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High School, Quantity
Overview
In high school, students in high school extend their conceptions of
unit and of quantity. They encounter situations in which they must
conceptualize relevant attributes and create or choose suitable mea-
sures for them. This work builds on students’ previous experiences
with units and systems of units in grades 1–8. Thinking about units
is important not only in the domain of Measurement and Data, but
also for students’ work with multi-digit numbers (Number and Op-
erations in Base Ten), and with fractions and unit fractions (Number
and Operations–Fractions). In grades 6–8, students use units in
working with numerical data (Statistics and Probability), with ra-
tios and rates (Ratios and Proportional Relationships), with scien-
tific notation (Expressions and Equations), and with measurements
of angles, lengths, areas, and volumes (Geometry).

In the high school Standards, individual modeling standards are
indicated by a star symbol (‹). Because of their strong connection
with modeling, the standards listed under Quantities are starred,
indicating that all of these standards are modeling standards. Al-
though the Vector and Matrix Quantities standards are not starred,
they describe skills that, once learned, are often used in applied
contexts. Among them are applications in physics and engineering.
All of the Vector and Matrix Quantities standards have a plus sign,
indicating that they involve mathematics that students should learn
in order to take advanced mathematics courses.1

Brief tasks targeting the specific skills enumerated in the Quan-
tities standards are possible and this progression includes some
examples, but the skills described in these standards would also

This progression discusses the Number and Quantity standards that concern
quantity. The remaining Number and Quantity standards are discussed in the Num-
ber Progression.

1The high school standards specify the mathematics that all students should
study in order to be college and career ready. Additional material corresponding
to (+) standards, mathematics that students should learn in order to take advanced
courses such as calculus, advanced statistics, or discrete mathematics, is indicated
by a plus sign in the left margin. Note, however, that not all (+) standards are
prerequisites for every advanced mathematics course. For example, knowledge of
vectors and matrices is not a necessary prerequisite for a single-variable calculus
course.

Draft, 17 August 2016, comment at commoncoretools.wordpress.com.

commoncoretools.wordpress.com


HS, Q 3

be naturally prominent in the context of more substantial applied
problems, lab reports in science classes, or even research papers
for courses in social studies and technical subjects. Students’ work
with quantities can foster strong connections between mathematics
and other subjects.
Quantities, derived quantities, and derived units Quantity is an
integral part of any application of mathematics, and has connections
to solving problems using data, equations, functions, and modeling.
In the Standards, a quantity is a measurement that can be specified
using a number and a unit. For example, 2.7 centimeters or the dis-
tance from the earth to the moon in miles are both quantities that
involve measurements of the attribute length. Descriptors without
units are sometimes also called quantities, e.g., the distance from
the earth to the moon is called a quantity. In this case, a unit of
measurement is not given, but can be chosen. However, numerical
values without units are not quantities: 2.7 centimeters is a quan-
tity, but 2.7 is not. The numerical value alone does not indicate
what attribute is being measured, so no unit of measurement can be
chosen.

It can make sense to add two quantities, such as when a child 51
inches tall grows 3 inches to become 54 inches tall. To be added or
subtracted, quantities must be measurements of the same attribute
(length, area, speed, etc.) and expressed in the same units. Convert-
ing quantities expressed in different units to have the same units
is like converting fractions to have a common denominator before
adding or subtracting. But, even when quantities have the same
units it does not always make sense to add them. For example, if a
wooded park with 300 trees per acre is next to a field with 30 trees
per acre, they do not have 330 trees per acre.

Two or more quantities can give rise to new types of quantities,
called derived quantities. These are sometimes described as prod-
ucts or quotients of attributes or units, for example: speed (distance
divided by time), rectangular area (length multiplied by length), den-
sity (mass divided by volume), or population density (number of peo-
ple divided by land area). For those familiar with derived quantities,
these descriptions are useful shorthand. However, they may suggest
that a derived quantity is written as a product or quotient of other
quantities, or is not itself a quantity. Like all quantities, derived
quantities can be expressed as a number followed by a unit. Un-
derstanding such derived quantities requires students to understand
two or more quantities simultaneously (e.g., speed as entailing dis-
placement and time, simultaneously).

