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The Number System, 6–8

Overview

In Grades 6–8, students build on two important conceptions which
have developed throughout K–5, in order to understand the rational
numbers as a number system. The first is the representation of
whole numbers and fractions as points on the number line, and the
second is a firm understanding of the properties of operations on
whole numbers and fractions.

Representing numbers on the number line In early grades, stu-
dents see whole numbers as counting numbers, Later, they also
understand whole numbers as corresponding to points on the num-
ber line. Just as the 6 on a ruler measures 6 inches from the 0
mark, so the number 6 on the number line measures 6 units from
the origin. Interpreting numbers as points on the number line brings
fractions into the family as well; fractions are seen as measurements
with new units, creating by partitioning the whole number unit into
equal pieces. Just as on a ruler we might measure in tenths of an
inch, on the number line we have halves, thirds, fifths, sevenths; the
number line is a sort of ruler with every denominator. The denom-
inators 10, 100, etc. play a special role, partioning the number line
into tenths, hundredths, etc., just as a metric ruler is partioned into
centimeters and millimeters.

Starting in Grade 2 students see addition as concatenation of
lengths on the number line.2.MD.6 By Grade 4 they are using the

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to the
numbers 0, 1, 2, . . . , and represent whole-number sums and dif-
ferences within 100 on a number line diagram.same model to represent the sum of fractions with the same denom-

inator: 3
5

7
5 is seen as putting together a length that is 3 units of

one fifth long with a length that is 7 units of one fifth long, making
10 units of one fifths in all. Since there are five fifths in 1 (that’s
what it means to be a fifth), and 10 is 2 fives, we get 3

5
7
5 2.

Representing 3
5 and 7

5 on the number line

0 1 2

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

10
5

7
5

place a length of 7
5 next

to a length of 3
5

Two fractions with different denominators are added by representing
them in terms of a common unit.

Representing sums as concatenated lengths on the number line
is important because it gives students a way to think about addition
that makes sense independently of how numbers are represented
symbolically. Although addition calculations may look different for
numbers represented in base ten and as fractions, addition is the
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NS, 6–8 3

same operation in each case. Furthermore, the concatenation model
of addition extends naturally to negative numbers in Grade 7.

Properties of operations The number line provides a represen-
tation that can be used to building understanding of sums and
differences of rational numbers. However, building understanding
of multiplication and division of rational numbers relies on a firm
understanding of properties of operations. Although students have

Properties of Operations on Rational Numbers

Properties of Addition

1. Commutative Property. For any two rational numbers �
and �, � � � �.

2. Associative Property. For any three rational numbers �,
� and �, � � � � � � .

3. Existence of Identity. The number 0 satisfies
0 � � � 0.

4. Existence of Additive Inverse. For any rational number �,
there is a number � such that � � 0.

Properties of Multiplication

1. Commutative Property. For any two rational numbers �
and �, � � � �.

2. Associative Property. For any three rational numbers �,
� and �, � � � � � � .

3. Existence of Identity. The number 1 satisfies
1 � � � 1.

4. Existence of Multiplicative Inverse. For every non-zero
rational number �, there is a rational number 1

� such that
� 1

� 1.

The Distributive Property

For rational numbers �, � and �, one has
� � � � � � �.

not necessarily been taught formal names for these properties, they
have used them repeatedly in elementary school and have been with
reasoning with them. The commutative and associative properties
of addition and mutiplication have, in particular, been their constant
friends in working with strategies for addition and multiplication.1.OA.3, 3.OA.5

1.OA.3Apply properties of operations as strategies to add and
subtract.1

3.OA.5Apply properties of operations as strategies to multiply
and divide.2

The existence of the multiplicative identity (1) and multiplicative
inverses start to play important roles as students learn about frac-
tions. They might see fraction equivalence as confirming the identity
rule for fractions. In Grade 4 they learn about fraction equivalence

� �
� �

�
�

and in Grade 5 they relate this to multiplication by 1

� �
� �

�
�

�
� 1

�
� �

thus confirming that the identity rule

1
�
�

�
�

works for fractions.5.NF.5 5.NF.5Interpret multiplication as scaling (resizing), by:

a . . .

b . . . and relating the principle of fraction equivalence �
�

� �
� � to the effect of multiplying �

� by 1.

As another example, the commutative property for multiplication
plays an important role in understanding multiplication with frac-
tions. For example, although

5
1

2

5

2

can be made sense of using previous understandings of whole num-
ber multiplication as repeated addition, the other way around,

1

2
5

5

2
�

seems to come from a different source, from the meaning of phrases
such as “half of” and a mysterious acceptance that “of” must mean
multiplication. A more reasoned approach would be to observe that
if we want the commutative property to continue to hold, then we
must have

1

2
5 5

1

2

5

2
�
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NS, 6–8 4

and that 5
2 is indeed “half of five,” as we have understood in Grade

5.5.NF.3

5.NF.3Interpret a fraction as division of the numerator by the de-
nominator (� � � �). Solve word problems involving division
of whole numbers leading to answers in the form of fractions or
mixed numbers, e.g., by using visual fraction models or equations
to represent the problem.

When students extend their conception of multiplication to in-
clude negative rational numbers, the properties of operations become
crucial. The rule that the product of negative numbers is positive,
often seen as mysterious, is the result of extending the properties of
operations (particularly the distributive property) to rational num-
bers.
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NS, 6–8 5

Grade 6

As Grade 6 dawns, students have a firm understanding of place
value and the properties of operations. On this foundation they
are ready to start using the properties of operations as tools of
exploration, deploying them confidently to build new understandings
of operations with fractions and negative numbers. They are also
ready to complete their growing fluency with algorithms for the four
operations.

