<u>Appendix</u>

The Structure is the Standards

Essay by Phil Daro, William McCallum, and Jason Zimba, February 16, 2012¹⁹

You have just purchased an expensive Grecian urn and asked the dealer to ship it to your house. He picks up a hammer, shatters it into pieces, and explains that he will send one piece a day in an envelope for the next year. You object; he says "don't worry, I'll make sure that you get every single piece, and the markings are clear, so you'll be able to glue them all back together. I've got it covered." Absurd, no? But this is the way many school systems require teachers to deliver mathematics to their students; one piece (i.e. one standard) at a time. They promise their customers (the taxpayers) that by the end of the year they will have "covered" the standards.

In the Common Core State Standards, individual statements of what students are expected to understand and be able to do are embedded within domain headings and cluster headings designed to convey the structure of the subject. "The Standards" refers to all elements of the design—the wording of domain headings, cluster headings, and individual statements; the text of the grade level introductions and high school category descriptions; the placement of the standards for mathematical practice at each grade level.

The pieces are designed to fit together, and the standards document fits them together, presenting a coherent whole where the connections within grades and the flows of ideas across grades are as visible as the story depicted on the urn.

The analogy with the urn only goes so far; the Standards are a policy document, after all, not a work of art. In common with the urn, however, the Standards were crafted to reward study on multiple levels: from close inspection of details, to a coherent grasp of the whole. Specific phrases in specific standards are worth study and can carry important meaning; yet this meaning is also importantly shaped by the cluster heading in which the standard is found. At higher levels, domain headings give structure to the subject matter of the discipline, and the practices' yearly refrain communicates the varieties of expertise which study of the discipline develops in an educated person.

Fragmenting the Standards into individual standards, or individual bits of standards, erases all these relationships and produces a sum of parts that is decidedly less than the whole. Arranging the Standards into new categories also breaks their structure. It constitutes a remixing of the Standards. There is meaning in the cluster headings and domain names that is not contained in the numbered statements beneath them. Remove or reword those headings and you have changed the meaning of the Standards; you now have different Standards; you have not adopted the Common Core.

Sometimes a remix is as good as or better than the original. Maybe there are 50 remixes, adapted to the preferences of each individual state (although we doubt there are 50 good ones). Be that as it may, a remix of a work is not the same as the original work, and with 50 remixes we would not have common standards; we would have the same situation we had before the Common Core.

Why is paying attention to the structure important? Here is why: The single most important flaw in United States mathematics instruction is that the curriculum is "a mile wide and an inch deep." This finding comes from research comparing the U.S. curriculum to high performing countries, surveys of

¹⁹ <u>http://commoncoretools.me/2012/02/16/the-structure-is-the-standards/</u>.

college faculty and teachers, the National Math Panel, the Early Childhood Learning Report, and all the testimony the CCSS writers heard. The standards are meant to be a blueprint for math instruction that is more focused and coherent. The focus and coherence in this blueprint is largely in the way the standards progress from each other, coordinate with each other and most importantly cluster together into coherent bodies of knowledge. Crosswalks and alignments and pacing plans and such cannot be allowed to throw away the focus and coherence and regress to the mile-wide curriculum.

Another consequence of fragmenting the Standards is that it obscures the progressions in the standards. The standards were not so much assembled out of topics as woven out of progressions. Maintaining these progressions in the implementation of the standards will be important for helping all students learn mathematics at a higher level. Standards are a bit like the growth chart in a doctor's office: they provide a reference point, but no child follows the chart exactly. By the same token, standards provide a chart against which to measure growth in children's knowledge. Just as the growth chart moves ever upward, so standards are written as though students learned 100% of prior standards. In fact, all classrooms exhibit a wide variety of prior learning each day. For example, the properties of operations, learned first for simple whole numbers, then in later grades extended to fractions, play a central role in understanding operations with negative numbers, expressions with letters and later still the study of polynomials. As the application of the properties is extended over the grades, an understanding of how the properties of operations work together should deepen and develop into one of the most fundamental insights into algebra. The natural distribution of prior knowledge in classrooms should not prompt abandoning instruction in grade level content, but should prompt explicit attention to connecting grade level content to content from prior learning. To do this, instruction should reflect the progressions on which the CCSSM are built. For example, the development of fluency with division using the standard algorithm in grade 6 is the occasion to surface and deal with unfinished learning with respect to place value. Much unfinished learning from earlier grades can be managed best inside grade level work when the progressions are used to understand student thinking.

This is a basic condition of teaching and should not be ignored in the name of standards. Nearly every student has more to learn about the mathematics referenced by standards from earlier grades. Indeed, it is the nature of mathematics that much new learning is about extending knowledge from prior learning to new situations. For this reason, teachers need to understand the progressions in the standards so they can see where individual students and groups of students are coming from, and where they are heading. But progressions disappear when standards are torn out of context and taught as isolated events.