes 10 when added to a given
number such as 3 (see the OA Progression for further discussion).

K.NBT.1Compose and decompose numbers from 11 to 19 into ten
ones and some further ones, e.g., by using objects or drawings,
and record each composition or decomposition by a drawing or
equation (e.g., 18 = 10 + 8); understand that these numbers are
composed of ten ones and one, two, three, four, five, six, seven,
eight, or nine ones.

Work with numbers from 11 to 19 to gain foundations for place
valueK.NBT.1 Children use objects, math drawings,• and equations to

• Math drawings are simple drawings that make essential math-
ematical features and relationships salient while suppressing de-
tails that are not relevant to the mathematical ideas.

describe, explore, and explain how the “teen numbers,” the counting
numbers from 11 through 19, are ten ones and some more ones.
Children can count out a given teen number of objects, e.g., 12, and
group the objects to see the ten ones and the two ones. It is also

Number-bond diagram and equation

1  0
10 7

71  0
10 7

7

17 = 10 + 7
17

10 7

10 strip

5 strip

Number Bond
Drawing

layered place value cards

layered separated

front:

back:

Figure 1:

Decomposing 17 as 10 and 7

Equation

Decompositions of teen numbers can be recorded with diagrams
or equations.

helpful to structure the ten ones into patterns that can be seen as
ten objects, such as two fives (see the OA Progression).
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Children can place small objects into 10-frames to show the ten
as two rows of five and the extra ones within the next 10-frame,
or work with strips that show ten ones in a column.

A difficulty in the English-speaking world is that the words for
teen numbers do not make their base-ten meanings evident. For
example, “eleven” and “twelve” do not sound like “ten and one” and
“ten and two.” The numbers “thirteen, fourteen, fifteen, . . . , nineteen”
reverse the order of the ones and tens digits by saying the ones
digit first. Also, “teen” must be interpreted as meaning “ten” and
the prefixes “thir” and “fif” do not clearly say “three” and “five.” In
contrast, the corresponding East Asian number words are “ten one,
ten two, ten three,” and so on, fitting directly with the base-ten
structure and drawing attention to the role of ten. Children could
learn to say numbers in this East Asian way in addition to learning
the standard English number names. Difficulties with number words
beyond nineteen are discussed in the Grade 1 section.

The numerals 11, 12, 13, . . . , 19 need special attention for chil-
dren to understand them. The first nine numerals 1, 2, 3, . . . , 9, and
0 are essentially arbitrary marks. These same marks are used again
to represent larger numbers. Children need to learn the differences
in the ways these marks are used. For example, initially, a numeral
such as 16 looks like “one, six,” not “1 ten and 6 ones.” Layered
place value cards can help children see the 0 “hiding” under the

Place value cards

1  0
10 7

71  0
10 7

7

17 = 10 + 7
17

10 7

10 strip

5 strip

Number Bond
Drawing

layered place value cards

layered separated

front:

back:

Figure 1:

Decomposing 17 as 10 and 7

Equation

Children can use layered place value cards to see the 10 “hiding”
inside any teen number. Such decompositions can be connected
to numbers represented with objects and math drawings. When
any of the number arrangements is turned over, the one card is
hidden under the tens card. Children can see this and that they
need to move the ones dots above and on the right side of the
tens card.

ones place and that the 1 in the tens place really is 10 (ten ones).
By working with teen numbers in this way in Kindergarten, stu-

dents gain a foundation for viewing 10 ones as a new unit called a
ten in Grade 1.
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Grade 1
In first grade, students learn to view ten ones as a unit called a ten.
The ability to compose and decompose this unit flexibly and to view
the numbers 11 to 19 as composed of one ten and some ones allows
development of efficient, general base-ten methods for addition and
subtraction. Students see a two-digit numeral as representing some
tens and they add and subtract using this understanding.

Extend the counting sequence and understand place value Through
structured learning time, discussion, and practice students learn pat-
terns in spoken number words and in written numerals, and how the
two are related.

Part of a numeral list
91 101 111
92 102 112
93 103 113
94 104 114
95 105 115
96 106 116
97 107 117
98 108 118
99 109 119

100 110 120

In the classroom, a list of the numerals from 1 to 120 can be
shown in columns of 10 to help highlight the base-ten structure,
e.g., in the leftmost column, the 9s (indicating 9 tens) are lined
up and the ones increase by 1 from 91 to 99. The numbers
101, . . . , 120 may be especially difficult for children to write.

Grade 1 students take the important step of viewing ten ones
as a unit called a “ten.”1.NBT.2a They learn to view the numbers 11

1.NBT.2Understand that the two digits of a two-digit number rep-
resent amounts of tens and ones. Understand the following as
special cases:

a 10 can be thought of as a bundle of ten ones—called a
“ten.”

through 19 as composed of 1 ten and some ones.1.NBT.2b They learn to

b The numbers from 11 to 19 are composed of a ten and
one, two, three, four, five, six, seven, eight, or nine ones.

view the decade numbers 10, . . . , 90, in written and in spoken form,
as 1 ten, . . . , 9 tens.1.NBT.2c More generally, first graders learn that

c The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to
one, two, three, four, five, six, seven, eight, or nine tens
(and 0 ones).

the two digits of a two-digit number represent amounts of tens and
ones, e.g., 67 represents 6 tens and 7 ones. Saying 67 as “6 tens, 7
ones” as well as “sixty-seven” can help students focus on the tens
and ones structure of written numerals.

The number words continue to require attention at first grade
because of their irregularities. The decade words, “twenty,” “thirty,”
“forty,” etc., must be understood as indicating 2 tens, 3 tens, 4 tens,
etc. Many decade number words sound much like teen number
words. For example, “fourteen” and “forty” sound very similar, as
do “fifteen” and “fifty,” and so on to “nineteen” and “ninety.” As
discussed in the Kindergarten section, the number words from 13 to
19 give the number of ones before the number of tens. From 20 to
100, the number words switch to agreement with written numerals
by giving the number of tens first. Because the decade words do
not clearly indicate they mean a number of tens (“-ty” does mean
tens but not clearly so) and because the number words “eleven” and
“twelve” do not cue students that they mean “1 ten and 1” and “1 ten
and 2,” children frequently make count errors such as “twenty-nine,
twenty-ten, twenty-eleven, twenty-twelve.”

Grade 1 students use their base-ten work to help them recognize
that the digit in the tens place is more important for determining
the size of a two-digit number.1.NBT.3 They use this understanding

1.NBT.3Compare two two-digit numbers based on meanings of the
tens and ones digits, recording the results of comparisons with
the symbols ą, “, and ă.to compare two two-digit numbers, indicating the result with the

symbols ą, “, and ă. Correctly placing the ă and ą symbols is a
challenge for early learners. Accuracy can improve if students think
of putting the wide part of the symbol next to the larger number.

Use place value understanding and properties of operations to
add and subtract First graders use their base-ten work to compute
sums within 100 with understanding.1.NBT.4 Concrete objects, cards, or

1.NBT.4Add within 100, including adding a two-digit number and a
one-digit number, and adding a two-digit number and a multiple
of 10, using concrete models or drawings and strategies based
on place value, properties of operations, and/or the relationship
between addition and subtraction; relate the strategy to a writ-
ten method and explain the reasoning used. Understand that
in adding two-digit numbers, one adds tens and tens, ones and
ones; and sometimes it is necessary to compose a ten.Draft, 6 March 2015, comment at commoncoretools.wordpress.com.
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drawings afford connections with written numerical work and dis-
cussions and explanations in terms of tens and ones. In particular,
showing composition of a ten with objects or drawings affords con-
nection of the visual ten with the written numeral 1 that indicates 1
ten.