Apply and extend previous understandings of multiplication and
division to divide fractions by fractions In Grade 6 students con-
clude the work with operations on fractions, started in Grade 4, by
computing quotients of fractions.6.NS.1 In Grade 5 students divided

6.NS.1Interpret and compute quotients of fractions, and solve
word problems involving division of fractions by fractions, e.g.,
by using visual fraction models and equations to represent the
problem.unit fractions by whole numbers and whole numbers by unit frac-

tions, two special cases of fraction division that are relatively easy
to conceptualize and visualize.5.NF.7ab Dividing a whole number by 5.NF.7Apply and extend previous understandings of division to

divide unit fractions by whole numbers and whole numbers by
unit fractions.

a Interpret division of a unit fraction by a non-zero whole
number, and compute such quotients.

b Interpret division of a whole number by a unit fraction, and
compute such quotients.

a unit fraction can be conceptualized in terms of the measurement
interpretation of division, which conceptualizes � � as the the
measure of of � by units of length � on the number line, that is,
the solution to the multiplication equation � ? �. Dividing a
unit fraction by a whole number can be interpreted in terms of the
sharing interpretation of division, which conceptualizes � � as the
size of a share when � is divided into � equal shares, that is, the
solution to the multiplication equation � � ?. Visual models for division of whole numbers by unit

fractions and unit fractions by whole numbers

0 1 2 3 4

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

11
3

12
3

Reasoning on a number line using the measurement
interpretation of division: there are 3 parts of length 1

3 in the unit
interval, therefore there are 4 3 parts of length 1

3 in the
interval from 0 to 4, so the number of times 1

3 goes into 4 is 12,
that is 4 1

3 4 3 12.

1
6

Reasoning with a fraction strip using the sharing interpretation of
division: the strip is the whole and the shaded area is 1

2 of the
whole. If the shaded area is divided into 3 equal parts, then
2 3 of those parts make up the whole, so 1

2 3 1
2 3

1
6 .

Now in Grade 6 students develop a general understanding of
fraction division. They can use story contexts and visual models to
develop this understanding, but also begin to move towards using
the relation between division and multiplication.

For example, they might use the measurement interpretation of
division to see that 8

3
2
3 4, because 4 is 4 is how many 2

3 there
are in 8

3 . At the same time they can see that this latter statement
also says that 4 2

3
8
3 . This multiplication equation can be used

to obtain the division equation directly, using the relation between
multiplication and division.

Quotients of fractions that are whole number answers are par-
ticularly suited to the measurement interpretation of division. When
this interpretation is used for quotients of fractions that are not
whole numbers, it can be rephrased from “how many times does this
go into that?” to “how much of this is in that?” For example,

2

3

3

4

can be interpreted as how many 3
4-cup servings are in 2

3 of a cup
of yogurt, or as how much of a 3

4-cup serving is in 2
3 of a cup of

yogurt. Although linguistically different the two questions are math-

Visual model for 2
3

3
4 and 2

3 ? 3
4

2
3

3
4

We find a common unit for comparing 2
3 and 3

4 by dividing each
1
3 into 4 parts and each 1

4 into 3 parts. Then 2
3 is 8 parts when

3
4 is divided into 9 equal parts, so 2

3
8
9

3
4 , which is the

same as saying that 2
3

3
4

8
9 .

ematically the same. Both can be visualized as in the margin and
expressed using a multiplication equation with an unknown for the
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first factor:
2

3
? 3

4
�

The same division problem can be interpreted using the sharing
interpretation of division: how many cups are in a full container of
yogurt when 2

3 of a cup fills 3
4 of the container. In other words, 3

4
of what amount is equal to 2

3 cups? In this case, 2
3

3
4 is seen as

the solution to a multiplication equation with an unknown as the
second factor:

Visual model for 2
3

3
4 and 3

4 ? 2
3

2
3 of a cup of yogurt

How many cups of yogurt?

The shaded area is 3
4 of the entire strip. So it is 3 parts of a

division of the strip into 4 equal parts. Another way of seeing this
is that the strip is 4 parts of a division of the shaded area into 3
equal parts. That is, the strip is 4

3 times the shaded part. So
? 4

3
2
3

8
9 .

3

4
? 2

3
�

There is a close connection between the reasoning shown in the
margin and reasoning about ratios; if two quantities are in the ratio
3 : 4, then there is a common unit so that the first quantity is 3 units
and the second quantity is 4 units. The corresponding unit rate is 3

4 ,
and the first quantity is 3

4 times the second quantity. Viewing the
situation the other way around, with the roles of the two quantities
interchanged, the same reasoning shows that the second quantity
is 4

3 times the first quantity. Notice that this leads us directly to
the invert-and-multiply for fraction division: we have just reasoned
that the ? in the equation above must be equal to 4

3
2
3 , which is

exactly what the rules gives us for 2
3

4
3 .6.NS.1

6.NS.1Interpret and compute quotients of fractions, and solve
word problems involving division of fractions by fractions, e.g.,
by using visual fraction models and equations to represent the
problem.The invert-and-multiply rule can also be understood algebraically

as a consequence of the general rule for multiplication of fractions.
If �

�
�
� is is defined to be the missing factor in the multiplication

equation
? �

�
�
�

then the fraction that does the job is

? ��
�� �

as we can verify by putting it into the multiplication equation and
using the already known rules of fraction multiplication and the
properties of operations:

��
��

�
�

�� �
�� �

� ��
� ��

�
�

��
��

�
� �

Compute fluently with multi-digit numbers and find common fac-
tors and multiples In Grade 6 students consolidate the work of
earlier grades on operations with whole numbers and decimals by
becoming fluent in the four operations on these numbers.6.NS.2, 6.NS.3 6.NS.2Fluently divide multi-digit numbers using the standard al-

gorithm.

