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Foreword 

The doing of mathematics has always been inseparable from the teaching of it. Some of the oldest 

surviving written works of mathematics, created some four thousand years ago, appear to be problem-

books intended for scribes and scholars. Some of those problems are still in the school mathematics 

curriculum today, four thousand years later. So are some of the instructional methods. Meanwhile, the 

frontiers of mathematical discovery have expanded at an ever-accelerating pace, allowing us to stand 

on the surface of the moon, to model the global climate, and soon perhaps to decrypt codes once 

thought unbreakable. I sometimes wonder what it would be like if our knowledge about the teaching 

and learning of mathematics could advance as quickly, as profoundly, as our knowledge of 

mathematics itself has. 

It is a pleasure to introduce this EMERALDS report, which synthesizes the work of many contributors. 

Grateful thanks are due to the team of researchers, advisors, and educators who lent their abundant 

talents to the project. Please see page 5 for acknowledgement of the individuals and institutions 

without whom this report would not have been possible. The value of their efforts will be to help the 

field promote student success and equitable outcomes in mathematics, as detailed in the 

recommendations beginning on page 76.  

This EMERALDS study used anonymized assessment data for some of its findings, though not for 

purposes of measuring differences between students or between groups of students. Indeed, the study 

was designed to look critically not at students, teachers, or schools, but rather at school mathematics 

itself. What did that critical look reveal? First, the results as I interpret them tend to validate previous 

smaller-scale studies pointing to the importance of investing in arithmetic in the elementary grades to 

get students ready for success in middle-grades algebra. Second, the design of the study also revealed 

a finding that strikes me as new: namely, that these patterns of mathematical progress from arithmetic 

to algebra seem to hold across student demographics and locations.  

The study also made use of another type of data, anonymized data arising from usage of a digital 

Algebra curriculum in the middle grades. The analysis of this data source could support a particular 

claim of curricular efficacy and may also suggest, in a larger sense, a continuation of the story begun 

by the two findings about arithmetic described above. That is, if the report’s findings about arithmetic 

emphasize the importance of getting a good start in a mathematical education—for every student—

then the report’s findings from the middle grades strengthen my optimism that our students can thrive 

in their formative studies of algebra.  Our students deserve all the passion and support we can 

dedicate toward helping them do so. 

Jason Zimba 

Founding Partner of Student Achievement Partners 

CEO and Cofounder of Math Milestones, LLC 
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Executive Summary 

This final report on the Exploring Math Education Relationships by Analyzing Large Data Sets 

(EMERALDS) study shares both results and recommendations from the project. EMERALDS 

involved large-scale, four-year longitudinal student assessment data sets from the states of 

Idaho (n = 42,474), Washington (n= 216,595), California (n = 849,775), as well as more detailed 

assessments of middle school students’ engagement with algebraic material in the MATHia 

Tutor (formerly Cognitive Tutor) as related to their Algebra I End-of-Course (EOC) performance 

(n = 1,304).  The project was designed to explore ways to better support students who are 

Black, Latino, English learner-designated, experiencing poverty, and/or female to achieve better 

results in Algebra. The latter is the language of higher-level mathematics, a passport for 

expanding postsecondary opportunities, and a tool for confidently navigating the quantitative 

demands of daily life.  To our knowledge, the result was the largest longitudinal assessments of 

what mathematics prepares students for success in Algebra. The study looked at student data 

from more than a million students representing a broad range of racial/ethnic backgrounds, 

income levels, and geographic regions. 

The initial goal was to identify the core mathematics competencies at the end of the 

elementary school years that best predict students’ later success in core Algebra topics, above 

and beyond overall mathematics competence. The measure used was the state-administered 

Smarter Balanced Assessment Consortium (SBAC) assessment, which is based on Common Core 

State Standards for Mathematics (CCSSM; hereafter CCSS). Content experts identified core 

Prealgebra knowledge domains and Algebra content areas with the goal of establishing 

clusters—groups of related items—for use in the analyses. The design of the SBAC assessment 

makes it well suited to providing an overall estimate of mathematics competencies, but our 

analyses suggest that measures such as this are not as well suited to identifying fine-grained 

subsets of competencies such as those explored in this study.

Despite this limitation, there were some competencies toward the end of the elementary 

school years that appeared to be more important than others in predicting Algebra outcomes 

four years later, but the effects were small compared to overall mathematics competencies. The 

latter was a substantive predictor of later performance in core Algebra areas and indicates that 

readiness for Algebra is dependent on a solid foundation in the elementary school CCSS. The 

measure for this study—the SBAC assessment—follows the CCSS in upper elementary grades, 

which emphasize the concepts, procedural fluencies, and applications of arithmetic (such as 

base-10 and fractions knowledge), as well as CCSS’s practice standards for complex problem 

solving, reasoning & communicating, and the ability to use modeling to solve real-world 

problems. Accordingly, the results suggest a validation of the balanced rigor framed by the 

CCSS for arithmetic as the foundation for Algebra. The more specific predictors of later Algebra 

outcomes suggested effects that cut across content topics: multi-step problems were more 

predictive than one-step problems, and Mathematical Reasoning & Communication added the 

most predictive value above and beyond the total mathematics score. These are aspects of the 

CCSS Mathematical Practices, which were incorporated into the construct assessed by SBAC. 