Combining tens and ones separately as illustrated in the margin

Adding tens and ones separately

   46
+37

   46
+37 46

56 66 76 77 78 79 80 81

82 83

starting from 46
count on 3 tens
then count on 7 ones

combine ones
view 6+7 as 1 ten and 3 ones

combine 4 tens and 3 tens
with the new group of 1 ten
(shown below on the addition
line)

Using a sequence conception to add:

Adding tens and ones separately:

Figure 3:

combine ones
view 6 ` 7 as 1 ten and
3 ones

combine 4 tens and
3 tens with the newly
composed ten (shown
on the addition line)

This method is an application of the commutative and
associative properties. The diagrams can help children with
understanding and explaining the steps (MP.1). Advantages of
writing the 1 below the addends are discussed in the Grade 2
margin.

can be extended to the general method of combining like base-ten
units. The margin illustrates combining ones, then tens. Like base-
ten units can be combined in any order, but going from smaller to
larger eliminates the need to go back to a given place to add in a
new unit. For example, in computing 46 + 37 by combining tens,
then ones (going left to right), one needs to go back to add in the
new 1 ten: “4 tens and 3 tens is 7 tens, 6 ones and 7 ones is 13
ones which is 1 ten and 3 ones, 7 tens and 1 ten is 8 tens. The total
is 8 tens and 3 ones: 83.”

Students may also develop sequence methods that extend their
Level 2 single-digit counting on strategies (see the OA Progression)
to counting on by tens and ones, or mixtures of such strategies in
which they add instead of count the tens or ones. Using objects or

Counting on by tens

   46
+37

   46
+37 46

56 66 76 77 78 79 80 81

82 83

starting from 46
count on 3 tens
then count on 7 ones

combine ones
view 6+7 as 1 ten and 3 ones

combine 4 tens and 3 tens
with the new group of 1 ten
(shown below on the addition
line)

Using a sequence conception to add:

Adding tens and ones separately:

Figure 3:

starting from 46 count
on 3 tens then count on
7 ones

Counting on by tens from 46, beginning 56, 66, 76, then counting
on by ones. This method can be generalized, but the complexity
of the counting on required and the lack of efficiency becomes
apparent as the number of digits in the addends increases.

drawings of 5-groups can support students’ extension of the Level
3 make-a-ten methods discussed in the OA Progression for single-
digit numbers.

First graders also engage in mental calculation, such as mentally
finding 10 more or 10 less than a given two-digit number without
having to count by ones.1.NBT.5 They may explain their reasoning by

1.NBT.5Given a two-digit number, mentally find 10 more or 10 less
than the number, without having to count; explain the reasoning
used.

saying that they have one more or one less ten than before. Draw-
ings and layered cards can afford connections with place value and
be used in explanations.

In Grade 1, children learn to compute differences of two-digit
numbers for limited cases.1.NBT.6 Differences of multiples of 10, such

1.NBT.6Subtract multiples of 10 in the range 10–90 from multiples
of 10 in the range 10–90 (positive or zero differences), using con-
crete models or drawings and strategies based on place value,
properties of operations, and/or the relationship between addi-
tion and subtraction; relate the strategy to a written method and
explain the reasoning used.

as 70 ´ 40 can be viewed as 7 tens minus 4 tens and represented
with concrete models such as objects bundled in tens or draw-
ings. Children use the relationship between subtraction and addition
when they view 80 ´ 70 as an unknown addend addition problem,
70 ` l “ 80, and reason that 1 ten must be added to 70 to make
80, so 80´ 70 “ 10.

First graders are not expected to compute differences of two-
digit numbers other than multiples of ten. Deferring such work until
Grade 2 allows two-digit subtraction with and without decompos-
ing to occur in close succession, highlighting the similarity between
these two cases. This helps students to avoid making the general-
ization “in each column, subtract the larger digit from the smaller
digit, independent of whether the larger digit is in the subtrahend
or minuend,” e.g., making the error 82 - 45 = 43.
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Grade 2
At Grade 2, students extend their base-ten understanding to hun-
dreds. They now add and subtract within 1000, with composing
and decomposing, and they understand and explain the reasoning
of the processes they use. They become fluent with addition and
subtraction within 100.

Understand place value In Grade 2, students extend their under-
standing of the base-ten system by viewing 10 tens as forming a new
unit called a “hundred.”2.NBT.1a This lays the groundwork for under-

2.NBT.1a Understand that the three digits of a three-digit number
represent amounts of hundreds, tens, and ones; e.g., 706 equals
7 hundreds, 0 tens, and 6 ones. Understand the following as
special cases:

a 100 can be thought of as a bundle of ten tens—called a
“hundred.”

standing the structure of the base-ten system as based in repeated
bundling in groups of 10 and understanding that the unit associated
with each place is 10 of the unit associated with the place to its
right.

Representations such as manipulative materials, math drawings
and layered three-digit place value cards afford connections be-
tween written three-digit numbers and hundreds, tens, and ones.

Drawings to support seeing 10 tens as 1 hundred
drawings to support seeing 10 tens as 1 hundred

10 tens 1 hundred 1 hundred box
(quick drawing to
show 1 hundred)

Number words and numbers written in base-ten numerals and as
sums of their base-ten units can be connected with representations
in drawings and place value cards, and by saying numbers aloud and
in terms of their base-ten units, e.g., 456 is “Four hundred fifty six”
and “four hundreds five tens six ones.”2.NBT.3 Unlayering three-digit

2.NBT.3Read and write numbers to 1000 using base-ten numerals,
number names, and expanded form.

place value cards like the two-digit cards shown for Kindergarten
and Grade 1 reveals the expanded form of the number.

Unlike the decade words, the hundred words indicate base-ten
units. For example, it takes interpretation to understand that “fifty”
means five tens, but “five hundred” means almost what it says (“five
hundred” rather than “five hundreds”). Even so, this doesn’t mean
that students automatically understand 500 as 5 hundreds; they may
still only think of it as the number said after 499 or reached after
500 counts of 1.

A major task for Grade 2 is learning the counting sequence from
100 to 1,000. As part of learning and using the base-ten structure,
students count by ones within various parts of this sequence, espe-
cially the more difficult parts that “cross” tens or hundreds.

Building on their place value work, students continue to de-
velop proficiency with mental computation.2.NBT.8 They extend this

2.NBT.8Mentally add 10 or 100 to a given number 100–900, and
mentally subtract 10 or 100 from a given number 100–900.to skip-counting by 5s, 10s, and 100s to emphasize and experi-

ence the tens and hundreds within the sequence and to prepare
for multiplication.2.NBT.2 2.NBT.2Count within 1000; skip-count by 5s, 10s, and 100s.

Comparing magnitudes of two-digit numbers uses the under- 2.NBT.4Compare two three-digit numbers based on meanings of
the hundreds, tens, and ones digits, using ą, =, and ă symbols
to record the results of comparisons.

standing that 1 ten is greater than any amount of ones represented
by a one-digit number. Comparing magnitudes of three-digit num-

2.NBT.5Fluently add and subtract within 100 using strategies
based on place value, properties of operations, and/or the re-
lationship between addition and subtraction.

2.NBT.6Add up to four two-digit numbers using strategies based
on place value and properties of operations.

bers uses the understanding that 1 hundred (the smallest three-digit
number) is greater than any amount of tens and ones represented
by a two-digit number. For this reason, three-digit numbers are
compared by first inspecting the hundreds place (e.g. 845 ą 799;
849 ă 855).2.NBT.4 Drawings help support these understandings.