6.NS.3Fluently add, subtract, multiply, and divide multi-digit dec-
imals using the standard algorithm for each operation.

Much of the foundation for this fluency has been laid in earlier
grades. They have known since Grade 3 that whole numbers are
fractions3.NF.3c and since Grade 4 that decimal notation is a way of

3.NF.3cExpress whole numbers as fractions, and recognize frac-
tions that are equivalent to whole numbers.

writing fractions with denominator equal to a power of 10;4.NF.6 by

4.NF.6Use decimal notation for fractions with denominators 10 or
100.

Grade 6 they start to see whole numbers, decimals and fractions
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not as wholly different types of numbers but as as part of the same
number system, represented by the number line.

In many traditional treatments of fractions greatest common fac-
tors occur in reducing a fraction to lowest terms, and least com-
mon multiples occur in adding fractions. As explained in the Frac-
tions Progression, neither of these activities is treated as a separate
topic in the standards. Indeed, insisting that finding a least com-
mon multiple is an essential part of adding fractions can get in the
way of understanding the operation, and the excursion into prime
factorization and factor trees that is often entailed in these top-
ics can be time-consuming and distract from the focus of K–5. In
Grade 6, however, students experience a modest introduction to the
concepts6.NS.4 and put the idea of greatest common factor to use in

6.NS.4Find the greatest common factor of two whole numbers
less than or equal to 100 and the least common multiple of two
whole numbers less than or equal to 12. Use the distributive
property to express a sum of two whole numbers 1–100 with a
common factor as a multiple of a sum of two whole numbers with
no common factor.

a rehearsal for algebra, where they will need to see, for example,
that 3�2 6� 3� � 2 .

Apply and extend previous understandings of numbers to the sys-
tem of rational numbers In Grade 6 the number line is extended
to include negative numbers. Students initially encounter negative
numbers in contexts where it is natural to describe both the magni-
tude of the quantity, e.g. vertical distance from sea level in meters,
and the direction of the quantity (above or below sea level).6.NS.5 In

6.NS.5Understand that positive and negative numbers are used
together to describe quantities having opposite directions or val-
ues (e.g., temperature above/below zero, elevation above/below
sea level, credits/debits, positive/negative electric charge); use
positive and negative numbers to represent quantities in real-
world contexts, explaining the meaning of 0 in each situation.

some cases 0 has an essential meaning, for example that you are
at sea level; in other cases the choice of 0 is merely a convention,
for example the temperature designated as 0 in Farenheit or Cel-
sius. Although negative integers might be commonly used as initial
examples of negative numbers, the Standards do not introduce the

6.NS.6Understand a rational number as a point on the number
line. Extend number line diagrams and coordinate axes familiar
from previous grades to represent points on the line and in the
plane with negative number coordinates.

a Recognize opposite signs of numbers as indicating loca-
tions on opposite sides of 0 on the number line; recognize
that the opposite of the opposite of a number is the num-
ber itself, e.g., 3 3, and that 0 is its own opposite.

integers separately from the entire system of rational numbers, and
examples of negative fractions or decimals can be included from the
beginning.

Directed measurement scales for temperature and elevation pro-
vide a basis for understanding positive and negative numbers as
having a positive or negative direction on the number line.6.NS.6a

Previous understanding of numbers on the number line related the
position of the number to measurement: the number 5 is located at
the endpoint of an line segment 5 units long whose other endpoint is
at 0. Now the line segments acquire direction; starting at 0 they can

Representation of rational numbers on the number line

0 1 2 3 4 5

5 represented by an interval

5 4 3 2 1 0 1 2 3 4 5

5 represented by an arrow

5 4 3 2 1 0 1 2 3 4 5

5 represented by an arrow

go in either the positive or the negative direction. These directed
numbers can be represented by putting arrows at the endpoints of
the line segments.

Students come to see � as the opposite of �, located an equal
distance from 0 in the opposite direction. In order to avoid the com-

Showing � 0 on the number line

0 �

0�

0 � �

mon misconception later in algebra that any symbol with a negative
sign in front of it should be a negative number, it is useful for stu-
dents to see examples where � is a positive number, for example
if � 3 then � 3 3. Students come to see the op-
eration of putting a negative sign in front of a number as flipping
the direction of the number from positive to negative or negative to
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NS, 6–8 8

positive. Students generalize this understanding of the meaning of
the negative sign to the coordinate plane, and can use it in locating
numbers on the number line and ordered pairs in the coordinate
plane.6.NS.6bc b Understand signs of numbers in ordered pairs as indicat-

ing locations in quadrants of the coordinate plane; recog-
nize that when two ordered pairs differ only by signs, the
locations of the points are related by reflections across
one or both axes.

c Find and position integers and other rational numbers on
a horizontal or vertical number line diagram; find and po-
sition pairs of integers and other rational numbers on a
coordinate plane.

