\qquad

x	y	Y1(x) predicted y-value	Is the actual y-value above or below the predicted y-value?	Actual y-predicted (residual)
1	22			
2	13			
3	7			
4	2			
5	1			

residual

Plot the data (x, y) on your TI.
Find the "best-fitting" linear equation for this set of data as shown below. Follow these instructions and complete the table above.

Enter the data into the lists of your calculator by pressing STAT ENTER to get the List screen. Enter the data (x-values in L1, y-values in L2).

Press 2nd Y Y to get the STAT PLOT screen.

Press ZOOM and select 9:ZoomStat as shown.

Press ENTER and set up as shown.

Press STAT to get this screen and select 4:LinReg(ax+b).

Press ENTER 2nd [L1], 2nd [L2] VARS [ENTER ENTER to get this screen.

If you have a newer operating system on your TI, your screen will look like this!
Y1 is found under VARS ENTER ENTER.

\quad LinReg(ax+b)
Xlist:Li
Ylist:L2
FreaList:
Store RegEQ: Y_{1} 睢
Calculate

This will calculate the best fitting line for you data. Your regression equation will appear in Y1.
Record your regression equation here. \qquad
Now go back and complete the table. In the third column of the table you will use your regression equation to find what the predicted y-values are. In the fifth column you will find the difference between the actual y-values and predicted y-values. (Subtract the values in column three from the values in column two.) These values are called residuals.

Finally create a sketch of the x-values plotted against the residual values.