Draft, 6 March 2015, comment at commoncoretools.wordpress.com.

commoncoretools.wordpress.com


NBT, K–5 9

Use place value understanding and properties of operations to add
and subtract Students fluently add and subtract within 100.2.NBT.5

2.NBT.5Fluently add and subtract within 100 using strategies
based on place value, properties of operations, and/or the re-
lationship between addition and subtraction.They also add and subtract within 1000.2.NBT.7 They explain why ad-
2.NBT.7Add and subtract within 1000, using concrete models or
drawings and strategies based on place value, properties of op-
erations, and/or the relationship between addition and subtrac-
tion; relate the strategy to a written method. Understand that
in adding or subtracting three-digit numbers, one adds or sub-
tracts hundreds and hundreds, tens and tens, ones and ones;
and sometimes it is necessary to compose or decompose tens or
hundreds.

dition and subtraction strategies work, using place value and the
properties of operations, and may support their explanations with
drawings or objects.2.NBT.9 Because adding and subtracting within

2.NBT.9Explain why addition and subtraction strategies work, us-
ing place value and the properties of operations.2

100 is a special case of adding and subtracting within 1000, meth-
ods within 1000 will be discussed before fluency within 100.

Two written methods for addition within 1000 are shown in the
margins of this page and the next. The first explicitly shows the

Addition: Recording newly composed units in separate
rows

2 7 8
+ 1 4 7

2 7 8
+ 1 4 7

3 0 0

2 7 8
+ 1 4 7

3 0 0
1 1 0

2 7 8
+ 1 4 7

3 0 0
1 1 0

1 5
4 2 5

The computation shown proceeds from left to right, but could
have gone from right to left. Working from left to right has two
advantages: Many students prefer it because they read from left
to right; working first with the largest units yields a closer
approximation earlier.

Illustrating combining like units and composing new units

The drawing shows the base-ten units of 278 and 147. Like units
are shown together, with boundaries drawn around ten tens and
ten ones to indicate the newly composed hundred and the newly
composed ten. The newly composed units could also be
indicated by crossing out grouped units and drawing a single
next-highest unit, e.g., crossing out the group of ten ones and
drawing a single ten. Drawings like this can be used to illustrate
and explain both of the written computations below.

hundreds, tens, and ones that are being added; this can be helpful
conceptually to students. The second method, shown on the next
page, explicitly shows the adding of the single digits in each place
and how this approach can continue on to places on the left.

Drawings can support students in explaining these and other
methods. The drawing in the margin shows addends decomposed
into their base-ten units (here, hundreds, tens, and ones), with the
tens and hundreds represented by quick drawings. These quick
drawings show each hundred as a single unit rather than ten tens
(see illustration on p. 8), generalizing the approach that students
used in Grade 1 of showing a ten as a single unit rather than as
10 separate ones. The putting together of like quick drawings illus-
trates adding like units as specified in 2.NBT.7: add ones to ones,
tens to tens, and hundreds to hundreds. The drawing also shows
newly composed units. Steps of adding like units and composing
new units shown in the drawing can be connected with correspond-
ing steps in other written methods. This also facilitates discussing
how different written methods may show steps in different locations
or different orders (MP.1 and MP.3). The associative and the com-
mutative properties enable adding like units to occur.

The first written method is a helping step variation that gener-
alizes to all numbers in base ten but becomes impractical because
of writing so many zeros. Students can move from this method to
the second method (or another compact method) by seeing how the
steps of the two methods are related. Some students might make
this transition in Grade 2, some in Grade 3, but all need to make it
by Grade 4 where fluency requires a more compact method.

This first method can be seen as related to oral counting-on or
written adding-on methods in which an addend is decomposed into
hundreds, tens, and ones. These are successively added to the other
addend, with the student saying or writing successive totals. These
methods require keeping track of what parts of the decomposed
addend have been added, and skills of mentally counting or adding
hundreds, tens, and ones correctly. For example, beginning with
hundreds: 278 plus 100 is 378 (“I’ve used all of the hundreds”), 378
plus 30 is 408 and plus 10 (to add on all of the 40) is 418, and 418
plus 7 is 425. One way to keep track: draw the 147 and cross out
parts as they are added on. Counting-on and adding-on methods
become even more difficult with numbers over 1000. If they arise
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from students, they should be discussed. But the major focus for
addition within 1000 needs to be on methods such as those in the
margin that are simpler for students and lead toward fluency (e.g.,
recording new units in separate rows shown) or are sufficient for
fluency (e.g., recording new units in one row).

Addition: Recording newly composed units in the same row

Add the ones,
8 ` 7, and record
these 15 ones
with 1 on the line
in the tens column
and 5 below in the
ones place.

Add the tens,
7 ` 4 ` 1, and
record these 12
tens with 1 on the
line in the
hundreds column
and 2 below in the
tens place.

Add the hundreds,
2 ` 1 ` 1, and
record these 4
hundreds below in
the hundreds
column.

Digits representing newly composed units are placed below the
addends, on the line. This placement has several advantages.
Each two-digit partial sum (e.g., “15”) is written with the digits
close to each other, suggesting their origin. In “adding from the
top down,” usually sums of larger digits are computed first, and
the easy-to-add “1” is added to that sum, freeing students from
holding an altered digit in memory. The original numbers are not
changed by adding numbers to the first addend; three multi-digit
numbers (the addends and the total) can be seen clearly. It is
easier to write teen numbers in their usual order (e.g., as 1 then
5) rather than “write the 5 and carry the 1” (write 5, then 1).

Drawings and steps for a generalizable method of subtracting
within 1000 are shown in the margin. The total 425 does not have

Subtraction: Decomposing where needed first

decomposing left to right,
1 hundred, then 1 ten

now subtract

   425
- 278

   425
- 278

Standard algorithm, ungroup where needed  rst, then subtract:

ungrouping left to right,
1 hundred, then 1 ten

   425
- 278

now subtract

[This is part 3 of Figure 5. Doug Clements drew the  rst two parts.]

All necessary decomposing is done first, then the subtractions
are carried out. This highlights the two major steps involved and
can help to inhibit the common error of subtracting a smaller
digit on the top from a larger digit. Decomposing and subtracting
can start from the left (as shown) or the right.

enough tens or ones to subtract the 7 tens or 8 ones in 278. There-
fore one hundred is decomposed to make ten tens and one ten is
decomposed to make ten ones. These decompositions can be done
and written in either order; starting from the left is shown because
many students prefer to operate in that order. In the middle step,
one hundred has been decomposed (making 3 hundreds, 11 tens,
15 ones) so that the 2 hundreds 7 tens and 8 ones in 278 can be
subtracted. These subtractions of like units can also be done in any
order. When students alternate decomposing and subtracting like
units, they may forget to decompose entirely or in a given column
after they have just subtracted (e.g., after subtracting 8 from 15 to
get 7, they move left to the tens column and see a 1 on the top and
a 7 on the bottom and write 6 because they are in subtraction mode,
having just subtracted the ones).

Students can also subtract within 1000 by viewing a subtraction
as an unknown addend problem, e.g., 278 ` ? “ 425. Counting-on
and adding-on methods such as those described above for addition
can be used. But as with addition, the major focus needs to be on
methods that lead toward fluency or are sufficient for fluency (e.g.,
recording as shown in the second row in the margin).