With the introduction of negative numbers, students gain a new
sense of ordering on the number line. Whereas statements like
5 7 could be understood in terms of having more of or less of a
certain quantity—“I have 5 apples and you have 7, so I have fewer
than you”—comparing negative numbers requires closer attention
to the relative positions of the numbers on the number line rather
than their magnitudes.6.MS.7a Comparisons such as 7 5 can

6.NS.7Understand ordering and absolute value of rational num-
bers.

a Interpret statements of inequality as statements about the
relative position of two numbers on a number line dia-
gram.

b Write, interpret, and explain statements of order for ratio-
nal numbers in real-world contexts.

initially be confusing to students, because 7 is further away from
0 than 5, and is therefore larger in magnitude. Referring back to
contexts in which negative numbers were introduced can be helpful:
7 meters below sea level is lower than 5 meters below sea level,
and 7 F is colder than 5 F. Students are used to thinking of
colder temperatures as lower than hotter temperatures, and so the
mathematically correct statement also makes sense in terms of the
context.6.NS.7b

At the same time, the prior notion of distance from 0 as a measure
of size is still present in the notion of absolute value. To avoid con-
fusion it can help to present students with contexts where it makes
sense both to compare the order of two rational numbers and to
compare their absolute value, and where these two comparisons run
in different directions. For example, someone with a balance of $100
in their bank account has more money than someone with a balance
of $1000, because 100 1000. But the second person’s debt is
much larger than the first person’s credit 1000 100 .6.NS.7cd c Understand the absolute value of a rational number as

its distance from 0 on the number line; interpret absolute
value as magnitude for a positive or negative quantity in a
real-world situation.

d Distinguish comparisons of absolute value from state-
ments about order.

This understanding is reinforced by extension to the coordinate
plane.6.NS.8

6.NS.8Solve real-world and mathematical problems by graphing
points in all four quadrants of the coordinate plane. Include use of
coordinates and absolute value to find distances between points
with the same first coordinate or the same second coordinate.
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NS, 6–8 9

Grade 7

Addition and subtraction of rational numbers In Grade 6 students
learned to locate rational numbers on the number line; in Grade 7
they extend their understanding of operations with fractions to op-
erations with rational numbers. Whereas previously addition was

Showing 5 3 2 and 3 5 2 on the number line

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

The number 5 is represented by the blue arrow pointing right
from 0, and the number 3 is represented by the red arrow
pointing left from 0. To add 5 3 we place the arrow for 5
down first then attach the arrow for 3 to its endpoint. To add

3 5 we place the arrow for 3 down first then attach the
arrow for 5 to its endpoint.

represented by concatenating the line segments together, now the
the line segments have directions, and therefore a beginning and an
end. When concatenating these directed line segments, we start the
second line segment at the end of the first one. If the second line
segment is going in the opposite direction to the first, it can back-
track over the first, effectively cancelling part or all of it out.7.NS.1b

Showing � � 0, and � � 0 on the number line

0 �

0�

0 �
� � 0

0�

� � 0

Later in high school, if students encounter vectors, they will be able
to see this as one-dimensional vector addition.

A fundamental fact about addition of rational numbers is that
� � 0 for any rational number �; in fact, this is a new
property of operations that comes into play when negative numbers
are introduced. This property can be introduced using situations in
which the equation makes sense in a context.7.NS.1a For example,

7.NS.1Apply and extend previous understandings of addition and
subtraction to add and subtract rational numbers; represent ad-
dition and subtraction on a horizontal or vertical number line dia-
gram.

a Describe situations in which opposite quantities combine
to make 0.

b Understand � � as the number located a distance �
from �, in the positive or negative direction depending on
whether � is positive or negative. Show that a number and
its opposite have a sum of 0 (are additive inverses). In-
terpret sums of rational numbers by describing real-world
contexts.

d Apply properties of operations as strategies to add and
subtract rational numbers.

the operation of adding an integer could be modeled by an elevator
moving up or down a certain number of floors. It can also be shown
using the directed line segment model of addition on the number, as
shown in the margin.7.NS.1b

It is common to use colored chips to represent integers, with
one color representing positive integers and another representing
negative integers, subject to the rule that chips of different colors
cancel each other out; thus, a number is not changed if you take
away or add such a pair. This is rather a different representation
than the number line. On the number line, the equation � � 0
follows from the definition of addition using directed line segments.
With integer chips, the equation � � 0 is true by definition
since it it is encoded in the rules for manipulating the chips. Also
implicit in the use of chips is that the commutative and associative
properties extend to addition of integers, since combining chips can
be done in any order.

However, the integer chips are not suited to representing ratio-
nal numbers that are not integers. Whether such chips are used
or not, the Standards require that students eventually understand
location and addition of rational numbers on the number line. With
the number line model, showing that the properties of operations
extend to rational numbers requires some reasoning. Although it is
not appropriate in Grade 6 to insist that all the properties be proved
proved to hold in the number line or chips model, experimenting with
them in these models is a good venue for reasoning (MP.2).7.NS.1d

Subtraction of rational numbers is defined the same way as for
positive rational numbers: � � is defined to be the missing addend
in � ? �. For example, in earlier grades, students understand
5 3 as the missing addend in 3 ? 5. On the number line, it
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is represented as the distance from 3 to 5. Or, with our newfound
emphasis on direction on the number line, we might say that it is
how you get from 3 from 5; by going two units to the right (that is,
by adding 2).

Showing 5 3 2 on the number line.

5 4 3 2 1 0 1 2 3 4 5

2 units to the right

You get from 3 to 5 by adding 2, so 5 3 2.
In Grade 6 students apply the same understanding to 5

3 . It is the missing addend in 3 ? 5, or how you get
from 3 to 5. Since 5 is two units to the left of 3 on the number
line, the missing addend is 2. Showing 5 3 2 on the number line.