Before high school, the derived quantities that students encounter
include area, volume, and examples of rates. In their work with area
and volume, students use derived units and their abbreviations, e.g.,
sq cm and cu cm (see the Geometric Measurement Progression), but
use of such abbreviations is not a focus of their work with rates.
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For instance, they consider examples such as: if Sharoya walks 3
meters every 2 seconds, she walks at a rate of 32 meters per second
(see the Ratio and Proportional Relationships Progression). In high
school, students view such rates more abstractly and abbreviate de-
rived units, e.g., writing meters per second as m/s. Moreover, they
become more sophisticated in their use of derived units, recogniz-
ing when it is necessary to convert between different units for speed
and other derived quantities. In measuring and in computations with
measurements, they choose appropriate units and levels of accuracy
for measurements of familiar attributes. When investigating novel
situations, they identify quantifiable features of interest and units in
which to measure them.

Depending on context, quantities are called by different names,
such as “measure” (e.g., productivity measure) or “index” (e.g., Con-
sumer Price Index). In situations where quantities are represented
as variables, quantities are often referred to as “variables,” eliding
the distinction between a quantity and its representation as a vari-
able. These subtleties in terminology do not need to be made explicit
to students, but students need to use terms correctly in context.
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Quantities
Units are central to applied mathematics and everyday life. Units
are prominent in a wide variety of situations involving, for exam-
ple, acceleration, currency and currency conversions, people-hours,
energy and power, concentration and density, social science rates
(e.g., number of deaths per 100,000), and other everyday rates (e.g.,
points per game).
Using and interpreting units Reasoning quantitatively includes
knowing when and how to convert units in computations, such as
when adding and subtracting quantities that measure the same at-
tribute but are expressed in different units and other computations
with measurements in different units or converting units for derived
quantities such as density and speed. Reasoning quantitatively can
also include analyzing the units in a calculation to reveal the units
of the answer. This can to help reveal a mistake if, for example, the
answer comes out to be a distance when it should be a speed (MP.2).

In applications, formulas are often used, and errors can occur
in the use of the formulas if units are not attended to carefully.N-Q.1

N-Q.1 Use units as a way to understand problems and to guide
the solution of multi-step problems; choose and interpret units
consistently in formulas; choose and interpret the scale and the
origin in graphs and data displays.The formula d “ vt notwithstanding, a car driving at 25 mph for 3

minutes does not cover a distance of 25ˆ 3 miles. Conversely, if the
student does attend carefully to units, the result can be a deeper
understanding of a formula or a situation.N-Q.1 Students should spec-
ify units when defining variables and attend to units when writing
expressions and equations (MP.6).

A good quantitative understanding of the situation at hand helps
a student make sound choices for the scale and origin of a graph
or a a display.N-Q.1 In a map of arable land area, for example, there
is no sense in having a scale that extends to negative values; in a
graph showing the concentration of atmospheric carbon dioxide over
the past 2000 years, the choice of origin in the vertical scale is an
important editorial decision (see figure in the margin). These consid-

Concentration of carbon dioxide and other gases in the
atmosphere over the past 2,000 years. Source: Forster et al.,
2007, Changes in Atmospheric Constituents and in Radiative
Forcing. In Solomon et al. (Eds.), Climate Change 2007: The
Physical Science Basis, Figure 1, p. 135,
http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/
ar4-wg1-chapter2.pdf.

erations apply to graphs, data tables, scatter plots, and other visual
displays of numerical data. It should go without saying that graphs
and displays must be properly labeled, or else they are meaningless
(MP.6).
Level of accuracy Quantitative reasoning includes choosing an ap-
propriate level of accuracy when reporting quantities.N-Q.3 For exam-

N-Q.3 Choose a level of accuracy appropriate to limitations on
measurement when reporting quantities.

ple, if the doctor measures your height as 73 inches and your weight
as 210 pounds, then your Body Mass Index (BMI) is

(weight in pounds)
pheight in inchesq2 ˆ 703 “

210
732 ˆ 703

« 27.7031
« 28.
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There is no point in reporting a value more precise than 28 here,
because any value between 25 and 30 is considered overweight.•

• See http://en.wikipedia.org/wiki/Body_mass_index.
Moreover, your weight varies somewhat from week to week. (For
that matter, the 703 in the formula is itself an approximation; it is a
conversion factor between the International System of Units (SI)
and English units, with a precise value of 703.0695 . . . ; again,
the digits to the right of the decimal point are unnecessary.)