Middle school students’ engagement and success with the MATHia system substantively 

improved their Algebra I EOC performance, above and beyond their end of elementary school 

mathematics competencies. The MATHia system includes translating word problems into 

equations and then correctly solving those equations and thus converges with the above noted 

results for multi-step problems. Moreover, extensive and successful engagement with MATHia 

reduced the Algebra I EOC performance differences comparing students with higher and lower 

prior mathematics scores. More fine-grain analyses suggest that, in addition to skill at 

translating word problems into algebra equations, an understanding of the different ways in 

which functions can be represented (e.g., equation, graphically) was uniquely related to later 

Algebra I EOC performance, controlling for prior mathematics scores. There were also several 

frequently engaged CCSS topics, such as basic work with functions, that did not predict later 
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Algebra I EOC performance. These conclusions should be interpreted cautiously, however, given 

the relatively small sample on which they are based. 

A related goal was to determine if the strength of the relation between earlier 

mathematics competencies and later Algebra outcomes varied across subpopulations of 

students; note that this did not involve comparing the scores of students in different 

demographic groups. We addressed this goal using the large and diverse sample from 

California. There were several statistically significant differences due to the large sample, but 

none of these was practically important, and thus the study did not find group differences in 

the relation between earlier mathematics competencies, either overall or for specific skills (e.g., 

Reasoning & Communicating), and later Algebra scores. The results do show that a strong 

mathematical foundation in CCSS arithmetic topics at the end of the elementary school years is 

critical preparation for later Algebra, independent of student gender, ethnicity, race, disability 

status, English learner designation, eligibility for reduced or free lunches, or students’ prior 

English language arts competencies. This is not to say, however, that students in all of these 

groups have had the same opportunities to learn this foundational material, but rather those 

who have solid skills by the end of the elementary school years (independent of demographic 

group) are on track for later success in Algebra. The results from the MATHia analyses were 

consistent with this conclusion but also revealed significant differences across these groups in 

engagement with MATHia. Lower engagement with MATHia, or a similar Algebra curriculum, will 

likely contribute to later differences in Algebra I EOC performance.  

Another goal was to determine if there were substantive district, school, and classroom 

differences in Algebra outcomes, controlling for students’ prior mathematics competencies. The 

data set did not allow assessment of classroom effects. In California, the results for districts 

and schools indicated that they were more similar than different, once prior achievement was 

considered. This does not mean that district- or school-wide reforms cannot substantively 

improve the mathematical development of their students; indeed, Carver-Thomas and 

Podolsky’s (2019) assessment of individual districts in California indicates that systematic and 

wide-scale (e.g., involving teacher training, higher expectations for student performance, 

rigorous standards) reforms can have substantive and positive effects on the mathematical 

development of students who have been historically marginalized in educational systems. The 

MATHia analyses provided some evidence for this in middle schools in Florida. In terms of later 

Algebra I EOC performance, students in nearly all schools gained from engagement with and 

mastery of MATHia workspaces. The gains were, however, more variable for schools with more 

than 90% students of color, with the largest and smallest gains emerging for these schools. The 

reasons for the variation in these outcomes are not clear but merit follow-up study. 

The analyses also sparked additional ideas for follow-up projects that could build upon 

these results. The first is to explore in greater detail the core components of elementary school 

mathematics. We were unable to do this with the data set, but it could be achievable with a 

modified replication of this study, using a fixed-form assessment with sufficient items in key 

predictor content in other states with different geographic and student demographic profiles. 

Such a study would benefit from close partnership with state departments of education and 

districts to understand aspects of curricular implementation, instruction, and other contextual 

factors, such as student experience, for mathematics success. The second is to follow up on the 

promising MATHia results; specifically, that intensive engagement with computer adaptive 

tutoring during the middle school years results in important gains in later Algebra I 

performance, controlling for prior mathematics competencies, and can help accelerate learning 

for historically marginalized students. Such a study would require close collaboration with 

providers of computer adaptive tutoring and with the schools and districts that use these 

programs. The current findings are based on a relatively small longitudinal sample with minimal 

contextual information. Follow-up with larger samples as well as greater understanding of the 

usage and student experience of the programs would help to verify our findings and enable a 

more fine-grain assessment of how computer adaptive tutoring supports mathematical 
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academic identity if there are experience and usage differences for students who are Black, 

Latino, English learner-designated, experiencing poverty, and/or female. 

The recommendations weave together the findings of this study, research outside the 

study, and the discussions of the Research Advisory Committee. Building on the findings that 

confirm a strong mathematical foundation in arithmetic as richly construed by CCSS at the end 

of elementary school leads to success in Algebra, the recommendations outline steps that 

states, districts, curriculum developers, and professional development providers can take to 

help students attain this mathematical foundation. Additionally, given the promising initial 

results of the Algebra tutoring program, the recommendations also outline steps that states, 

districts, curriculum developers, and professional development providers can take to help 

students during the middle school years to make gains in later Algebra I performance.  
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Introduction 

Competence with algebra is the foundation for learning the more complex mathematics 

demanded in science, technology, engineering, and mathematics (STEM) fields (NMAP; National 

Mathematics Advisory Panel, 2008). Improving students’ understanding of algebra has been a 

long-term educational priority in the United States; however, achieving this goal has been 

elusive (Stein et al., 2011), especially for students who have been historically underrepresented 

in STEM fields. For example, the eighth-grade mathematics section of the 2019 National 

Assessment of Educational Progress (NAEP) defines basic skills as including conceptual and 

procedural competence with whole and rational numbers. Although these are critical 

mathematics competencies (Siegler & Braithwaite, 2017), it is unlikely that eighth graders with 

only these basic skills are on track for successfully completing a rigorous high school Algebra 

course (NMAP, 2008). Overall, only ten percent of eighth-grade students have achieved the 

advanced competencies that position them well for rigorous high school mathematics 

coursework. 