5 4 3 2 1 0 1 2 3 4 5

2 units to the left
You get from 3 to 5 by adding 2, so 5 3 2

With the introduction of direction on the number line, there is a
distinction between the distance from � and � and how you get from
� to �. The distance from 3 to 5 is 2 units, but the instructions
how to get from 3 to 5 are “go two units to the left.” The distance
is a positive number, 2, wherease “how to get there” is a negative
number 2. In Grade 6 we introduce the idea of absolute value to
talk about the size of a number, regardless of its sign. It is always a
positive number or zero. If � is positive, then its absolute value �
is just �; if � is negative then � �. With this interpretation we
can say that the absolute value of � � is just the distance from �
to �, regardless of direction.7.NS.1c

7.NS.1c Apply and extend previous understandings of addition
and subtraction to add and subtract rational numbers; represent
addition and subtraction on a horizontal or vertical number line
diagram.

c Understand subtraction of rational numbers as adding the
additive inverse, � � � � . Show that the dis-
tance between two rational numbers on the number line is
the absolute value of their difference, and apply this prin-
ciple in real-world contexts.

Understanding � � as a missing addend also helps us see that
� � � �.7.NS.1c Indeed, � � is the missing number in

� ? �

and � � satisfies the description of being that missing, number:

� � � � � � � 0 ��

The figure in the margin illustrates this in the case where � and �
are positive and � �.

Showing � � � � on the number line
�0

� 0

0

The point
� �

This interval
is � � units
long

This interval
is � units
long

The red directed interval representing � is � units long, so the
remaining part of the blue directed interval representing � is
� � units long.

Multiplication and division of rational numbers Hitherto we have
been able to come up with visual models to represent rational num-
bers, and the operations of addition and subtraction on them. This
starts to break down with multiplication and division, and students
must rely increasingly on the properties of operations to build the
necessary bridges from their previous understandings to situations
where one or more of the numbers might be negative.

For example, multiplication of a negative number by a positive
whole number can still be understood as before; just as 5 2 can be
understood as 2 2 2 2 2 10, so 5 2 can be understood
as 2 2 2 2 2 10. We think of 5 2
as five jumps to the right on the number line, starting at 0, and we
think of 5 2 as five jumps to the left.

But what about 3
4 2, or 5 2? Perhaps the former can

be undersood as going 3
4 of the way from 0 to 2, that is 3

2 . For
the latter, teachers sometimes come up with metaphors involving
going backwards in time or repaying debts. But in the end these
metaphors do not explain why 5 2 10. In fact, this is a
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choice we make, not something we can justify by appeals to real
world situations.

Why do we make the choice of saying that a negative times a
negative is positive? Because we want to extend the operation of
multiplication to rational number is such a way that all of the prop-
erties of operations are satisfied.7.NS.2a In particular, the property

7.NS.2a Apply and extend previous understandings of multipli-
cation and division and of fractions to multiply and divide rational
numbers.

a Understand that multiplication is extended from fractions
to rational numbers by requiring that operations con-
tinue to satisfy the properties of operations, particularly
the distributive property, leading to products such as

1 1 1 and the rules for multiplying signed num-
bers. Interpret products of rational numbers by describing
real-world contexts.

that really makes a difference here is the distributive property. If
you want to be able to say that

4 5 2 4 5 4 2 �

you have to say that 4 2 8, because the number on the left
is 12 and the first addend on the right is 20. This leads to the rules

positive negative negative and negative positive negative�

If you want to be able to say that

4 5 2 4 5 4 2 �

then you have to say that 4 2 8, since now we know that
the number on the left is 12 and the first addend on the right is

20. This leads to the rule

negative negative positive�

Why is it important to maintain the distributive property? Because
when students get to algebra, they use it all the time. They must be
able to say 3� 6� 3 � 2� without worrying about whether
� and � are positive or negative.

The rules about moving negative signs around in a product re-
sult from the rules about multiplying negative and positive numbers.
Think about the various possibilities for � and � in

� � � � ���

If � and � are both positive, then this just a restatement of the
rules above. But it still works if, for example, � is negative and � is
positive. In that case it says

negative negative positive positive positive�

Just as the relationship between addition and subtraction helps
students understand subtraction of rational numbers, so the rela-
tionship between multiplication and division helps them understand
division. To calculate 8 4, students recall that 2 4 8,
and so 8 4 2. By the same reasoning,

8 5
8

5
because 8

5
5 8�
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This means it makes sense to write

8 5 as 8

5
�

Until this point students have not seen fractions where the numer-
ator or denominator could be a negative integer. But working with
the corresponding multiplication equations allows students to make
sense of such fractions. In general, they see that7.NS.2b

7.NS.2b Apply and extend previous understandings of multipli-
cation and division and of fractions to multiply and divide rational
numbers.

b Understand that integers can be divided, provided that the
divisor is not zero, and every quotient of integers (with
non-zero divisor) is a rational number. If � and � are inte-
gers, then � � � � � � . Interpret quo-
tients of rational numbers by describing real-world con-
texts.

�
�

�
�

�
�

for any integers � and �, with � 0.
Again, using multiplication as a guide, students can extend divi-

sion to rational numbers that are not integers.7.NS.2c For example c Apply properties of operations as strategies to multiply
and divide rational numbers.