Defining quantities In modeling situations (MP.4), defining the key
quantity of interest might be part of the task. For example, in a situ-
ation that involves crop productivity, a student might him- or herself
choose to examine the number of tons of fertilizer per acre as the
variable of interest. In a situation that involves content development
for a web site, a choice might arise as to whether the number of
posts per day or the number of words per day is the key produc-
tivity variable. (For other examples of variables, see the section on
units and modeling in the Modeling Progression. Different choices
for the quantity of interest may result in different models, as illus-
trated by models for oak tree growth in the Statistics and Probability
Progression.) Such decisions about determining and describing the
quantity of interest are sometimes left to the student in modeling
tasks.N-Q.2 Tasks of this kind may be most effective if students have a N-Q.2 Define appropriate quantities for the purpose of descriptive

modeling.genuine question that leads them to quantify features of the situation
being analyzed.
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Vector and Matrix Quantities
As with many other concepts in the Standards, the concepts of vector+
and matrix quantities generalize familiar ideas and extend familiar+
representations. In this case, the ideas generalized involve number,+
magnitude, and operations.

1.MD.2Express the length of an object as a whole number of length
units, by laying multiple copies of a shorter object (the length unit)
end to end; understand that the length measurement of an object
is the number of same-size length units that span it with no gaps
or overlaps.

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to the
numbers 0, 1, 2, . . . , and represent whole-number sums and dif-
ferences within 100 on a number line diagram.

3.NF.2Understand a fraction as a number on the number line; rep-
resent fractions on a number line diagram.

+

Vectors In early grades, students start on the path toward under-+
standing real numbers as points on the number line. They began+
by using numbers to count, then in measuring lengths by iterating+
a unit.1.MD.2 Seeing whole numbers as concatenations of unit lengths+
yields a correspondence between numbers and points on a number+
line diagram.2.MD.6 Sums of whole numbers are represented on the+
number line as concatenations of two line segments. Partitioning+
the unit into equal pieces allows fractions and finite decimals to be+
represented as line segments,3.NF.2 and their sums to be represented+
as concatenations of these segments.

Representing addition as concatenation on the number line3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.
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75+
For negative numbers, the correspondence between numbers and+

the number line needs to attend to direction.+
Now the line segments have directions, and therefore a begin-+

ning and an end. When concatenating these directed line segments,+
we start the second line segment at the end of the first one. If the+
second line segment is going in the opposite direction to the first,+
it can backtrack over the first, effectively cancelling part or all of+
it out.7.NS.1b As students encounter vectors, they will be able to see

7.NS.1bUnderstand p ` q as the number located a distance |q|
from p, in the positive or negative direction depending on whether
q is positive or negative. Show that a number and its opposite
have a sum of 0 (are additive inverses). Interpret sums of rational
numbers by describing real-world contexts.

+
their previous work with adding numbers as adding one-dimensional+
vectors, and their previous work with multiplying numbers as scalar+
multiplication of one-dimensional vectors. In the illustrations of ad-

Showing 5` p´3q “ 2 and ´3` 5 “ 2 on the number line3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5
´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5
´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5
´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5

The number 5 is represented by the blue arrow pointing right
from 0, and 3 is represented by the red arrow pointing left. To
compute 5` 3, place the arrow for 5, then attach the arrow for 3
to its endpoint. To compute ´3` 5, place the arrow for ´3, then
attach the arrow for 3 to its endpoint.

+
dition on the number line shown in the Number System Progression,+
it is implicit that a real number is represented by any directed line+
segment that is parallel to the number line with the appropriate ori-+
entation (indicated by an arrow at the terminal point) and magnitude+
(indicated by length of the segment).+

Vectors in the plane maintain these conventions. An arrow indi-+
cates orientation and length indicates magnitude.• Any two parallel

• Vectors are often written in boldface (e.g., v) or with an ar-
row (e.g., ~v ). Notation for magnitudes is sometimes the same or
similar to that for absolute value (e.g., |v| or ||v||) or puts the let-
ter representing the vector in italics (e.g., v ). Each of these has
various advantages and disadvantages. For example, the italic
notation does not lend itself to expressing ||cv||, however, when
usable, indicates at a glance that the object represented is not a
vector, but a real number, suggesting that algebraic techniques
can be used. A disadvantage of |v| is that it might be confused
with absolute value, thus its use is often discouraged.