In Grade 1, students have added within 100 using concrete mod-
els or drawings and used at least one method that is generalizable
to larger numbers (such as between 101 and 1000). In Grade 2,
they can make that generalization, using drawings for explanation
as discussed above. This extension could be done first for two-digit
numbers (e.g., 78 ` 47) so that students can see and discuss com-
posing both ones and tens without the complexity of hundreds in
the drawings or numbers (imagine the margin examples for 78`47).
After computing totals that compose both ones and tens for two-digit
numbers, then within 1000, the type of problems required for fluency
in Grade 2 seem easy, e.g., 28` 47 requires only composing a new
ten from ones. This is now easier to do without drawings: one just
records the new ten before it is added to the other tens or adds it
to them mentally.

A similar approach can be taken for subtraction: first using con-
crete models or drawings to solve subtractions within 100 that in-
volve decomposing one ten, then rather quickly solving subtractions
that require two decompositions. Spending a long time on subtrac-
tion within 100 can stimulate students to count on or count down,
which, as discussed above, are methods that are considerably more
difficult with numbers above 100. Problems with different types of
decompositions could be included so that students solve problems
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requiring two, one, and no decompositions. Then students can spend
time on subtractions that include multiple hundreds (totals from 201
to 1000). Relative to these experiences, the objectives for fluency at
this grade are easy: focusing within 100 just on the two cases of
one decomposition (e.g., 73´ 28) or no decomposition (e.g., 78´ 23)
without drawings.

Students also add up to four two-digit numbers using strate-
gies based on place value and properties of operations.2.NBT.6 This

2.NBT.6Add up to four two-digit numbers using strategies based
on place value and properties of operations.work affords opportunities for students to see that they may have

to compose more than one ten, and as many as three new tens.
It is also an opportunity for students to reinforce what they have
learned by informally using the commutative and associative prop-
erties. They could mentally add all of the ones, then write the new
tens in the tens column, and finish the computation in writing. They
could successively add each addend or add the first two and last
two addends and then add these totals. Carefully chosen problems
could suggest strategies that depend on specific numbers. For ex-
ample, 38`47`93`62 can be easily added by adding the first and
last numbers to make 100, adding the middle two numbers to make
140, and increasing 140 by 100 to make 240. Students also can
develop special strategies for particularly easy computations such
as 398 + 529, where the 529 gives 2 to the 398 to make 400, leaving
400 plus 527 is 927. But the major focus in Grade 2 needs to remain
on the methods that work for all numbers and generalize readily to
numbers beyond 1000.
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Grade 3
At Grade 3, the major focus is multiplication,• so students’ work • See the progression on Operations and Algebraic Thinking.

with addition and subtraction is limited to maintenance of fluency
within 1000 for some students and building fluency to within 1000
for others.

Use place value understanding and properties of operations to
perform multi-digit arithmetic Students fluently add and subtract
within 1000 using methods based on place value, properties of oper-
ations, and/or the relationship between addition and subtraction.3.NBT.2

3.NBT.2Fluently add and subtract within 1000 using strategies and
algorithms based on place value, properties of operations, and/or
the relationship between addition and subtraction.They focus on methods that generalize readily to larger numbers so

that these methods can be extended to 1,000,000 in Grade 4 and
fluency can be reached with such larger numbers. Fluency within
1000 implies that students use written methods without concrete
models or drawings, though concrete models or drawings can be
used with explanations to overcome errors and to continue to build
understanding as needed.

Students use their place value understanding to round numbers
to the nearest 10 or 100.3.NBT.1 They need to understand that when

3.NBT.1Use place value understanding to round whole numbers to
the nearest 10 or 100.moving to the right across the places in a number (e.g., 456), the dig-

its represent smaller units. When rounding to the nearest 10 or 100,
the goal is to approximate the number by the closest number with no
ones or no tens and ones (e.g., so 456 to the nearest ten is 460; and
to the nearest hundred is 500). Rounding to the unit represented
by the leftmost place is typically the sort of estimate that is easiest
for students and often is sufficient for practical purposes. Rounding
to the unit represented by a place in the middle of a number may
be more difficult for students (the surrounding digits are sometimes
distracting). Rounding two numbers before computing can take as
long as just computing their sum or difference.

The special role of 10 in the base-ten system is important in
understanding multiplication of one-digit numbers with multiples of
10.3.NBT.3 For example, the product 3 ˆ 50 can be represented as 3

3.NBT.3Multiply one-digit whole numbers by multiples of 10 in the
range 10–90 (e.g., 9ˆ80, 5ˆ60) using strategies based on place
value and properties of operations.groups of 5 tens, which is 15 tens, which is 150. This reasoning relies

on the associative property of multiplication: 3ˆ50 “ 3ˆp5ˆ10q “
p3ˆ 5q ˆ 10 “ 15ˆ 10 “ 150. It is an example of how to explain an
instance of a calculation pattern for these products: calculate the
product of the non-zero digits, then shift the product one place to
the left to make the result ten times as large.
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Grade 4
At Grade 4, students extend their work in the base-ten system.

4.NBT.1Recognize that in a multi-digit whole number, a digit in one
place represents ten times what it represents in the place to its
right.They use standard algorithms to fluently add and subtract. They

use methods based on place value and properties of operations sup-
ported by suitable representations to multiply and divide with multi-
digit numbers.

Generalize place value understanding for multi-digit whole num-
bers In the base-ten system, the value of each place is 10 times the

10ˆ 30 represented as 3 tens each taken 10 times

10 × 30
10 groups of 30

10 10 10

onestenshundreds

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

onestenshundreds

10 × 30 = 300

100 100 100

onestenshundreds

30

10 of each of the 3 tens

3 tens

10 times 3 tens
is 3 hundreds

Each of the 3 tens becomes a hundred and moves to the left. In
the product, the 3 in the tens place of 30 is shifted one place to
the left to represent 3 hundreds. In 300 divided by 10 the 3 is
shifted one place to the right in the quotient to represent 3 tens.

value of the place to the immediate right.4.NBT.1 Because of this, multi-
plying by 10 yields a product in which each digit of the multiplicand
is shifted one place to the left.

To read numerals between 1,000 and 1,000,000, students need
to understand the role of commas. Each sequence of three digits
made by commas is read as hundreds, tens, and ones, followed by
the name of the appropriate base-thousand unit (thousand, million,
billion, trillion, etc.). Thus, 457,000 is read “four hundred fifty seven
thousand.”4.NBT.2 The same methods students used for comparing and

4.NBT.2Read and write multi-digit whole numbers using base-ten
numerals, number names, and expanded form. Compare two
multi-digit numbers based on meanings of the digits in each
place, using ą, =, and ă symbols to record the results of com-
parisons.

rounding numbers in previous grades apply to these numbers, be-
cause of the uniformity of the base-ten system.4.NBT.3

4.NBT.3Use place value understanding to round multi-digit whole
numbers to any place.

Decimal notation and fractions Students in Grade 4 work with
fractions having denominators 10 and 100.4.NF.5

4.NF.5Express a fraction with denominator 10 as an equivalent
fraction with denominator 100, and use this technique to add two
fractions with respective denominators 10 and 100.3

ones
tens

tenths

hundredths

÷ 10

÷ 10

÷ 10 ÷ 10

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

  1
100

 1
10

each piece is .01 or 

each piece is .1 or 

÷ 10

1

$1
dime pennydollar

Because it involves partitioning into 10 equal
parts and treating the parts as numbers
called one tenth and one hundredth, work
with these fractions can be used as prepa-
ration to extend the base-ten system to non-
whole numbers.