2

3

1

2

4

3
because 4

3

1

2

2

3
�

And again it makes sense to write this division as a fraction:

2
3
1
2

4

3
because 4

3

1

2

2

3
�

Note that this is an extension of the fraction notation to a situation
it was not originally designed for. There is no sense in which we
can think of

2
3
1
2

as 2
3 parts where one part is obtained by dividing the line segment

from 0 to 1 into 1
2 equal parts! But the fact that the properties of

operations extend to rational numbers means that calculations with
fractions extend to these so-called complex fractions �

� , where � and 7.NS.3Solve real-world and mathematical problems involving the
four operations with rational numbers.� could be rational numbers, not only integers. By the end of Grade

7, students are solving problems involving complex fractions.7.NS.3

Decimals are special fractions, those with denominator 10, 100,
1000, etc. But they can also be seen as a special sort of measurement
on the number line, namely one that you get by partitioning into 10
equal pieces. In Grade 7 students begin to see this as a possibly

Zooming in on 0.635

0�1 0�2 0�3 0�4 0�5 0�6 0�7 0�8 0�9 10

�60 �61 �62 �63 �64 �65 �66 �67 �68 �69 �70

�630 �631 �632 �633 �634 �635 �636 �637 �638 �639 �640

The finite decimal 0�635 can eventually be found sitting one of
the tick marks at the thousandths level.

infinite process. The number line is marked off into tenths, each of
which is marked off into 10 hundreths, each of which is marked off
into 10 thousandths, and so on ad infinitum. These finer and finer
partitions constitute a sort of address system for numbers on the
number line: 0�635 is, first, in the neighborhood betweeen 0�6 and
0�7, then in part of that neighborhood between 0�63 and 0�64, then
exactly at 0�635.

The finite decimals are the rational numbers that eventually
come to fall exactly on one of the tick marks in this decimal ad-
dress system. But there are numbers that never come to rest, no
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matter how far down you go. For example, 1
3 is always sitting one

third of the way along the third subdivision. It is 0�33 plus one-third

Zooming in on 1
3

0�1 0�2 0�3 0�4 0�5 0�6 0�7 0�8 0�9 10

�30 �31 �32 �33 �34 �35 �36 �37 �38 �39 �70

�330 �331 �332 �333 �334 �335 �336 �337 �338 �339 �640

The fraction 1
3 is never eventually on one of the tick marks. It is

always one third the way along the third subdivision.

of a thousandth, and 0�333 plus one-third of a ten thousandth, and
so on. The decimals 0�33, 0�333, 0�3333 are successively closer and
closer approximations to 1

3 . We summarize this situation by saying
that 1

3 has an infinite decimal expansion consisting entirely of 3s

1

3
0�3333 � � � 0�3�

where the bar over the 3 indicates that it repeats indefinitely. Al-
though a rigorous treatment of this mysterious infinite expansion
is not available in middle school, students in Grade 7 start to de-
velop an intuitive understanding of decimals as a (possibly) infinite
address system through simple examples such as this.7.NS.2d

7.NS.2d Apply and extend previous understandings of multipli-
cation and division and of fractions to multiply and divide rational
numbers.

d Convert a rational number to a decimal using long divi-
sion; know that the decimal form of a rational number ter-
minates in 0s or eventually repeats.

For those rational numbers that have finite decimal expansions,
students can find those expansions using long division. Saying that
a rational number has a finite decimal expansion is the same as
saying that it can be expressed as a fraction whose numerator is a
base-ten unit (10, 100, 1000, etc.). So if �

� is a fraction with a finite
Division of 8 into 3 times a base-ten unit

3
8 30

24

6

37
8 300

240

60
56

4

375
8 3000

2400

600
560

40
40

0

Notice that it is not really necessary to restart the division for
each new base-ten unit, since the steps from the previous
calculation carry over to the next one.

expansion, then

�
�

�
10

or �
100

or �
1000

or � � � �

for some whole number �. If this is the case, then

10�
� � or 100�

� � or 1000�
� � or � � � �

So we can find the whole number � by dividing � successively into
10�, 100�, 1000�, and so on until there is no remainder.7.NS.2d The
margin illustrates this process for 3

8 , where we find that there is no
remainder for the division into 3000, so

3000 8 375�

which means that
3

8

375

1000
0�375�
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Grade 8

Know that there are numbers that are not rational, and approxi-
mate them by rational numbers In Grade 7 students encountered
infinitely repeating decimals, such as 1

3 0�3. In Grade 8 they un-
derstand why this phenomenon occurs, a good exercise in expressing
regularity in repeated reasoning (MP8).8.NS.1 Taking the case of 1

3 ,

8.NS.1Know that numbers that are not rational are called irra-
tional. Understand informally that every number has a decimal
expansion; for rational numbers show that the decimal expansion
repeats eventually, and convert a decimal expansion which re-
peats eventually into a rational number.

for example, we can try to express it as a finite decimal using the
same process we used for 3

8 in Grade 7. We successively divide 3
into 10, 100, 1000, hoping to find a point at which the remainder is
zero. But this never happens; there is always a remainder of 1. After

Division of 3 into 100, 1000, and 10�000

33
3 100

90

10
9

1

333
3 1000

900

100
90

10
9

1

3333
3 10000

9000

1000
900

100
90

10
9

1

Repeated division of 3 into larger and larger base ten units
shows the same pattern.

a few tries it is clear that the long division will always go the same
way, because the individual steps always work the same way: the
next digit in the quotient is always 3 resulting in a reduction of the
dividend from one base-unit to the next smaller one (see margin).
Once we have seen this regularity, we see that 1

3 can never be a
whole number of decimal base-ten units, no matter how small they
are.