+
line segments of the same orientation and length represent the same+
vector.N-VM.1

N-VM.1(+) Recognize vector quantities as having both magnitude
and direction. Represent vector quantities by directed line seg-
ments, and use appropriate symbols for vectors and their magni-
tudes (e.g., v, |v|, ||v||, v ).

+
As on the number line, the sum of two vectors v`w can be shown

in the plane by choosing representations so that the terminal point
of v is the initial point of w. Their sum is represented as a third
vector that has the initial point of v and the terminal point of w. If v
and w are not parallel, their sum can be seen as the remaining side
of a triangle formed by v and w, showing graphically that

||v ` w|| ă ||v|| ` ||w||.
With auxiliary line segments (MP.7), the sum can also be seen as+
the diagonal of a parallelogram. Because any two parallel line+
segments with the same orientation and length represent the same+
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vector, the sides of this parallelogram can be used to represent v,+
w, and v ` w in different ways. The two addends can be shown as+
sharing an initial point, illustrating the parallelogram rule for vector+
addition.N-VM.4a Or they can be shown so that the terminal point of w+
is the initial point of v (illustrating commutativity of vector addition). N-VM.4(+) Add and subtract vectors.

a Add vectors end-to-end, component-wise, and by the par-
allelogram rule. Understand that the magnitude of a sum
of two vectors is typically not the sum of the magnitudes.

b Given two vectors in magnitude and direction form, deter-
mine the magnitude and direction of their sum.

c Understand vector subtraction v´w as v`p´wq, where
´w is the additive inverse of w, with the same magni-
tude as w and pointing in the opposite direction. Repre-
sent vector subtraction graphically by connecting the tips
in the appropriate order, and perform vector subtraction
component-wise.

+
When students began to use negative numbers, they learned+

to understand subtraction as adding the additive inverse (7.NS.1c).+
Similarly, they understand vector subtraction as adding the (vector)+
additive inverse.N-VM.4.c As on the number line, the additive inverse+
´w of a vector w is represented as a directed line segment with+
an orientation opposite to that of w. If augmented by its remaining+
diagonal (MP.7), the parallelogram used to illustrate the sum v ` w+
can be recycled to illustrate the difference v ´ w.G-SRT.1

G-SRT.1 Verify experimentally the properties of dilations given by
a center and a scale factor:

+
Like vector addition and subtraction, multiplying a vector by+

a scalar builds on ideas and representations from earlier grades.+
When students began extending multiplication to fractions, visualiz-+
ing a product as a concatenation of directed line segments by think-+
ing of multiplication as repeated addition begins to break down.+
Interpreting multiplication as scaling5.NF.5 rather than repeated ad- 5.NF.5Interpret multiplication as scaling (resizing), by:

a Comparing the size of a product to the size of one factor
on the basis of the size of the other factor, without per-
forming the indicated multiplication.

b Explaining why multiplying a given number by a fraction
greater than 1 results in a product greater than the given
number . . . .

+
dition maintains a way to visualize the correspondence between+
products of two numbers and their representations on the number+
line. This correspondence has a geometric interpretation as dilation+
of a line segment. The center of the dilation is the origin of the num-+
ber line. Depending on the scale factor, the image of the segment is+
longer or shorter, but remains a segment on the number line.G-SRT.1 In+
terms of a vector v and scalar c, this is ||cv|| “ |c| ¨ ||v||. When stu-+
dents learned to multiply by ´1, they represented the corresponding+
effect on a directed line segment as reversing its orientation. They+
continue to do so when the directed line segment represents a vector+
in the plane.N-VM.2

N-VM.2(+) Find the components of a vector by subtracting the co-
ordinates of an initial point from the coordinates of a terminal
point.