Using the unit fractions 1
10 and 1

100 , non-
whole numbers like 23 7

10 can be written in
an expanded form that extends the form used
with whole numbers: 2ˆ10`3ˆ1`7ˆ 1

10 . As
with whole-number expansions in the base-
ten system, each unit in this decomposition
is ten times the unit to its right, reflect-
ing the uniformity of the base-ten system.
This can be connected with the use of base-
ten notation to represent 2 ˆ 10 ` 3 ˆ 1 `
7 ˆ 1

10 as 23.7. Using decimals allows stu-
dents to apply familiar place value reasoning
to fractional quantities.4.NF.6 The Number and

4.NF.6Use decimal notation for fractions with denominators 10 or
100.Operations—Fractions Progression discusses

decimals to hundredths and comparison of decimals4.NF.7 in more de- 4.NF.7Compare two decimals to hundredths by reasoning about
their size. Recognize that comparisons are valid only when the
two decimals refer to the same whole. Record the results of com-
parisons with the symbolsą, =, oră, and justify the conclusions,
e.g., by using a visual model.

tail.
The decimal point is used to signify the location of the ones place,

but its location may suggest there should be a “oneths" place to its
right in order to create symmetry with respect to the decimal point.
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However, because one is the basic unit from which the other base-
ten units are derived, the symmetry occurs instead with respect to
the ones place, as illustrated in the margin.

Symmetry with respect to the ones place

1hundred hundredthten tenth

4.NBT.4Fluently add and subtract multi-digit whole numbers using
the standard algorithm.

4.NBT.5Multiply a whole number of up to four digits by a one-digit
whole number, and multiply two two-digit numbers, using strate-
gies based on place value and the properties of operations. Illus-
trate and explain the calculation by using equations, rectangular
arrays, and/or area models.

Ways of reading decimals aloud vary. Mathematicians and sci-
entists often read 0.15 aloud as “zero point one five" or “point one
five." (Decimals smaller than one may be written with or without a
zero before the decimal point.) Decimals with many non-zero digits
are more easily read aloud in this manner. (For example, the number
π , which has infinitely many non-zero digits, begins 3.1415 . . .)

Other ways to read 0.15 aloud are “1 tenth and 5 hundredths”
and “15 hundredths,” just as 1,500 is sometimes read “15 hundred”
or “1 thousand, 5 hundred.” Similarly, 150 is read “one hundred and
fifty” or “a hundred fifty” and understood as 15 tens, as 10 tens and
5 tens, and as 100` 50. Multiplication: Illustrating partial products with an area

model

549
×  8

8

549 =       500                                              +           40            +       9  

Simpli"ed array/area drawing for 8 × 549

8 × 500 =

8 × 5 hundreds =

40 hundreds

8 × 40 =

8 × 4 tens =

32 tens

8 × 9 
= 72

Three accessible ways to record the standard algorithm:

Left to right
showing the
partial products

Right to left
showing the
partial products

Right to left
recording the
carries below

4000
  320
    72
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9

549
×  8

549
×  8

     72
   320
4000
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9 4022
4392

3 7

Each part of the region above corresponds to one of the terms in
the computation below.

8ˆ 549 “ 8ˆ p500` 40` 9q
“ 8ˆ 500` 8ˆ 40` 8ˆ 9.

An area model can be used for any multiplication situation after
students have discussed how to show an equal groups or a
compare situation with an area model by making the length of
the rectangle represent the size of the equal groups or the larger
compared quantity imagining things inside the square units to
make an array (but not drawing them), and understanding that
the dimensions of the rectangle are the same as the dimensions
of the imagined array, e.g., an array illustrating 8 x 549 would
have 8 rows and 549 columns. (See the Operations and
Algebraic Thinking Progression for discussion of “equal groups”
and “compare” situations.)

Just as 15 is understood as 15 ones and as 1 ten and 5 ones in
computations with whole numbers, 0.15 is viewed as 15 hundredths
and as 1 tenth and 5 hundredths in computations with decimals.

It takes time to develop understanding and fluency with the dif-
ferent forms. Layered cards for decimals can help students under-
stand how 2 tenths and 7 hundredths make 27 hundredths. Place
value cards can be layered with the places farthest from the deci-
mal point on the bottom (see illustration of the whole number cards
on p. 5). These places are then covered by each place toward the
decimal point: Tenths go on top of hundredth, and tens go on top
of hundreds (for example, .2 goes on top of .07 to make .27, and 20
goes on top of 700 to make 720).

Use place value understanding and properties of operations to
perform multi-digit arithmetic Students fluently add and subtract
multi-digit numbers through 1,000,000 using the standard algorithm.4.NBT.4

Because students in Grade 2 and Grade 3 have been using at least
one method that readily generalizes to 1,000,000, this extension does
not have to take a long time. Thus, students will have time for the
major NBT focus for this grade: multiplication and division.

Multiplication: Recording methods

549
×  8

8

549 =       500                                              +           40            +       9  

Simpli"ed array/area drawing for 8 × 549

8 × 500 =

8 × 5 hundreds =

40 hundreds

8 × 40 =

8 × 4 tens =

32 tens

8 × 9 
= 72

Three accessible ways to record the standard algorithm:

Left to right
showing the
partial products

Right to left
showing the
partial products

Right to left
recording the
carries below

4000
  320
    72
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9

549
×  8

549
×  8

     72
   320
4000
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9 4022
4392

3 7

The first method proceeds from left to right, and the others from
right to left. In the third method, the digits representing new units
are written below the line rather than above 549, thus keeping
the digits of the products close to each other, e.g., the 7 from
8ˆ 9 “ 72 is written diagonally to the left of the 2 rather than
above the 4 in 549. The colors indicate correspondences with
the area model above.

In fourth grade, students compute products of one-digit num-
bers and multi-digit numbers (up to four digits) and products of two
two-digit numbers.4.NBT.5 They divide multi-digit numbers (up to four
digits) by one-digit numbers. As with addition and subtraction, stu-
dents should use methods they understand and can explain. Visual
representations such as area and array diagrams that students draw
and connect to equations and other written numerical work are use-
ful for this purpose, which is why 4.NBT.5 explicitly states that they
are to be used to illustrate and explain the calculation. By reason-
ing repeatedly (MP.8) about the connection between math drawings
and written numerical work, students can come to see multiplica-
tion and division algorithms as abbreviations or summaries of their
reasoning about quantities.
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One component of understanding general methods for multiplica-
tion is understanding how to compute products of one-digit numbers
and multiples of 10, 100, and 1000. This extends work in Grade 3 on

Illustrating partial products with an area modelSimpli!ed array/area drawing for 36 × 94

 30

  

  +

  6

              90                                 +    4

30 × 90 =
3 tens × 9 tens =
27 hundreds =
2700

6 × 90 =
6 × 9 tens
54 tens =
540

30 × 4 =
3 tens × 4 =
12 tens =
120

6 × 4 = 24

Two accessible, right to left ways to record 
the standard algorithm:

Showing the
partial products

Recording the carries below
for correct place value placement

    94
× 36

    94
× 36

     24
   540
   120
2700

thinking:

3 tens × 4

3 tens × 9 tens

6 × 9 tens

6 × 4

3384

5 2

2 1

1

1

3384

44

720

0   because we
are multiplying
by 3 tens in this row

The products of base-ten units are shown as parts of a
rectangular region. Such area models can support
understanding and explaining of different ways to record
multiplication. For students who struggle with the spatial
demands of other methods, a useful helping step method is to
make a quick sketch like this with the lengths labeled and just
the partial products, then to add the partial products outside the
rectangle.