 

 The content coverage of the NAEP mathematics assessment—a long-standing 

benchmark of U.S. students’ educational progress—and the more recent Common Core State 

Standards (CCSS) are not completely aligned in terms of relative content emphases (e.g., 

emphasis on fractions). As a result, the percentage of students from the same population 

identified as adequately prepared could vary across assessments (Daro et al., 2015; Hughes et 

al., 2019). Even so, both assessment approaches reveal that a majority of U.S. students are not 

fully prepared for a rigorous course in high school Algebra. A key goal of the CCSS was to focus 

standards on the most critical procedures, concepts, and problem-solving skills that best 

prepare students for the high school mathematics curriculum and, through this, lay the 

foundation for college mathematics and entry into the workforce (Zimba, 2014). The focus of 

the CCSS, in turn, was based on mathematics standards from countries that consistently 

produce students who are well educated in mathematics and on recommendations for how U.S. 

students might achieve the same (e.g., NMAP, 2008; Schmidt & Houang, 2012). Whereas most 

mathematics content covered in elementary and middle school, and highlighted in CCSS, will 

have utility in some contexts, it is not likely that all this content is equally critical in terms of 

preparation for high school Algebra. 

 

 The current project is an attempt to identify specific CCSS procedural, conceptual, and 

problem-solving competencies in earlier grades that provide the most critical foundation for 

success in algebraic areas in later grades. This endeavor is part of an overall effort to improve 

outcomes and better support all students, but especially for those who are Black, Latino, 

English learner-designated, experiencing poverty, and/or female and have been historically 

underserved. Gaining algebraic competence is undergirded by strong procedural and 

conceptual competencies in key areas like fractions (Mou et al., 2016; Hurst & Cordes, 2018; 

Siegler et al., 2012). If these key procedural, conceptual, and problem-solving competencies can 

be identified, it will be an important step toward better preparing all U.S. students for success 

in high school Algebra, although identification alone is insufficient. Rather, the quantity and 

quality of the opportunities to learn this content, in addition to other factors like family 

background and students’ engagement in classroom settings, must be taken into consideration 

(Bailey et al., 2014; Lee & Bull, 2016; Geary et al., 2017).   

 

  The available data did not allow us to control directly for all these myriad influences. To 

indirectly control for them, and because of the nature of the available data at the state level, we 

focused in our first approach on the relative strengths of individual students. This approach 

involved use of data from the Smarter Balanced computer adaptive test (below) to estimate how 

students’ performance differed from expectations (based on their overall mathematics scores) 

on key Prealgebra and Algebra areas. The approach controls for factors that broadly influence 

mathematics achievement, while at the same time allowing an assessment of whether relative 

strengths in one domain or another are predictive of later above-expectations performance in 

key Algebra domains. The second approach included the same prealgebra predictors and 

https://nces.ed.gov/nationsreportcard/mathematics/achieve.aspx#grade8
http://www.corestandards.org/Math/
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algebra outcomes as the first approach but controls for general influences on school 

performance by statistically adjusting for overall mathematics competence and overall 

performance in English Language Arts (ELA). These state-level analyses were augmented with 

assessments of the relation between middle school students’ engagement with and mastery of 

prealgebra and algebra CCSS standards, using a computer adaptive tutoring system (MATHia), 

and later Algebra I End-of-Course (EOC) performance.  

 

Smarter Balanced Test 

 

The Smarter Balanced Computer Adaptive Test was constructed using an underlying blueprint 

developed by mathematics content experts (for the mathematics section) and guided by the 

CCSS for Mathematics; see Appendix A. As noted, the goal of the latter was to provide a more 

focused and coherent mathematics education that is comparable to that found in nations with 

consistently high-achieving students.  

 

Among other things, the blueprint designates mathematics content as being major, 

supporting, or additional. The designations reflect emphases in the standards and help to 

promote alignment by prioritizing instructional time and the foci of educational assessments at 

each grade level. For instance, fifth-grade students are expected to spend most of their time 

learning about place value, solving complex whole number and decimal arithmetic problems, as 

well as extending their conceptual understanding and operation skills with fractions. 

Supporting and additional instruction would include graphing quantitative relations in the 

coordinate plane and measurement.  

 

The distribution of items on the Smarter Balanced Assessment Consortium assessment 

follows these instructional priorities, with about 75% of the elementary-grade items focused on 

topics that are considered most critical in the progression toward algebra. The latter items are 

designated as major in the blueprint, such as base-10 and fractions competencies in fifth grade. 

The major items largely assess fundamental conceptual and procedural knowledge for the 

content area, but also include items that assess complex problem solving, communicating 

reasoning, and the ability to use modeling to solve real-world problems. The remaining items 

assess some of the additional and supporting clusters, but not all students receive a significant 

number of items in these areas due to the adaptive nature of the assessment.  

 

 The focus of the items selected for the study is on major elementary-grade topics, such 

as fractions concepts, that are thought to be foundational for later algebra learning in later 

grades. Competencies in other areas, such as measurement and geometry, were also examined, 

allowing for an evaluation of the discriminant validity of the hypothesized major prealgebra 

competencies. Discriminant validity would be demonstrated, for instance, if fifth-grade fractions 

competencies were a stronger predictor of later algebra outcomes than fifth-grade geometry 

competencies.  

