Apply properties of operations as strategies to add and subtract. *Examples: if* 8 + 3 = 11*is known, then* 3 + 8 = 11 *is also known.* (*Commutative property of addition.*) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10= 12. (Associative property of addition.)

Apply properties of operations as strategies to add and subtract. *Examples: if* 8 + 3 = 11*is known, then* 3 + 8 = 11 *is also known.* (*Commutative property of addition.*) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 =12. (Associative property of addition.)

Apply properties of operations as strategies to add and subtract. *Examples: if* 8 + 3 = 11*is known, then* 3 + 8 = 11 *is also known.* (*Commutative property of addition.*) *To add* 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 =12. (Associative property of addition.) Apply properties of operations as strategies to add and subtract. *Examples: if* 8 + 3 = 11*is known, then* 3 + 8 = 11 *is also known.* (*Commutative property of addition.*) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 =12. (Associative property of addition.)

Apply properties of operations as strategies to add and subtract. *Examples: if* 8 + 3 = 11*is known, then* 3 + 8 = 11 *is also known.* (*Commutative property of addition.*) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 =12. (Associative property of addition.)

Apply properties of operations as strategies to add and subtract. *Examples: if* 8 + 3 = 11*is known, then* 3 + 8 = 11 *is also known.* (*Commutative property of addition.*) To add 2 + 6 + 4, the second two numbers can be added to make a ten, so 2 + 6 + 4 = 2 + 10 =12. (Associative property of addition.) Explain why addition and subtraction strategies work, using place value and the properties of operations.

Explain why addition and subtraction strategies work, using place value and the properties of operations.

Explain why addition and subtraction strategies work, using place value and the properties of operations. Explain why addition and subtraction strategies work, using place value and the properties of operations.

Explain why addition and subtraction strategies work, using place value and the properties of operations.

Explain why addition and subtraction strategies work, using place value and the properties of operations.

Apply properties of operations as strategies to multiply and divide. Examples: If  $6 \times 4 = 24$  is known, then  $4 \times 6 = 24$  is also known. (Commutative property of multiplication.)  $3 \times 5 \times 2$  can be found by  $3 \times 5 = 15$ , then  $15 \times 2 = 30$ , or by  $5 \times 2 = 10$ , then  $3 \times 10 = 30$ . (Associative property of multiplication.) Knowing that  $8 \times 5 = 40$  and  $8 \times 2 = 16$ , one can find  $8 \times 7$  as  $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 =$ 56. (Distributive property.)

Apply properties of operations as strategies to multiply and divide. *Examples:* If  $6 \times 4 = 24$  is known, then  $4 \times 6 = 24$  is also known. (Commutative property of multiplication.)  $3 \times 5 \times 2$  can be found by  $3 \times 5 = 15$ , then  $15 \times 2 = 30$ , or by  $5 \times 2 = 10$ , then  $3 \times 10 = 30$ . (Associative property of multiplication.) Knowing that  $8 \times 5 = 40$  and  $8 \times 2 = 16$ , one can find  $8 \times 7$  as  $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 =$ 56. (Distributive property.)

Apply properties of operations as strategies to multiply and divide. *Examples:* If  $6 \times 4 = 24$  is known, then  $4 \times 6 = 24$  is also known. (Commutative property of multiplication.)  $3 \times 5 \times 2$  can be found by  $3 \times 5 = 15$ , then  $15 \times 2 = 30$ , or by  $5 \times 2 = 10$ , then  $3 \times 10 = 30$ . (Associative property of multiplication.) Knowing that  $8 \times 5 = 40$  and  $8 \times 2 = 16$ , one can find  $8 \times 7$  as  $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 =$ 56. (Distributive property.) Apply properties of operations as strategies to multiply and divide. Examples: If  $6 \times 4 = 24$  is known, then  $4 \times 6 = 24$  is also known. (Commutative property of multiplication.)  $3 \times 5 \times 2$  can be found by  $3 \times 5 = 15$ , then  $15 \times 2 = 30$ , or by  $5 \times 2 = 10$ , then  $3 \times 10 = 30$ . (Associative property of multiplication.) Knowing that  $8 \times 5 = 40$  and  $8 \times 2 = 16$ , one can find  $8 \times 7$  as  $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 =$ 56. (Distributive property.)

Apply properties of operations as strategies to multiply and divide. *Examples:* If  $6 \times 4 = 24$  is known, then  $4 \times 6 = 24$  is also known. (Commutative property of multiplication.)  $3 \times 5 \times 2$  can be found by  $3 \times 5 = 15$ , then  $15 \times 2 = 30$ , or by  $5 \times 2 = 10$ , then  $3 \times 10 = 30$ . (Associative property of multiplication.) Knowing that  $8 \times 5 = 40$  and  $8 \times 2 = 16$ , one can find  $8 \times 7$  as  $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 =$ 56. (Distributive property.)

Apply properties of operations as strategies to multiply and divide. *Examples:* If  $6 \times 4 = 24$  is known, then  $4 \times 6 = 24$  is also known. (Commutative property of multiplication.)  $3 \times 5 \times 2$  can be found by  $3 \times 5 = 15$ , then  $15 \times 2 = 30$ , or by  $5 \times 2 = 10$ , then  $3 \times 10 = 30$ . (Associative property of multiplication.) Knowing that  $8 \times 5 = 40$  and  $8 \times 2 = 16$ , one can find  $8 \times 7$  as  $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 =$ 56. (Distributive property.) Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

Find whole number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.

Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x)to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x)to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x)to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y. Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x)to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x)to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y.

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression 3(2 + x)to produce the equivalent expression 6 + 3x; apply the distributive property to the expression 24x + 18y to produce the equivalent expression 6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.

Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.