## High-Quality Mathematics Items Module (High School)

The pages that follow contain a selection of items from chapter assessments in High School. These items are representative of the range available in many textbook series. This activity is designed to help teachers think about how they can revise chapter tests to better align to the Standards. Each item below can be revised to more closely embody the characteristics described in the High-Quality Mathematics Items Modules.

1. Solve all of the items.
2. Take a close look at each item, thinking about what the modules explain about expectations of high-quality mathematics items. Focus on the following features:
a. Does the item align to the aspect of rigor targeted in the Standards? (Principle 2)
b. Does the item align to the grade-level expectations? (Principle 3)
c. Does the item address the central concern of the identified standard? (Principle 4)
d. If the item aligns to a Standard for Mathematical Practice, is the item appropriate to the grade? (Principle 7)
e. Does the item type/format of the item match the content? (Principle 8)
3. Using the chart below, record your thoughts about which Alignment Principle(s) can be used to improve each item.
4. With the Alignment Principle in mind, revise the item.
5. After time for individual reflection, discuss your findings and your proposed revision with your colleagues.

## Answer Key:

| Standard | Item | Assessment <br> Principle? | Revised Item |
| :--- | :--- | :--- | :--- |
| HS.N-CN.A.2 <br> Use the <br> relation $i^{2}=-1$ <br> and the <br> commutative, <br> associative, <br> and <br> distributive <br> properties to <br> add, subtract, <br> and multiply <br> complex <br> numbers. <br> Which expression is equivalent to $\frac{5}{3+i} ?$ <br> a) $\frac{15}{8}-\frac{5}{8} i$ (b) $\frac{5}{3}-5 i$ | d) $\frac{3}{2}-\frac{1}{2} i 5-5 i$ |  |  |

## HS.F-IF.A. 1 <br> Understand

that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If $f$ is a function and $x$ is an element of its domain, then $f(x)$ denotes the output of $f$ corresponding to the input $x$. The graph of $f$ is the graph of the equation $y$ $=f(x)$.

Use the vertical line test to determine which graph
represents $y$ as a function of $x$.
a)

c)

b)

d)

"

| HS.G-GPE.A.1 <br> Derive the <br> equation of a <br> circle of given <br> center and <br> radius using <br> the | Which of the following shows the equation of the <br> circle with a center located at $(4,-1)$ and has a point <br> on the circle at $(5,3)$ ? | a) $(x-4)^{2}+(y+1)^{2}=17$ |  |
| :--- | :--- | :--- | :--- |
| Pythagorean <br> Theorem; <br> complete the <br> square to find <br> the center <br> and radius of <br> a circle given <br> by an <br> equation. | b) $(x+4)^{2}+(y-1)^{2}=\sqrt{17}$ |  |  |