Methods that compute partial products first

Simpli!ed array/area drawing for 36 × 94

 30

  

  +

  6

              90                                 +    4

30 × 90 =
3 tens × 9 tens =
27 hundreds =
2700

6 × 90 =
6 × 9 tens
54 tens =
540

30 × 4 =
3 tens × 4 =
12 tens =
120

6 × 4 = 24

Two accessible, right to left ways to record 
the standard algorithm:

Showing the
partial products

Recording the carries below
for correct place value placement

    94
× 36

    94
× 36

     24
   540
   120
2700

thinking:

3 tens × 4

3 tens × 9 tens

6 × 9 tens

6 × 4

3384

5 2

2 1

1

1

3384

44

720

0   because we
are multiplying
by 3 tens in this row

These proceed from right to left, but could go left to right. On the
right, digits that represent newly composed tens and hundreds
are written below the line instead of above 94. The digits 2 and 1
are surrounded by a blue box. The 1 from 30ˆ 4 “ 120 is
placed correctly in the hundreds place and the digit 2 from
30ˆ 90 “ 2700 is placed correctly in the thousands place. If
these digits had been placed above 94, they would be in
incorrect places. Note that the 0 (surrounded by a yellow box) in
the ones place of the second row of the method on the right is
there because the whole row of digits is produced by multiplying
by 30 (not 3). Colors on the left correspond with the area model
above.

Methods that alternate multiplying and adding

These methods put the newly composed units from a partial
product in the correct column, then they are added to the next
partial product. These alternating methods are more difficult
than the methods above that show the four partial products. The
first method can be used in Grade 5 division when multiplying a
partial quotient times a two-digit divisor.

Not shown is the recording method in which the newly composed
units are written above the top factor (e.g., 94). This puts the
hundreds digit of the tens times ones product in the tens column
(e.g., the 1 hundred in 120 from 30ˆ 4 above the 9 tens in 94).
This placement violates the convention that students have
learned: a digit in the tens place represents tens, not hundreds.

products of one-digit numbers and multiples of 10. We can calculate
6ˆ 700 by calculating 6ˆ 7 and then shifting the result to the left
two places (by placing two zeros at the end to show that these are
hundreds) because 6 groups of 7 hundred is 6ˆ7 hundreds, which is
42 hundreds, or 4,200. Students can use this place value reasoning,
which can also be supported with diagrams of arrays or areas, as
they develop and practice using the patterns in relationships among
products such as 6ˆ 7, 6ˆ 70, 6ˆ 700, and 6ˆ 7000. Products of 5
and even numbers, such as 5ˆ4, 5ˆ40, 5ˆ400, 5ˆ4000 and 4ˆ5,
4ˆ50, 4ˆ500, 4ˆ5000 might be discussed and practiced separately
afterwards because they may seem at first to violate the patterns
by having an “extra” 0 that comes from the one-digit product.

Another part of understanding general base-ten methods for multi-
digit multiplication is understanding the role played by the distribu-
tive property. This allows numbers to be decomposed into base-ten
units, products of the units to be computed, then combined. By de-
composing the factors into base-ten units and applying the distribu-
tive property, multiplication computations are reduced to single-digit
multiplications and products of numbers with multiples of 10, of 100,
and of 1000. Students can connect diagrams of areas or arrays to
numerical work to develop understanding of general base-ten mul-
tiplication methods.

Computing products of two two-digit numbers requires using the
distributive property several times when the factors are decomposed
into base-ten units. For example,

36ˆ 94 “ p30` 6q ˆ p94q
“ 30ˆ 94` 6ˆ 94
“ 30ˆ p90` 4q ` 6ˆ p90` 4q
“ 30ˆ 90` 30ˆ 4` 6ˆ 90` 6ˆ 4.

The four products in the last line correspond to the four rectan-
gles in the area model in the margin. Their factors correspond to the
factors in written methods. When written methods are abbreviated,
some students have trouble seeing how the single-digit factors are
related to the two-digit numbers whose product is being computed
(MP.2). They may find it helpful initially to write each two-digit
number as the sum of its base-ten units (e.g., writing next to the
calculation 94 “ 90 ` 4 and 36 “ 30 ` 6) so that they see what
the single digits are. Some students also initially find it helpful
to write what they are multiplying in front of the partial products
(e.g., 6 ˆ 4 “ 24). These helping steps can be dropped when they
are no longer needed. At any point before or after their acquisi-
tion of fluency, some students may prefer to multiply from the left
because they find it easier to align the subsequent products under
this biggest product.
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General methods for computing quotients of multi-digit numbers
and one-digit numbers rely on the same understandings as for mul-
tiplication, but cast in terms of division.4.NBT.6 One component is quo-

4.NBT.6Find whole-number quotients and remainders with up to
four-digit dividends and one-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

tients of multiples of 10, 100, or 1000 and one-digit numbers. For
example, 42 ˜ 6 is related to 420 ˜ 6 and 4200 ˜ 6. Students can

Division as finding group size

745 ÷ 3 = ? 

3 groups
3 groups

Thinking: 

Divide 
7 hundreds, 4 tens,  5 ones 
equally among 3 groups,
starting with hundreds.

7 hundreds ÷ 3
each group gets
2 hundreds;
1 hundred is left.

Unbundle 1 hundred.
Now I have
10 tens + 4 tens = 14 tens.

14 tens ÷ 3
each group gets
4 tens;
2 tens are left.

Unbundle 2 tens.
Now I have
20 + 5 = 25 left.

25 ÷ 3
each group gets 8;
1 is left.

3 )745

3 )745
   - 6
     1

2 hundr.

2 hundr.

2 hundr.

3 groups

2 hundr. + 4 tens

2 hundr. + 4 tens

2 hundr. + 4 tens

3 groups

2 hundr. + 4 tens + 8

2 hundr. + 4 tens + 8

2 hundr. + 4 tens + 8

2

3 )745
   - 6
     14

2

3 )745
   - 6
     14
   - 12
        2

24

3 )745
   - 6
     14
   - 12
        25

24

3 )745
   - 6
     14
   - 12
        25
     -  24
           1

248

Each group got 248 
and 1 is left.

1 2 3

745˜ 3 can be viewed as allocating 745 objects bundled in 7
hundreds, 4 tens, and 3 ones equally among 3 groups. In Step
1, the 2 indicates that each group got 2 hundreds, the 6 is the
number of hundreds allocated, and the 1 is the number of
hundreds not allocated. After Step 1, the remaining hundred is
decomposed as 10 tens and combined with the 4 tens (in 745) to
make 14 tens.

draw on their work with multiplication and they can also reason
that 4200 ˜ 6 means partitioning 42 hundreds into 6 equal groups,
so there are 7 hundreds in each group.

Another component of understanding general methods for multi-
digit division computation is the idea of decomposing the dividend
into like base-ten units and finding the quotient unit by unit, start-
ing with the largest unit and continuing on to smaller units. See
the figure in the margin. As with multiplication, this relies on the
distributive property. This can be viewed as finding the side length
of a rectangle (the divisor is the length of the other side) or as al-
locating objects (the divisor is the number of groups or the number
of objects in each group). See the figure on the next page for an
example.

Multi-digit division requires working with remainders. In prepa-
ration for working with remainders, students can compute sums of
a product and a number, such as 4 ˆ 8 ` 3.• In multi-digit division,

• A note on notation

The result of division within the system of whole numbers is
frequently written as:

84˜ 10 “ 8 R 4 and 44˜ 5 “ 8 R 4.

Because the two expressions on the right are the same, students
should conclude that 84˜ 10 is equal to 44˜ 5, but this is not
the case. (Because the equal sign is not used appropriately, this
usage is a non-example of Standard for Mathematical Practice
6.) Moreover, the notation 8 R 4 does not indicate a number.