 

Current Project 

 

In sum, the project is designed to identify opportunity gaps that limit students’ access to 

knowledge and skills so that students who are Black, Latino, English learner-designated, 

experiencing poverty, and/or female can be supported to achieve better results in Algebra, a 

keystone subject for future educational and career opportunities. Table 1 shows the core 

research questions of the EMERALDS study that will be addressed in this report.  

  

https://portal.smarterbalanced.org/library/en/strategic-plan.pdf
http://www.corestandards.org/Math/
https://achievethecore.org/category/774/mathematics-focus-by-grade-level
https://achievethecore.org/category/774/mathematics-focus-by-grade-level
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Table 1: Core Research Questions 

Question A: Can we identify the factors in K–8 achievement data most predictive of success in 

Algebra? Can we find factors more specific than “mathematics” and more useful than broad topics 

like “number” and “geometry”?  

Question B: Are we spending too much time on some less important standards and not enough on 

some more important standards? Where should more time and effort be invested in mathematics 

instruction, and where less? 

Question C: How do clusters of students classified according to their profiles across assessment 

items fare over time? (Note: this classification is not possible with the Smarter Balanced 

Assessment but may be possible with other approaches.)  Do the achievement gaps widen for 

some clusters (controlling for background factors) but not others? Students with different profiles 

may benefit differently from different interventions. Some topics (see Question A) may be more 

difficult for some profiles, while other topics are more difficult for others. Are there some schools 

outperforming the expectations based on students’ demographic profiles for some clusters? 

Question D: Can the factors (Question A), emphasis (Question B), or student profiles (Question C), 

or trajectories in achievement differences among sub-populations be associated with the 

proportion of the variance in mathematics achievement among districts compared to among 

schools within districts compared to among classrooms within schools compared to among 

students within classrooms? 
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Methods 

Data Sets 

 

State Data  

 

The data used to assess Questions A, C, and D were from the above-described Smarter Balanced 

Assessment Consortium (SBAC) assessment. The analyses capitalized on large longitudinal data 

sets from Idaho, Washington, and California; a description of the process of obtaining these 

data is provided in Appendix B.  

 

The SBAC assessments include grades 3 to 8 as well as a high school assessment 

administered in tenth or eleventh grade. The grades 6 and 7 assessments include major early 

algebra items (e.g., expressions) and the grade 8 assessment includes major items (e.g., 

solving linear equations) that are traditionally taught in an Algebra I course in high school. The 

relatively recent adoption of the SBAC assessments resulted in the availability of only four years 

of longitudinal data, which limited the range of included grades. As such, some students might 

have assessment results in third through sixth grades while others have results in fifth through 

eighth grades. Regardless, they all received at least some items in the major prealgebra and 

algebra content domains (below). The computer adaptive design of the test presented an 

additional challenge for the analysis, however, because by design not all students received 

identical items.  

 

A core requirement for the analyses was that student performance in earlier grades was 

directly linked to their algebra performance in later grades. In other words, only students with 

four years of longitudinal data were eligible for the study. The initial goal was to examine 

performance in key prealgebra areas (e.g., fractions concepts) in fifth grade and key algebra 

outcomes (e.g., expression evaluation) in eighth grade. However, the number of students with 

enough items to create the desired predictor and outcome variables, with defensible reliability, 

was insufficient. Thus, we expanded the grade ranges for both Idaho, Washington, and 

California and combined results across two or more grades.  

 

As shown in Table 2, we included three cohorts of students from Idaho and Washington 

and created predictors based on performance in third to fifth grades, inclusive, and outcomes 

based on performance in sixth to eighth grades, inclusive. There were more students in 

California; hence, we were able to create predictors and outcomes using only two cohorts, 

resulting in combined fourth- and fifth-grade predictors and seventh- and eighth-grade 

outcomes (see also Weeks & Baron, 2021).    

 

These constraints resulted in usable data for 42,474 students from Idaho, from 2016 to 

2019, and 216,595 students from Washington. The first of the two cohorts from California, 

hereafter referred to as the 5/8 cohort, included 420,089 students with contiguous scores in 

grades 5, 6, 7, and 8, from 2016 to 2019, respectively. The second cohort, hereafter referred to 

as the 4/7 cohort, included 429,968 students with contiguous scores in grades 4, 5, 6, and 7, 

from 2016 to 2019, respectively. The cohorts did not include students who had missing scores, 

skipped a grade level, or were retained in the same grade during the interval. Table 3, Table 4, 

Table 5, and Table 6 summarize the demographic makeup of the students from Idaho, 

Washington, and the 5/8 and 4/7 cohorts from California, respectively. Relative to Idaho and 

Washington, the students from California were more demographically diverse, more likely to be 

English learner-designated, and more likely to experience economic disadvantage. State data 

sets from both states included student responses from all students who participated in the 

state testing program in each year.  
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Table 2: Longitudinal Samples from Idaho, Washington, and California 