+
Coordinates for the plane allow the results of operations on vec-+

tors to be computed symbolically, in terms of x- and y-components+
or in terms of magnitude and direction. Students compute the com-+
ponents of vectors from their initial and terminal points in rectangu-+
lar coordinates,N-VM.2 and use components to compute sums, differ-+
ences, scalar multiples, and magnitudes.N-VM.4ac, N-VM.5a Students com- N-VM.5(+) Multiply a vector by a scalar.

a Represent scalar multiplication graphically by scaling
vectors and possibly reversing their direction; perform
scalar multiplication component-wise, e.g., as cpvx , vyq “
pcvx , cvyq.

b Compute the magnitude of a scalar multiple cv using
||cv|| “ |c|v . Compute the direction of cv knowing that
when |c|v ‰ 0, the direction of cv is either along v (for
c ą 0) or against v (for c ă 0).

+
pute sums and scalar multiples of vectors described in terms of mag-+
nitude and direction.N-VM.4b, N-VM.5b Graphical representations of oper-+
ations and magnitudes of vectors together with the different ways to+
compute them symbolically provide correspondences to be identified+
and explained (MP.1).+

Matrices An understanding of matrices and operations on matrices+
might begin with similarity transformations• on vectors in the coor-

• Similarity transformations are rigid motions followed by dila-
tions.

+
dinate plane, building on earlier work in Grade 8 and high school. In+
Grade 8, students work with physical models and software to under-+
stand the effects of rigid motions and dilations on two-dimensional+
objects, describing these effects in terms of coordinates8.G.3 and un- 8.G.3Describe the effect of dilations, translations, rotations, and

reflections on two-dimensional figures using coordinates.
+
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derstanding that two of these objects are congruent if one can be+
carried onto the other by a sequence of rigid motions. In high school,+
students experiment with similarity and other transformations in the+
plane, describing their effects in geometrical terms.G-CO.2G-CO.5 Stu-

G-CO.2 Represent transformations in the plane using, e.g., trans-
parencies and geometry software; describe transformations as
functions that take points in the plane as inputs and give other
points as outputs. Compare transformations that preserve dis-
tance and angle to those that do not (e.g., translation versus hor-
izontal stretch).

G-CO.5 Given a geometric figure and a rotation, reflection, or trans-
lation, draw the transformed figure using, e.g., graph paper, trac-
ing paper, or geometry software. Specify a sequence of transfor-
mations that will carry a given figure onto another.

+
dents can use their high school understanding of functions and+
composition of functions (see the Functions Progression) to view se-+
quences of transformations (such as the sequences of rigid motions+
from Grade 8) as compositions of transformations. With coordinates+
for the plane, rigid motions, dilations, and other (but not all) trans-+
formations can be represented by 2 ˆ 2 matrices. Compositions of+
these transformations can be computed symbolically as products of+
the matrices that represent them. When a vector in the plane is+
represented as a column matrix whose entries are its components,+
multiplication of the column matrix by a 2 ˆ 2 matrix can be inter-+
preted as a transformation of the vector.N-VM.11 Connections among

N-VM.11(+) Multiply a vector (regarded as a matrix with one col-
umn) by a matrix of suitable dimensions to produce another vec-
tor. Work with matrices as transformations of vectors.

+
vectors, transformations, and matrices can be analyzed further. For+
example, if two vectors in the plane are not parallel, then they and+
their sum can be seen as sides of a triangle. How does the trans-+
formation determined by a given 2 ˆ 2 matrix affect this triangle?+
Students might choose special vectors to analyze (MP.1) such as+
(1,0) and (0,1), helping them to make use of structure (MP.7) in inter-+
preting the absolute value of the determinant in terms of area,N-VM.12

N-VM.12(+) Work with 2 ˆ 2 matrices as a transformations of the
plane, and interpret the absolute value of the determinant in
terms of area.

+
and in thinking about when the transformation has an inverse.N-VM.10

N-VM.10(+) Understand that the zero and identity matrices play a
role in matrix addition and multiplication similar to the role of 0
and 1 in the real numbers. The determinant of a square matrix is
nonzero if and only if the matrix has a multiplicative inverse.

+
Students use matrices in other ways, for example, to represent+

the Hot Potato payoff described in the high school Statistics and+
Probability Progression, and doubling of that payoff.N-VM.6N-VM.7

N-VM.6(+) Use matrices to represent and manipulate data, e.g., to
represent payoffs or incidence relationships in a network.