A similar investigation with other fractions leads to the insight
that there must always eventually be a repeating pattern, because
there are only so many ways a step in the algorithm can go. For
example, considering the possibility that 2

7 might be a finite decimal
with, we try dividing 7 into 20, 200, 2000, etc., hoping to find a
point where the remainder is zero. But something happens when

Division of 7 into multiples of 2 times larger and larger
base-ten units

285714
7 2000000

1400000

600000
560000

40000
35000

5000
4900

100
70

30
28

2

2857142
7 20000000

14000000

6000000
5600000

400000
350000

50000
49000

1000
700

300
280

20
14

6

28571428
7 200000000

140000000

60000000
56000000

4000000
3500000

500000
490000

10000
7000

3000
2800

200
140

60
56

4

The remainder at each step is always a single digit multiple of a
base-ten unit so eventually the algorithm has to cycle back to the
same situation as some earlier step. From then on the algorithm
produces the same sequence of digits as from the earlier step,
ad infinitum.

we get to dividing 7 into 2�000�000, the left-most division in the
margin. We find ourselves with a remainder of 2. Since we started
with a numerator of 2, the algorithm is going to start repeating the
sequence of digits from this point on. So we are never going to get a
remainder of 0. All is not in vain, however. Each calculation gives us
a decimal approximation of 2

7 . For example, the left-most calculation
in the margin tells us that

2

7

1

1000000

2000000

7
0�285714

2

7
0�0000001�

and the next two show that
2

7
0�2857142

6

7
0�00000001

2

7
0�28571428

4

7
0�000000001�

Noticing the emergence of the repeating pattern 285714 in the digits,
we say that

2

7
0�285714�

The possibility of infinite repeating decimals raises the possibil-
ity of infinite decimals that do not ever repeat. From the point of
view of the decimal address system, there is no reason why such
number should not correspond to a point on the number line. For
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example, the number π lives between 3 and 4, and between 3�1 and
3�2, and between 3�14 and 3�15, and so on, with each successive
decimal digit narrowing its possible location by a factor of 10.

Numbers like π , which do not have a repeating decimal expan-
sion and therefore are not rational numbers, are called irrational.8.NS.1

8.NS.1Know that numbers that are not rational are called irra-
tional. Understand informally that every number has a decimal
expansion; for rational numbers show that the decimal expansion
repeats eventually, and convert a decimal expansion which re-
peats eventually into a rational number.

Although we can calculate the decimal expansion of π to any de-
sired accuracy, we cannot describe the entire expansion because
it is infinitely long, and because there is no pattern (as far as we
know). However, because of the way in which the decimal address

Zooming in on π

0 1 2 3 4 5 6 7 8 9 10

3�0 3�1 3�2 3�3 3�4 3�5 3�6 3�7 3�8 3�9 4�0

3�10 3�11 3�12 3�13 3�14 3�15 3�16 3�17 3�18 3�19 3�20

The number π has an infinite non-repeating decimal expansion
which determines each successive sub-interval to zoom in on.

system narrows down the interval in which a number lives, we can
use the first few digits of the decimal expansion to come up with
good decimal approximations of π , or any other irrational number.
For example, the fact that π is between 3 and 4 tells us that π2 is
between 9 and 16; the fact that π is between 3�1 and 3�2 tells us
that π2 is between 9�6 and 10�3, and so on.8.NS.2

8.NS.2Use rational approximations of irrational numbers to com-
pare the size of irrational numbers, locate them approximately on
a number line diagram, and estimate the value of expressions
(e.g., π2).
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The Real Number System
Extend the properties of exponents to rational exponents In Grades
6–8 students began to widen the possible types of number they can
conceptualize on the number line. In Grade 8 they glimpse the exis-
tence of irrational numbers such as 2. In high school, they start a
systematic study of functions that can take on irrational values, such
as exponential, logarithmic, and power functions. The first step in
this direction is the understanding of numerical expressions in which
the exponent is not a whole number. Functions such as � � �2,
or more generally polynomial functions, have the property that if the
input � is a rational number, then so is the output. This is because
their output values are computed by basic arithmetic operations on
their input values. But a function such as � � � does not nec-
essarily have rational output values for every rational input value.
For example, � 2 2 is irrational even though 2 is rational.

The study of such functions brings with it a need for an extended
understanding of the meaning of an exponent. Exponent notation is a
remarkable success story in the expansion of mathematical ideas. It
is not obvious at first that a number such as 2 can be represented
as a power of 2. But reflecting that

2
2

2

and thinking about the properties of exponents, it is natural to define

2
1
2 2

since if we follow the rule �� � ��� then

2
1
2

2
2

1
2 2 21 2�

Similar reasoning leads to a general definition of the meaning of ��

whenever � and � are rational numbers.N-RN.1 It should be noted
N-RN.1 Explain how the definition of the meaning of rational ex-
ponents follows from extending the properties of integer expo-
nents to those values, allowing for a notation for radicals in terms
of rational exponents.high school mathematics does not develop the mathematical ideas

necessary to prove that numbers such as 2 and 3
1
5 actually exist;

*This progression concerns Number and Quantity standards related to number.
The remaining standards are discussed in the Quantity Progression.
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in fact all of high school mathematics depends on the fundamental
assumption that properties of rational numbers extend to irrational
numbers. This is not unreasonable, since the number line is popu-
lated densely with rational numbers, and a conception of number as
a point on the number line gives reassurance from intuitions about
measurement that irrational numbers are not going to behave in a
strangely different way from rational numbers.