Grade 

Prealgebra Predictors Algebra Outcomes 

3 4 5 6 7 8 

Idaho and Washington 

Cohort 1 X X X X 

Cohort 2 X X X X 

Cohort 3 X X X X 

California 

Cohort 1 X X X 

Cohort 2 X X X 

Table 3: Student Demographic Characteristics for Idaho 

Demographic Group Male Female Total % of Total 

White 15761 16551 32312 76 

Hispanic 1302 1350 2652 6 

Black 221 243 464 1 

Asian 279 251 530 1 

Pacific Islander 66 63 129 0.3 

American Indian 271 241 512 1 

Mixed race 2824 3052 5876 14 

Economic disadvantage 3383 3555 6938 16 

English second language 1436 1681 3117 7 

Individual Education Plan 1344 2301 3645 9 

Migrant status 236 241 447 1 
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Table 4: Student Demographic Characteristics for Washington 

Demographic Group Male Female Total % of Total 

White 60150 56547 116697 54% 

Hispanic 25871 25130 51001 24% 

Black 4484 4254 8738 4% 

Asian 8291 8304 16595 8% 

Pacific Islander 1208 1085 2293 1% 

American Indian 1506 1385 2891 1% 

Mixed race 8552 8352 16904 8% 

Not specified 880 596 1476 1% 

Economic disadvantaged 60740 57968 118708 55% 

English second language 17961 15441 33402 15% 

Individual Education Plan 21202 11598 32800 15% 

Migrant status 2950 2891 5841 3% 
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Table 5: Student Demographic Characteristics for California – 5/8 Cohort 

Demographic Student Group Male Female Total % of Total 

American Indian or Alaska Native 1049 1032 2081 < .01 

Asian 19632 19000 38632 9 

Native Hawaiian or Other Pacific Islander 923 973 1896 < .01 

Filipino 4909 4766 9675 2 

Hispanic or Latino 119994 117115 237109 56 

Black or African American 10637 10372 21009 5 

White 47770 44910 92680 22 

Two or more races 7400 7502 14902 4 

Ethnicity not reported 902 898 1800 < .01 

English only 116277 111908 228185 54 

Initial fluent English proficient 7806 9203 17009 4 

English learner 27032 19018 46050 11 

Reclassified fluent English proficient 62090 66420 128510 31 

English proficiency to be determined 8 9 17 < .01 

English proficiency unknown 3 10 13 < .01 

No special education services 182222 190592 372814 89 

Special education services 30994 15976 46970 11 

Not economically disadvantaged 82364 79886 162250 39 

Economically disadvantaged 130852 126682 257534 61 

Migrant 1582 1564 3146 < .01 

Not migrant 211634 205004 416638 99 

No available demographic information 305 < .01 

Table 6: Student Demographic Characteristics for California – 4/7 Cohort 

Demographic Student Group Male Female Total % of Total 

American Indian or Alaska Native 1055 1059 2114 < .01 

Asian 19465 18678 38143 9 

Native Hawaiian or Other Pacific Islander 953 921 1874 < .01 

Filipino 4814 4512 9326 2 

Hispanic or Latino 124658 120940 245598 58 

Black or African American 10795 10635 21430 5 

White 48014 45180 93194 22 

Two or more races 8108 7765 15873 4 

Ethnicity not reported 1102 1077 2179 < .01 

English only 121774 115864 237638 57 

Initial fluent English proficient 7796 9296 17092 4 

English learner 32325 24365 56690 13 

Reclassified fluent English proficient 57043 61222 118265 28 
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English proficiency to be determined 13 12 25 < .01 

English proficiency unknown 13 8 21 < .01 

No special education services 186996 193530 380526 88 

Special education services 31968 17237 49205 12 

Not economically disadvantaged 83209 79713 162922 38 

Economically disadvantaged 135755 131054 266809 62 

Migrant 1558 1523 3081 < .01 

Not migrant 217406 209244 426650 99 

No available demographic information 237 < .01 

MATHia Data 

The information used to address Question B included data from the curriculum provider and the 

district. Carnegie Learning provided student response data from MATHia software used in a large 

Florida school district. The district provided demographic data and state test scores for students in the 

Carnegie Learning program in 2017–2020. Carnegie Learning's MATHia, (formerly known as Cognitive 

Tutor; Ritter et al., 2007) is part of Carnegie Learning's blended curriculum for middle school and high 

school mathematics. The blended learning context is designed to split the student’s time between 

collaborative work using Carnegie Learning's print-based work-texts (60% of math classroom time) and 

self-paced study using intelligent tutoring software (i.e., MATHia), using a mastery learning approach 

(40% of math classroom time).  

Extensive research, including a large-scale randomized-controlled trial (Pane et al., 2014), 

confirms the effectiveness of this type of blended learning approach in diverse, real-world learning 

contexts. MATHia's content is divided into major topic modules, comprised of multiple units, which in 

turn are divided into workspaces for student problem-solving. Following Anderson's ACT-R cognitive 

architecture (Anderson et al., 1998; Anderson et al., 1995), each workspace is comprised of complex, 

multi-step math problems, as shown in Figure 1, mapped to a set of fine-grained skills (or knowledge 

components).  

As students work through steps in each problem, progress toward problem completion is 

tracked by model tracing. Progress toward skill mastery is tracked using Bayesian Knowledge Tracing 

(BKT; Corbett & Anderson, 1995). Student mastery is determined when MATHia's probability estimate 

reaches 95% that a student has mastered each skill within a workspace (mastered workspaces).  