N-VM.7(+) Multiply matrices by scalars to produce new matrices,
e.g., as when all of the payoffs in a game are doubled.

+

Where the Quantity Progression might lead
A wide variety of different units and methods of displaying them (well
or poorly) occur in different disciplines. Some aspects of quantita-
tive literacy involve choice of scale and units in data displays. In
advanced modeling exercises, students can identify quantities rele-
vant to a situation and use the units of those quantities to generate
conjectures about algebraic relationships among them. This method,
called dimensional analysis, can be used for example to determine
that the period of a pendulum is independent of its mass. Vectors
can represent quantities that change over time. For example, the
position of a satellite in orbit around the Earth at any given moment
can be represented as a vector, so the satellite’s position over time
can be represented as a vector-valued function. The trajectory in
space that is traced out by the satellite can be represented as a
parametric curve (see the end of the Modeling Progression).
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Appendix: Brief Examples for N-Q.1
1. A textbook printed the following formula for the surface area of a cylinder:

SA “ 2πr ` 2πrh.
Kim had never studied geometry, but she knew there must be a typographical
error in this formula. How could she tell?

2. The Trans-Alaska Pipeline System is 800 miles long and cost $8 billion to
build. Divide one of these numbers by the other. What is the meaning of the
answer?

3. Greenland has a population of 56,700 and a land area of 2,175,600 square
kilometers. By what factor is the population density of the United States, 80
persons per square mile, larger than the population density of Greenland?

4.: A doctor orders Ceclor elixir for a child who weighs 9.3 kg. The child must
receive 25 mg of the drug for each kilogram of body weight. The hospital
pharmacy stocks Ceclor elixir in a concentration of 250 mg per 5 ml. How
many milliliters of the stock elixir should the child receive?

a) Estimate the answer mentally. (Suggestion: approximate the child’s
weight as 10 kg.)

b) Compute the answer to the nearest tenth of a milliliter.
5.; A liquid weed-killer comes in four different kinds of bottles. The table in

the margin gives information about the concentration, size, and price of the
bottles. The “concentration" refers to the percentage of “active ingredient”

Different kinds of weed-killer 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

concentration amount in bottle price of bottle
A 0.96% 64 fl oz $12.99
B 18.0% 32 fl oz $29.99
C 41.0% 32 fl oz $39.99
D 0.96% 24 fl oz $5.99

in the bottle. The rest of the liquid in the bottle is water. For example, to
calculate the amounts in Bottle B: p0.18qp32q is 5.76, so there are 5.76 fluid
ounces of active ingredient; 32´5.76 “ 26.24, so there are 26.24 fluid ounces
of water.

a) Rank the four bottles in order of how good a buy each represents. State
what criterion you are using.

b) Suppose a job calls for a total of 12 fluid ounces of active ingredient.
How much would you need to spend if you bought Type A bottles? Type
B bottles? Type C bottles? Type D bottles?

6. The distance traveled by a freely falling object dropped from rest is given by
the formula

s “ 1
2gt2.Here s is the distance fallen, g is a constant representing the force of gravity

at Earth’s surface, and t is the duration of time over which the object falls. If
s has units of meters and t has units of seconds, what must be the units of g?
If we interpret g as a rate of change, what sort of quantity is changing with
time?

7. A table in a construction manual lists the “k-values" of different building ma-
terials. The k-value measures how easily heat flows through a material. The
k-value of concrete is given as

2.5 BTU ¨ in
hr ¨ ft2 ¨ ˝F .

A BTU is a unit of heat energy. The construction manual gives the following
example problem illustrating the k-value: How many BTUs of heat energy
would be lost through a 100 ft2 concrete wall 6 inches thick over a 12 hour
period, if the temperature difference from one side of the wall to the other
is 70˝F? Your friend Anders doesn’t know much about construction—or about
heat loss—yet he was able to get the answer, 35,000 BTUs, just by thinking
about units. How did he get the answer?

:Adapted from Ready or Not: Creating a High School Diploma That Counts.
Achieve, 2004.

;This task is due to Dick Stanley.
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