Rather than writing the result of division in terms of a
whole-number quotient and remainder, the relationship of
whole-number quotient and remainder can be written as:

84 “ 8ˆ 10` 4 and 44 “ 8ˆ 5` 4.

students will need to find the greatest multiple less than a given
number. For example, when dividing by 6, the greatest multiple of
6 less than 50 is 6 ˆ 8 “ 48. Students can think of these “greatest
multiples” in terms of putting objects into groups. For example, when
50 objects are shared among 6 groups, the largest whole number of
objects that can be put in each group is 8, and 2 objects are left
over. (Or when 50 objects are allocated into groups of 6, the largest
whole number of groups that can be made is 8, and 2 objects are left
over.) The equation 6ˆ 8` 2 “ 50 (or 8ˆ 6` 2 “ 50) corresponds
with this situation.

Cases involving 0 in division may require special attention. See
the figure below.

Cases involving 0 in division

2 ) 836 ) 901
   - 6
     3

41

- 8
0

12 ) 3714
       -36
           11

    3

 

Stop now because
of the 0?

No, there are 
still 3 ones left.

Stop now because
11 is less than 12?

No, it is 11 tens, so
there are still 
110 + 4 = 114 left.

Case 1
a 0 in the
dividend:

Case 2
a 0 in a
remainder
part way
through:

Case 3
a 0 in the
quotient:

What to do
about the 0?

3 hundreds 
= 30 tens
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Division as finding side length
 
   ? hundreds + ? tens + ? ones 

 
Find the unknown length of the 
rectangle; first find the hundreds, 
then the tens, then the ones.  
 

 
 
 

Method A 

 

 
 
 

Method B 
 

 
             100 + ?? 

 
The length has 1 hundred, making a 
rectangle with area 700. 
 

 
 
 
 
 
Method A records the 
difference of the areas as  
966 – 700 = 266, showing the 
remaining area (266). Only 
hundreds are subtracted; the 
tens and ones digits do not 
change. 

 
 
 
 
 
Method B records only the hundreds 
digit (2) of the difference and “brings 
down” the unchanged tens digit (6). 
These digits represent:  
2 hundreds + 6 tens = 26 tens. 
 

                 100  +  30 + ? 

 
The length has 3 tens, making a 
rectangle with area 210. 
 

 
 
 
 
Method A records the 
difference of the areas as  
266 – 210 = 56. Only hundreds 
and tens are subtracted; the 
ones digit does not change. 

 
 
 
 
Method B records only the tens digit 
(5) of the difference and “brings down” 
the ones digit (6). These digits 
represent: 5 tens + 6 ones = 56 ones.  
 

                  100  +  30 + 8 

 
The length has 8 ones, making an 
area of 56. The original rectangle 
can now be seen as composed of 
three smaller rectangles with areas 
of the amounts that were subtracted 
from 966. 
 
966 ÷ 7 can be viewed as finding the 
unknown side length of a rectangular 
region with area 966 square units 
and a side of length 7 units. The 
divisor, partial quotients (100, 30, 8), 
and final quotient (138) represent 
quantities in length units and the 
dividend represents a quantity in 
area units. 
 

 
 
 
 
 
Method A shows each partial 
quotient and has the final step 
adding them (going from  
100 + 30 + 8 to 138).  
 

 
 
 
 
 
Method B abbreviates these partial 
quotients. These can be said explicitly 
when explaining the method (e.g., 7 
hundreds subtracted from the 9 
hundreds is 2 hundreds). 
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Grade 5
In Grade 5, students extend their understanding of the base-ten sys-
tem to decimals to the thousandths place, building on their Grade 4
work with tenths and hundredths. They become fluent with the stan-
dard multiplication algorithm with multi-digit whole numbers. They
reason about dividing whole numbers with two-digit divisors, and
reason about adding, subtracting, multiplying, and dividing decimals
to hundredths.

Understand the place value system Students extend their under-
standing of the base-ten system to the relationship between adjacent
places, how numbers compare, and how numbers round for decimals
to thousandths.

New at Grade 5 is the use of whole number exponents to denote
powers of 10.5.NBT.2 Students understand why multiplying by a power

5.NBT.2Explain patterns in the number of zeros of the product
when multiplying a number by powers of 10, and explain patterns
in the placement of the decimal point when a decimal is multi-
plied or divided by a power of 10. Use whole-number exponents
to denote powers of 10.

of 10 shifts the digits of a whole number or decimal that many places
to the left. For example, multiplying by 104 is multiplying by 10 four
times. Multiplying by 10 once shifts every digit of the multiplicand
one place to the left in the product (the product is ten times as large)
because in the base-ten system the value of each place is 10 times
the value of the place to its right. So multiplying by 10 four times
shifts every digit 4 places to the left. Patterns in the number of 0s in
products of a whole number and a power of 10 and the location of
the decimal point in products of decimals with powers of 10 can be
explained in terms of place value. Because students have developed
their understandings of and computations with decimals in terms
of multiples (consistent with 4.OA.4) rather than powers, connecting
the terminology of multiples with that of powers affords connections
between understanding of multiplication and exponentiation.

Perform operations with multi-digit whole numbers and with dec-
imals to hundredths At Grade 5, students fluently compute prod-
ucts of whole numbers using the standard algorithm.5.NBT.5 Underly-

5.NBT.5Fluently multiply multi-digit whole numbers using the stan-
dard algorithm.ing this algorithm are the properties of operations and the base-ten

system (see the Grade 4 section).
Division in Grade 5 extends Grade 4 methods to two-digit divisors.5.NBT.6

5.NBT.6Find whole-number quotients of whole numbers with up to
four-digit dividends and two-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

Students continue to decompose the dividend into base-ten units
and find the quotient place by place, starting from the highest place.
They illustrate and explain their calculations using equations, rect-
angular arrays, and/or area models. Estimating the quotients is a
new aspect of dividing by a two-digit number. Even if students round
the dividend appropriately, the resulting estimate may need to be
adjusted up or down. Sometimes multiplying the ones of a two-digit
divisor composes a new thousand, hundred, or ten. These newly
composed units can be written as part of the division computation,
added mentally, or as part of a separate multiplication computation.
Students who need to write decomposed units when subtracting
need to remember to leave space to do so.

Recording division after an underestimate

27 ) 1655
       -1350
          305
        -270
            35
          -27
              8

  1
10
50

61
1655 ÷ 27

Rounding 27
to 30 produces
the underestimate
50 at the first step
but this method
allows the division
process to be
continued

(30)
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Because of the uniformity of the structure of the base-ten sys-
tem, students use the same place value understanding for adding
and subtracting decimals that they used for adding and subtracting
whole numbers.5.NBT.7 Like base-ten units must be added and sub-

5.NBT.7Add, subtract, multiply, and divide decimals to hundredths,
using concrete models or drawings and strategies based on place
value, properties of operations, and/or the relationship between
addition and subtraction; relate the strategy to a written method
and explain the reasoning used.

tracted, so students need to attend to aligning the corresponding
places correctly (this also aligns the decimal points). It can help
to put 0s in places so that all numbers show the same number of
places to the right of the decimal point. A whole number is not
usually written with a decimal point, but a decimal point followed
by one or more 0s can be inserted on the right (e.g., 16 can also be
written as 16.0 or 16.00). The process of composing and decompos-
ing a base-ten unit is the same for decimals as for whole numbers
and the same methods of recording numerical work can be used with
decimals as with whole numbers. For example, students can write
digits representing newly composed units on the addition line, and
they can decompose units wherever needed before subtracting.