Estimates of student skill mastery are used to adaptively drive problem selection within a 

workspace; roughly, problems are selected that emphasize skills that a student has yet to master in 

each workspace. Once the student is determined to have mastered the workspace, they are moved to 

the next workspace within a unit (or to the first workspace in the next unit or module, depending on 

where they are in their assigned curricula).  

Students may complete a workspace without mastery. If a student reaches a preset number of 

problems (typically 25) without having mastered all the skills in a workspace, the student is moved to 

the next workspace without mastery (non-mastered workspaces).  

Key to MATHia's data-driven adaptive problem selection and mastery progression is the 

probabilistic BKT framework. BKT models student knowledge of each skill in a workspace as a latent 

variable using a two-state Hidden Markov Model. For each skill, the student is either in “un-mastered” 

or “mastered” state, and Bayesian Knowledge Tracing is used to infer which of the two states a student 

is in based on their sequence of performance on problem-solving steps requiring that skill.  

Each skill in BKT is modeled by four parameters: the initial probability of knowing a skill a priori 

(i.e., prior skill knowledge), p(Init); the probability of a student transitioning from the unknown to the 
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known state for a skill at a particular opportunity to practice the skill, p(Learn); the probability of a 

student answering incorrectly when the skill is in fact known (i.e., slipping when applying a mastered 

skill), p(Slip); and the probability of a student correctly applying an un-mastered skill, p(Guess). 

Figure 1: Example of Multi-Step Problem-Solving in MATHia. 

Workspaces are further organized into larger units of related topics. Each workspace is tagged with one 

or more Common Core State Standards (CCSS) that are covered by the associated activities. Multiple 

workspaces might be tagged with the same or overlapping CCSS.  MATHia is used as part of regular 

mathematics and Algebra classes but can also be used as part of advanced and remedial activities and 

classes.  

In addition to the MATHia data, student information was also available for the Florida Standards 

Assessment (FSA) that includes ELA in grades 3–10 and mathematics in grades 3–8. Florida also 

requires End-of-Course (EOC) assessments for Algebra 1 and Geometry. Table 7 includes the number of 

students in the sample for each grade and academic year who completed each type of standardized 

test (Mathematics FSA or Algebra 1 EOC).
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Table 7: Number of Students in the Sample Who Completed Each Type of Test 

Academic Year Grade Math FSA Algebra 1 EOC 

2016–17 6 100 0 

7 14683 16 

8 11200 1789 

Total 25983 1805 

2017–18 6 16873 21 

7 14374 2200 

8 8802 4244 

Total 40049 6465 

2018–19 7 14453 31 

8 13791 3011 

9 8697 5763 

Total 36941 8805 

Overall, there was usage data from 36,010 students in grades 6–8 for the academic years 2017–

18, 2018–19, and 2019–20, corresponding to over 1,000,000 total hours spent using the tutoring 

software. In addition, the dataset included Florida state standardized testing results for the same 

students for 2016–17, 2017–18, 2018–19; Florida state standardized testing was cancelled for 2019–

20 because of the COVID-19 pandemic. 

Table 8 shows the number of students and workspaces completed for each academic year and 

grade. A subset of students had MATHia usage data for more than one academic year (two years: 5050; 

three years: 1482).  

Table 8: Number of Students and Workspaces Completed for Each Academic Year and Grade

Academic 

Year 
Grade 

Number of 

Students 

Number of 

Workspaces 

% Students in 

Advanced 

Classes 

% Students Enrolled 

in Pre-Algebra/ 

Algebra 

2017–18 6 5579 267 51.1% 0.0% 

7 4838 383 0.1% 0.4% 

8 3537 388 10.9% 0.0% 

Total 13954 1038 

2018–19 6 6147 356 51.8% 0.1% 

7 6401 393 28.5% 9.7% 

8 4649 443 1.1% 90.4% 

Total 17197 1192 

2019–20 7 4872 447 31.3% 13.2% 

8 4096 440 0.0% 98.9% 

9 87 200 1.1% 96.6% 

Total 9055 1087 

Table 9 shows the level of engagement with MATHia; all sections and distinct sections are 

separated because some students see the same workspace more than once either for review or as a 

requirement. When students master a workspace (as per BKT), they have “graduated.”  When the 

teacher advances students from a workspace they have not mastered, they have not mastered that 

workspace. When the student has not finished a workspace and has not started a new one (e.g., at the 

end a school year), that workspace is “incomplete.” Table 10 shows the average level of engagement 

per covered CCSS.  
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Table 9: Average Number of Workspaces Mastered, Non-Mastered, or Incomplete Per Student/Year 

All 

Sections 

Distinct 

Sections 
Mastered 

Mastered 

Distinct 

Non- 

Mastered 

Non- Mastered 

Distinct 
Incomplete 

Incomplete 

Distinct 

68.3801 64.1462 58.6262 57.1683 6.9185 6.8281 4.1198 4.0902 

Table 10: Average Number of Workspaces Mastered, Non-Mastered, or Incomplete Per 

Student/Year/CCSS 

All Sections Mastered Non- Mastered Incomplete 

2.2778 2.0645 1.5396 1.1691 

To examine how opportunities to practice different CCSS are related to later Algebra scores, we 

limited our sample to students who completed the Algebra I EOC test and used MATHia for at least one 

year. The sample for these analyses is shown in Table 11, and their demographic characteristics are in 

Tables 12 and 13 (2017–18 cohort) and Tables 14 and 15 (2018–19 cohort).  

