Multi-Digit Multiplication Using the Standard Algorithm

5.NBT.B.5 Fluency Mini-Assessment by Student Achievement Partners

OVERVIEW

This mini-assessment is designed to illustrate the standard 5.NBT.B.5, which sets an expectation for fluently multiplying multi-digit whole numbers using the standard algorithm. This mini-assessment is designed for teachers to use either in the classroom, for self-learning, or in professional development settings to:

- Evaluate students' progress toward the skills described by 5.NBT.B. 5 in order to prepare to teach this material or to check for fluency near the end of the grade;
- Gain a better understanding of assessing fluency with multiplying multi-digit whole numbers;
- Illustrate CCR-aligned assessment problems;
- Illustrate best practices for writing tasks that allow access for all learners; and
- Support mathematical language acquisition by offering specific guidance.

MAKING THE SHIFTS

This mini-assessment attends to focus as it addresses multi-digit multiplication, which is at the heart of the grade 5 standards and a key component of the Major Work of the Grade. ${ }^{1}$ It addresses coherence across grades because multiplying multi-digit whole numbers sets the stage for multi-digit division and multi-digit decimal operations. Standard 5.NBT.B. 5 and this mini-assessment target procedural skill and fluency, one of the three elements of rigor.

A CLOSER LOOK

Standard 5.NBT.B. 5 is a prime example of how " $[t]$ he Standards are not written at uniform grain size" (K-8 Publishers' Criteria, Spring 2013, p. 18). One cannot address this standard in a single day, lesson, or unit. It will take significant classroom time throughout grade 5 for all students to master this standard.
5.NBT.B.5. Fluently multiply multi-digit whole numbers using the standard algorithm.

The standard calls for fluency using the standard algorithm. Standard algorithms for base-ten multiplication are based on decomposing numbers written in base-ten notation. This allows multiplication of two multi-digit whole numbers to be reduced to a collection of single-digit computations. ${ }^{2}$ In the example below, in order to multiply 378×6, one decomposes 378 to 3 hundreds, 7 tens, and 8 ones. Then, one multiplies $3 \times 6,7 \times 6$, and $8 \times 6 .{ }^{3}$ The diagram shows a variety of ways to help students think about how the standard algorithm

Building the Standard Algorithm, 1-digit \times 3-digit:
Area model

	300	+ 70	+ 8	
	$6 \times 300=$	$6 \times 70=$	$6 \times 8=$	$=18$ hundreds +42 tens +48 ones
6	6×3 hundreds $=$	6×7 tens =		$=1800+420+48$
	18 hundreds	42 tens	48 ones	$=2268$

$\begin{array}{r} 378 \\ \times \quad 6 \end{array}$	Left to right with partial products	$\begin{array}{r} 378 \\ \times 6 \end{array}$	Right to left with partial products	$\begin{array}{r} 378 \\ \times \quad 6 \end{array}$	Right to left with regrouping
1800	6×3 hundreds	48	6×8 ones	144	
420	6×7 tens	420	6×7 tens	828	
48	6×8 ones	1800	6×3 hundreds	2268	
2268		2268			

works. By the end of grade 5, students should no longer need to build the standard algorithm, but should be

[^0]employing it to perform fast and accurate multi-digit multiplication. Students who leave grade 5 without meeting standard 5.NBT.B. 5 are likely to have difficulty fluently dividing multi-digit numbers using the standard algorithm (6.NS.B.2) and may have trouble with addition, subtraction, multiplication, and division of multi-digit decimals (6.NS.B.3).

The problems on this mini-assessment use a variety of both size and type of factors. Problems range from 3digit by 1-digit multiplication to 4-digit by 3-digit multiplication, allowing teachers to gather useful data for all students. There are also factors that contain 0 s in order to assess if students can correctly account for a 0 in a factor.

Computation Algorithm: A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly.

Computation Strategy: Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another.

Elementary-grades students build up a repertoire of computation algorithms as well as computation strategies (see text box) ${ }^{4}$. For some computations, the standard algorithm is best; for other computations, opportunistic strategies are best. For example, the difference 612 - 13 is easy to find by using a mental strategy (such as subtracting 12 then subtracting 1 more, or simply reasoning that the answer will be one less than 600). On the other hand, the difference $661-237$ is easy to find using the standard algorithm. Some of the products on this mini-assessment are best calculated algorithmically on paper, while others are best performed mentally or on paper using an opportunistic strategy. For this mini-assessment, examples of opportunistic strategies appear on page 6.

SUPPORT FOR ENGLISH LANGUAGE LEARNERS

This lesson was designed to include specific features that support access for all students and align to best practice for English Language Learner (ELL) instruction and assessment. Go here to learn more about the research behind these supports. Features that support access in this mini-assessment include:

- Tasks that avoid unnecessarily complex language to allow students, especially ELLs, to access and demonstrate what they know about the mathematics of the assessment.

Prior to this mini-assessment, ensure students have had ample opportunities in instruction to read, write, speak, listen for, and understand the mathematical concepts that are represented by the following terms and concepts:

- product
- multiply

Students should engage with these terms and concepts in the context of mathematical learning, not as a separate vocabulary study. Students should have access to multi-modal representations of these terms and concepts, including: pictures, diagrams, written explanations, gestures, and sharing of non-examples. These representations will encourage precise language, while prioritizing students' articulation of concepts. These terms and concepts should be reinforced in teacher instruction, classroom discussion, and student work (for example, through engagement in mathematical routines).