Because rational exponents have been introduced in such a way
as to preserve the laws of exponents, students can now use those
laws in a wider variety of situations. For example, they can rewrite
the formula for the volume of a sphere of radius � ,

V 4

3
π�3�

to express the radius in terms of the volume,N-RN.2 N-RN.2 Rewrite expressions involving radicals and rational ex-
ponents using the properties of exponents.

� 3

4

V
π

1
3

�

Use properties of rational and irrational numbers An important
difference between rational and irrational numbers is that rational
numbers form a number system. If you add, subtract, multiply, or
divide two rational numbers, you get another rational number (pro-
vided the divisor is not 0 in the last case). The same is not true
of irrational numbers. For example, if you multiply the irrational
number 2 by itself, you get the rational number 2. Irrational num-
bers are defined by not being rational, and this definition can be
exploited to generate many examples of irrational numbers from just
a few.N-RN.3 For example, because 2 is irrational it follows that

N-RN.3 Explain why the sum or product of two rational numbers
is rational; that the sum of a rational number and an irrational
number is irrational; and that the product of a nonzero rational
number and an irrational number is irrational.3 2 and 5 2 are also irrational. Indeed, if 3 2 were an irra-

tional number, call it � , say, then from 3 2 � we would deduce
2 � 3. This would imply 2 is rational, since it is obtained by

subtracting the rational number 3 from the rational number � . But
it is not rational, so neither is 3 2.

Although in applications of mathematics the distinction between
rational and irrational numbers is irrelevant, since we always deal
with finite decimal approximations (and therefore with rational num-
bers), thinking about the properties of rational and irrational num-
bers is good practice for mathematical reasoning habits such as
constructing viable arguments and attending to precisions (MP.3,
MP.6).
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Complex Numbers

That complex numbers have a practical application is surprising to
many. But it turns out that many phenomena involving real numbers
become simpler when the real numbers are viewed as a subsytem of
the complex numbers. For example, complex solutions of differential
equations can give a unified picture of the behavior of real solutions.
Students get a glimpse of this when they study complex solutions of
quadratic equations. When complex numbers are brought into the
picture, every quadratic polynomial can be expressed as a product
of linear factors:

��2 �� � � � � � � �

The roots � and � are given by the quadratic formula:

� � �2 4��
2� � � � �2 4��

2� �

When students first apply the quadratic formula to quadratic equa-
tions with real coefficients, the square root is a problem if the quan-
tity �2 4�� is negative. Complex numbers solve that problem
by introducing a new number, �, with the property that �2 1,
which enables students to express the solutions of any quadratic
equation.N-CN.7 N-CN.7 Solve quadratic equations with real coefficients that have

complex solutions.One remarkable fact about introducing the number � is that it
works: the set of numbers of the form � ��, where �2 1 and �
and � are real numbers, forms a number system. That is, you can
add, subtract, multiply and divide two numbers of this form and get
another number of the same form as the result. We call this the
system of complex numbers.N-CN.1 N-CN.1 Know there is a complex number � such that �2 1,

and every complex number has the form � �� with � and � real.All you need to perform operations on complex numbers is the
fact that �2 1 and the properties of operations.N-CN.2 For exam- N-CN.2 Use the relation �2 1 and the commutative, asso-

ciative, and distributive properties to add, subtract, and multiply
complex numbers.

ple, to add 3 2� and 1 4� we write

3 2� 1 4� 3 1 2� 4� 2 6��

using the associative and commutative properties of addition, and the
distributive property to pull the � out, resulting in another complex
number. Multiplication requires using the fact that �2 1:

3 2� 1 4� 3 10� 8�2 3 10� 8 11 10��

Division of complex numbers is a little tricker, but with the dis-+

covery of the complex conjugate � �� we find that every non-zero+

complex number has a multiplicative inverse.N-CN.3 If at least one of
N-CN.3(+) Find the conjugate of a complex number; use conju-
gates to find moduli and quotients of complex numbers.

+

� and � is not zero, then+

� �� 1 1

�2 �2
� ��

because+

� �� � �� �2 �� 2 �2 �2�
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Students who continue to study geometric representations of com-+

plex numbers in the complex plane use both rectangular and po-+

lar coordinates which leads to a useful geometric interpretation of+

the operations.N-CN.4, N-CN.5 The restriction of these geometric in-
N-CN.4(+) Represent complex numbers on the complex plane
in rectangular and polar form (including real and imaginary num-
bers), and explain why the rectangular and polar forms of a given
complex number represent the same number.

N-CN.5(+) Represent addition, subtraction, multiplication, and
conjugation of complex numbers geometrically on the complex
plane; use properties of this representation for computation.

+

terpretations to the real numbers yields and interpretation of these+

operations on the number line.+

One of the great theorems of modern mathematics is the Fun-+

damental Theorem of Algebra, which says that every polynomial+

equation has a solution in the complex numbers. To put this into+

perspective, recall that we formed the complex numbers by creat-+

ing a solution, �, to just one special polynomial equation, �2 1.+

With the addition of this one solution, it turns out that every poly-+

nomial equation, for example �4 �2 1, also acquires a solu-+

tion. Students have already seen this phenomenon for quadratic+

equations.N-CN.9 N-CN.9(+) Know the Fundamental Theorem of Algebra; show
that it is true for quadratic polynomials.

+

Although much of the study of complex numbers goes beyond the+

college and career ready threshold, as indicated by the (+) on many+

of the standards, it is a rewarding area of exploration for advanced+

students.+
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