Table 11: Descriptive Information for Students Included in the Analyses to Predict Algebra I EOC 

Performance 

Academic Year Grade

Number of 

Students

Number of 

Workspaces

% Students in 

Advanced Classes

% Students Enrolled in 

Pre-Algebra/ Algebra

2017–18 7 1775 381 14.48% 46.42% 

8 820 307 0.00% 74.02% 

Total 2595 688

2018–19 7 428 222 0.00% 0.00% 

8 876 360 0.00% 95.32% 

Total 1304 582

The 2017–18 cohort of students included in the study is approximately 5% of the total district 

enrollment of students in grades 7 and 8. The demographic characteristics of the study group are 

roughly comparable to the student groups reported at the district level.  
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Table 12: 2017–2018 Comparison of Study Group Cohort to the Total District Enrollment 

Demographic Study Group vs. 

Total District
1

 
Male Female All District Study Group % of Total District 

 All students Grade 7 26,218 1,775 6 

 All students Grade 8 26,522 820 3 

Total Students 51% 49% 52,740 2,595 5 

Ethnic Codes Grade 7 Grade 8 Total Study Group % of Total District 

 Asian 

 Black or African American 4896 4959 9,855 592 6 

 Hispanic or Latino 18,923 19,126 38,049 1,811 5 

 Native Hawaiian or  

 Pacific Islander 

 Two or more races 

 White 1791 1944 3,735 123 3 

ESE Codes Grade 7 Grade 8 Study Group 
% of Total 

Study Group 
% of Total 

2

District 

 Gifted 561 213 774 30 24 

Lunch Codes Grade 7 Grade 8 Study Group 
% of Total 

Study Group 
% of Total 

3

District 

 The student is eligible for free 

 lunch. 
1408 653 2,061 79 

69% 
 The student is eligible for  

 reduced-price lunch. 
86 32 118 4 

1

 Public Schools Statistical Highlights 2017–18
 

2

 Gifted all grades 39,781 + 43,529 / 354,172 = 24% 

3

 Combined Free/Reduced lunch for Middle Schools

http://drs.dadeschools.net/StatisticalHighlights/SH.asp
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Table 13: Demographic Characteristics of the 2017–18 Cohort Included in the Analyses to Predict 

Algebra I EOC Performance 

Demographic Student Group Male Female Total % of Total 

 All students Grade 7 857 918 1,775 68 

 All students Grade 8 383 437 820 32 

Total Students 1240 1355 2,595 100 

Ethnic Codes Grade 7 Grade 8 Total % of Total 

Asian 29 8 37 1 

Black or African American 404 188 592 23 

Hispanic or Latino  1228 583 1,811 70 

Native Hawaiian or Pacific Islander 2 0 2 .01 

Two or more races 24 6 30 1 

White 88 35 123 5 

Total 1,775 820 2.595 100 

Limited English Proficient Code Grade 7 Grade 8 Total % of Total 

Distinct Student Count (DSC) 958 386 1,344 52 

LY – Currently enrolled in class for English 

 learner status students 
52 8 60 23 

LF – Exited English learner status and  

 being followed 
765 426 1,191 46 

ESE Codes Grade 7 Grade 8 Total % of Total 

Distinct Student Count (DSC) 1,165 586 1,751 67 

Speech Impaired   9 1 10 0.30 

Language Impaired   2 1 3 0.10 

Visually Impaired  1 0 1 0.03 

Emotional/Behavioral Disability  1 3 4 0.20 

Specific Learning Disability   17 10 27 1 

Gifted 561 213 774 30 

Autism Spectrum Disorder  12 3 15 0.50 

Other Health Impaired   7 3 10 0.30 

Lunch Codes for free and reduced-price Grade 7 Grade 8 Total % of Total 

Did not apply  247 122 369 14 

Applied but not eligible  34 13 47 2 

Eligible for free lunch 1408 653 2,061 79 

Eligible for reduced-price lunch 86 32 118 4 

Total 1,775 820 2,595 100 
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The 2018–19 cohort of students in grades 7 and 8 comprised approximately 2.4% of the total 

enrollment for those grades. 

Table 14: 2018–2019 Comparison of Study Group Cohort to the Total District Enrollment 

Demographic Study Group 

vs. Total District
4

 
Male Female All District Study Group % of Total District 

 All students Grade 7 27,535 428 1.6 

 All students Grade 8 26,218 876 3 

Total Students 51% 49% 53,736 1,304 2.4 

Ethnic Codes Grade 7 Grade 8 Total Study Group % of Total District 

 A – Asian 

 B – Black or African  

 American 
5,288 4,821 9,569 592 6 

 H – Hispanic or Latino 19,833 19,045 38,878 1,811 4.6 

 I – Native Hawaiian or  

 Pacific Islander 

 M – Two or more races 

 W – White 1,861 1,780 3,641 123 3 

ESE Codes Grade 7 Grade 8 Study Group 
% of Total 

Study Group 
% of Total 

5

District 

 L – Gifted 561 213 774 30 24% 

Lunch Codes Grade 7 Grade 8 Study Group 
% of Total 

Study Group 
% of Total 

6

District 

 2 – The student is eligible 

 for free lunch. 
1408 653 2,061 79 

74.4% 
 3 – The student is eligible 

 for reduced-price lunch. 
86 32 118 4 

4
 Public Schools Statistical Highlights 2018–19 

5
 Gifted all grades  40,416 + 43,990 / 350,040 = 24% 

6
 Combined Free/Reduced lunch for Middle Schools 

http://drs.dadeschools.net/StatisticalHighlights/SH.asp


Preparation for Success in Algebra: Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) 