[^1]Name: \qquad Date:

1. $49 \times 975=\ldots$	2.	6,751 $\times 609$
3. What is the product of 9 and		
740 ?		

5.NBT.B. 5 Fluency Mini-Assessment - Multi-Digit Multiplication Using the Standard Algorithm Answer Key

Solutions

1. 47,775
2. $4,111,359$
3. 6,660
4. 155,540
5. $1,246,315$
6. 603,729

Diagnosing Incorrect Answers

The multiplication algorithm has many steps, which means many opportunities for students to make mistakes. For problems with a larger number of factors, a common difficulty for students is keeping work organized. Graph paper can help students keep their work neat and legible when it is time to add several partial products. Here are some tips on how to quickly look at incorrect responses and diagnose common errors:

1. Issues of place value. If answers are off by a factor of 10 or 100 , then place value error is likely. It's a challenge for students to keep track of so many digits at once. For example, students commonly make place value mistakes finding the partial products for the digits in the tens and larger places in the multiplier.

Example of place value error (\#5)

5,087
$\times \quad 245$
25435
20348
+ Student correctly multiplies 5,087 by 5.
+10174
55,957

The two incorrect partial products are bolded. The error in this case is that the student entirely ignored the place value of the digits in the multiplier, effectively multiplying by 5,4 , and 2 instead of by 5,40 , and 200.

Below are two ways to correct these errors.

5.NBT.B.5 Fluency Mini-Assessment - Multi-Digit Multiplication Using the Standard Algorithm Answer Key

2. Issues of regrouping. Closely related to place value issues is when students simply do not regroup, or "carry," when finding partial products. Essentially, when completing the series of single-digit computations, students record the digit from the ones place and ignore the digit in the tens place that should be regrouped. The error is paired with the correct work below.

Example of error with regrouping (\#6)

777	The student multiplies $7 \times$
$\times \quad 777$	7, ignoring the regrouped 4
4,999	in all but the largest place
49,990	value for each partial
$+499,900$	product.
554,889	

Correct solution

777
$\times \quad 777$
5,439
54,390
$+543,900$
603,729

3. Issues with factors including $\mathbf{0}$. Questions 2,3 , and 5 have 0 as a digit in one of the factors. Answers that are about one-tenth as large as the correct solution may indicate issues with dealing with a 0 in a factor. The error is paired with the correct work below.

Example of error with 0 in multiplicand
(\#5)

5,087	
$\times \quad 245$	The student ignores the 0
2,935	in the multiplicand,
23,480	effectively multiplying 587
$+117,400$	$\times 245$
143,815	

Example of error with 0 in multiplier (\#2)

6,751	The student ignores the 0
$\times \quad 609$	in the multiplier,
60,759	effectively multiplying
$+405,060$	$6,751 \times 69$.
465,819	

Correct solution

5,087
$\times \quad 245$
25,435
203,480
$+1,017,400$
$1,246,315$

Correct solution

6,751
$\times \quad 609$
60,759
000,000
$+4,050,600$
$4,111,359$

4. Issues with incorrect fact recall. If answers are near the correct solution, then students may be making calculation errors based on lack of fluency with single-digit multiplication and division facts. The common result of an addition error is that a single digit of the answer is off by one. Multiplication errors, however, result in a greater variety of incorrect responses. Explicit reminders to check the addition and multiplication facts may help students be more precise in their calculations. Similarly, students may need additional work with developing basic fact fluency through strategic teaching of multiplication facts using a variety of strategies.

5.NBT.B.5 Fluency Mini-Assessment - Multi-Digit Multiplication Using the Standard Algorithm Answer Key

Opportunistic Strategies

There are several opportunities on this mini-assessment for students to use opportunistic strategies in conjunction with the standard algorithm. For example, in \#4, the question is worded as a statement allowing students to set up the multiplication however they choose. Students who notice that multiplying by 5,555 will result in four very similar partial products may use an opportunistic strategy of placing 5,555 in the multiplier spot, rather than the multiplicand. The diagram below compares the two strategies.

Traditional approach with larger factor as the multiplicand
5,555 $\frac{\times 28}{44,440}$ $+111,100$ 155,540

Opportunistic strategy using the larger factor as the multiplier

28
$\times \quad 5,555$
140
1,400
14,000
$+140,000$
155,540

Another example allowing students to use an opportunistic strategy is in \#3, multiplication by 9. A student may quickly multiply by 10 and subtract 740 , rather than writing out the full multiplication.

Traditional approach	Opportunistic strategy using 10
3	740
740	+ 10 $\times 77$
$\begin{array}{r} \\ \times \quad 9 \\ \hline 6660\end{array}$	7,400
6,660	$\begin{array}{r}740 \\ -\quad 740 \\ \hline 6.660\end{array}$
	6,660

[^0]: ${ }^{1}$ For more on the Major Work of the Grade, see achievethecore.org/focus.
 ${ }^{2}$ For more on the standard algorithm, read page 3 of the progression document, $\underline{K-5, ~ N u m b e r ~ a n d ~ O p e r a t i o n s ~ i n ~ B a s e ~ T e n . ~}$
 ${ }^{3}$ For more examples like this, read Standard Algorithms in the Common Core State Standards.

[^1]: ${ }^{4}$ Definitions originally appear in the Glossary of the Common Core State Standards for Mathematics, http://www.corestandards.org/wp-content/uploads/Math Standards.pdf\#page=85.