General methods used for computing products of whole numbers
extend to products of decimals. Because the expectations for deci-
mals are limited to thousandths and expectations for factors are lim-
ited to hundredths at this grade level, students will multiply tenths
with tenths and tenths with hundredths, but they need not multiply
hundredths with hundredths. Before students consider decimal mul-
tiplication more generally, they can study the effect of multiplying
by 0.1 and by 0.01 to explain why the product is ten or a hundred
times as small as the multiplicand (moves one or two places to the
right). They can then extend their reasoning to multipliers that are
single-digit multiples of 0.1 and 0.01 (e.g., 0.2 and 0.02, etc.).

There are several lines of reasoning that students can use to
explain the placement of the decimal point in other products of dec-
imals. Students can think about the product of the smallest base-ten
units of each factor. For example, a tenth times a tenth is a hun-
dredth, so 3.2ˆ7.1 will have an entry in the hundredth place. Note,
however, that students might place the decimal point incorrectly for
3.2 ˆ 8.5 unless they take into account the 0 in the ones place of
32ˆ85. (Or they can think of 0.2ˆ0.5 as 10 hundredths.) They can
also think of the decimals as fractions or as whole numbers divided
by 10 or 100.5.NF.3 When they place the decimal point in the product,

5.NF.3Interpret a fraction as division of the numerator by the de-
nominator (a{b “ a˜b). Solve word problems involving division
of whole numbers leading to answers in the form of fractions or
mixed numbers, e.g., by using visual fraction models or equations
to represent the problem.

they have to divide by a 10 from each factor or 100 from one factor.
For example, to see that 0.6 ˆ 0.8 “ 0.48, students can use frac-
tions: 6

10 ˆ
8
10 “

48
100 .5.NF.4 Students can also reason that when they 5.NF.4Apply and extend previous understandings of multiplication

to multiply a fraction or whole number by a fraction.carry out the multiplication without the decimal point, they have
multiplied each decimal factor by 10 or 100, so they will need to
divide by those numbers in the end to get the correct answer. Also,
students can use reasoning about the sizes of numbers to determine
the placement of the decimal point. For example, 3.2 ˆ 8.5 should
be close to 3ˆ 9, so 27.2 is a more reasonable product for 3.2ˆ 8.5
than 2.72 or 272. This estimation-based method is not reliable in
all cases, however, especially in cases students will encounter in
later grades. For example, it is not easy to decide where to place
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the decimal point in 0.023 ˆ 0.0045 based on estimation. Students
can summarize the results of their reasoning such as those above as
specific numerical patterns and then as one general overall pattern
such as “the number of decimal places in the product is the sum of
the number of decimal places in each factor.”

General methods used for computing quotients of whole numbers
extend to decimals with the additional issue of placing the decimal
point in the quotient. As with decimal multiplication, students can
first examine the cases of dividing by 0.1 and 0.01 to see that the
quotient becomes 10 times or 100 times as large as the dividend
(see also the Number and Operations—Fractions Progression). For
example, students can view 7˜ 0.1 “ l as asking how many tenths
are in 7.5.NF.7b Because it takes 10 tenths to make 1, it takes 7 times

5.NF.7bApply and extend previous understandings of division to
divide unit fractions by whole numbers and whole numbers by
unit fractions.

b Interpret division of a whole number by a unit fraction, and
compute such quotients.

as many tenths to make 7, so 7 ˜ 0.1 “ 7 ˆ 10 “ 70. Or students
could note that 7 is 70 tenths, so asking how many tenths are in
7 is the same as asking how many tenths are in 70 tenths, which
is 70. In other words, 7 ˜ 0.1 is the same as 70 ˜ 1. So dividing
by 0.1 moves the number 7 one place to the left, the quotient is
ten times as big as the dividend. As with decimal multiplication,
students can then proceed to more general cases. For example, to
calculate 7˜0.2, students can reason that 0.2 is 2 tenths and 7 is 70
tenths, so asking how many 2 tenths are in 7 is the same as asking
how many 2 tenths are in 70 tenths. In other words, 7 ˜ 0.2 is the
same as 70˜ 2; multiplying both the 7 and the 0.2 by 10 results in
the same quotient. Or students could calculate 7 ˜ 0.2 by viewing
0.2 as 2ˆ 0.1, so they can first divide 7 by 2, which is 3.5, and then
divide that result by 0.1, which makes 3.5 ten times as large, namely
35. Dividing by a decimal less than 1 results in a quotient larger
than the dividend5.NF.5 and moves the digits of the dividend one place 5.NF.5Interpret multiplication as scaling (resizing), by:

a Comparing the size of a product to the size of one factor
on the basis of the size of the other factor, without per-
forming the indicated multiplication.

b Explaining why multiplying a given number by a frac-
tion greater than 1 results in a product greater than the
given number (recognizing multiplication by whole num-
bers greater than 1 as a familiar case); explaining why
multiplying a given number by a fraction less than 1 results
in a product smaller than the given number; and relating
the principle of fraction equivalence a{b “ pnˆaq{pnˆbq
to the effect of multiplying a{b by 1.

to the left. Students can summarize the results of their reasoning
as specific numerical patterns, then as one general overall pattern
such as “when the decimal point in the divisor is moved to make a
whole number, the decimal point in the dividend should be moved
the same number of places.”
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Extending beyond Grade 5
At Grade 6, students extend their fluency with the standard algo-
rithms, using these for all four operations with decimals and to com-
pute quotients of multi-digit numbers. At Grade 6 and beyond, stu-
dents may occasionally compute with numbers larger than those
specified in earlier grades as required for solving problems, but the
Standards do not specify mastery with such numbers.

In Grade 6, students extend the base-ten system to negative
numbers. In Grade 7, they begin to do arithmetic with such numbers.

By reasoning about the standard division algorithm, students
learn in Grade 7 that every fraction can be represented with a dec-
imal that either terminates or repeats. In Grade 8, students learn
informally that every number has a decimal expansion, and that
those with a terminating or repeating decimal representation are
rational numbers (i.e., can be represented as a quotient of integers).
There are numbers that are not rational (irrational numbers), such
as the square root of 2. (It is not obvious that the square root of 2 is
not rational, but this can be proved.) In fact, surprisingly, it turns out
that most numbers are not rational. Irrational numbers can always
be approximated by rational numbers.

In Grade 8, students build on their work with rounding and expo-
nents when they begin working with scientific notation. This allows
them to express approximations of very large and very small numbers
compactly by using exponents and generally only approximately by
showing only the most significant digits. For example, the Earth’s
circumference is approximately 40,000,000 m. In scientific notation,
this is 4ˆ 107 m.

The Common Core Standards are designed so that ideas used
in base-ten computation, as well as in other domains, can support
later learning. For example, use of the distributive property occurs
together with the idea of combining like units in the NBT and NF
standards. Students use these ideas again when they calculate with
polynomials in high school.

The distributive property and like units: Multiplication of whole numbers and polynomials

52 ¨ 73
“ p5 ¨ 10` 2qp7 ¨ 10` 3q
“ 5 ¨ 10p7 ¨ 10` 3q ` 2 ¨ p7 ¨ 10` 3q
“ 35 ¨ 102 ` 15 ¨ 10` 14 ¨ 10` 2 ¨ 3
“ 35 ¨ 102 ` 29 ¨ 10` 6

p5x ` 2qp7x ` 3q
“ p5x ` 2qp7x ` 3q
“ 5xp7x ` 3q ` 2p7x ` 3q
“ 35x2 ` 15x ` 14x ` 2 ¨ 3
“ 35x2 ` 29x ` 6

decomposing as like units (powers of 10 or powers of x)

using the distributive property

using the distributive property again

combining like units (powers of 10 or powers of x)
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