Final Report 2021 

25 

Table 15: Demographic Characteristics of the 2018–19 Cohort Included in the Analyses to Predict 

Algebra I EOC Performance 

Demographic Student Group Male Female Total % of Total 

 All students Grade 7 196 232 428 33 

 All students Grade 8 459 417 876 67 

Total Students 655 649 1,304 100 

Ethnic Codes Grade 7 Grade 8 Total % of Total 

 A – Asian 19 14 33 3 

 B – Black or African American 72 201 273 21 

 H – Hispanic or Latino  293 613 906 69 

 I – Native Hawaiian or Pacific Islander 2 1 3  0.02 

 M – Two or more races 6 11 17 1 

 N – American Indian or Alaska Native  0 2 2 0.01 

 W – White 36 34 70 5 

Total 428 876 1,304 100 

Limited English Proficient Code – 

(English learner status) Grade 7 Grade 8 Total % of Total 

Distinct Student Count – (DSC) 239 470 709 54 

 LF – Exited English learner status and  

 being followed 
189 377 566 43 

 LY – Currently enrolled in class for English 

 learner status students 
0 29 29 2 

ESE Codes Grade 7 Grade 8 Total % of Total 

Distinct Student Count (DSC) 139 608 747 57 

 F – Speech Impaired   0 0 0 0 

 G – Language Impaired   0 0 0 0 

 H – Deaf or Hard of Hearing   1 0 1 0.01 

 I – Visually Impaired  1 2 3 0.02 

 J – Emotional/Behavioral Disability  0 2 2 0.01 

 K – Specific Learning Disability   3 21 24 2 

 L – Gifted  279 227 506 39 

 P – Autism Spectrum Disorder  4 8 12 0.9 

 V – Other Health Impaired   1 8 9 0.6 

Lunch Codes Grade 7 Grade 8 Total % of Total 

 0 – Did not apply  150 162 312 24 

 1 – Applied but not eligible  20 26 46 4 

 2 – Eligible for free lunch 217 607 824 63 

 3 – Eligible for reduced-price lunch 41 81 122 9 

Total 428 876 1,304 100 
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Analytical Approach

State Data 

The first task was to identify core prealgebra and core algebra items using the available items in the 

SBAC assessment. The associated procedures and item clusters are described in the first section below. 

Two approaches were then used to create core predictor and outcome variables. The first involved 

using Item Response Theory (IRT) residuals, that is, deviations from expected performance based on 

overall grade-level mathematics achievement (e.g., the residual of a fifth-grade item based on overall 

fifth-grade mathematics achievement). The second task involved the creation of new IRT subscore 

variables using the clusters of items that define major prealgebra and algebra content areas. The IRT 

residual approach was first used for the Idaho sample and then replicated with the California and 

Washington samples, whereas the IRT subscore approach was first used for the California sample and 

then replicated with the Idaho and Washington samples. 

Creating Predictor and Outcome Measures for SBAC 

A critical step in the analyses was the construction of core predictor and outcome variables that 

represent major procedural, conceptual, and problem-solving competencies in core prealgebra and 

algebra domains. To construct these variables, mathematics content experts—who were very familiar 

with the SBAC assessment—identified relevant clusters of items that varied by mathematical content 

and complexity. The first group of items (A1) was based on SBAC Claim 1 (Concepts and 

Procedures). These are the number sense predictors shown in Table 16; the Claims and Standards 

used to identify items are shown in Appendix C. As can be seen, the number sense items typically 

require students to execute mathematical procedures (e.g., solve multi-digit multiplication problems), 

as well as explain and apply basic concepts (e.g., understanding place value in the base-10 system).  

There are three other SBAC Claims; detailed descriptions for the Claims are available through 

SBAC. We focused the second group of items (A2) on Claim 2 (Problem Solving) and the third group 

(A3) on Claim 4 (Modeling and Data Analysis), which largely assessed students’ ability to solve basic 

and applied word problems, and their ability to take real-world problems and construct and use 

mathematical models to analyze these problems. The fourth group (A4) focused on Claim 3 

(Communicating Reasoning), the construction of arguments to support reasoning about mathematics. 

Examples of these types of items are shown in Table 16 under problem solving and reasoning & 

communicating predictors. Within each of these broader categories (e.g., number sense), items were 

further differentiated based on arithmetical content and problem-solving complexity. The creation of 

subdomains of items enabled a more fine-grain prediction of later algebra outcomes than would be 

otherwise possible. 

As a contrast, the content experts identified items (generally additional and supporting items) 

that were hypothesized to not be as strongly related to later algebra performance as the number sense, 

problem solving, and reasoning items. As can be seen in Table 16, these items largely included 

geometry and measurement. It was not possible to identify enough items that did not include some 

arithmetic operations, and as a result, this contrast variable was not as pure a contrast as we would 

have liked it to be.  

IRT Residual Variables 

As described earlier, the SBAC assessment uses an adaptive testing algorithm based on the use of IRT. 

The assessment provides an estimate of students’ overall grade-level mathematics competence based 

on their performance on a fixed number of items; the specific items vary from person to person. The 

nature of the assessment thus complicates the determination of student strengths and weaknesses for 

particular subskills. Stated differently, each student has relatively few item responses for a given skill. 

This makes it difficult to directly examine the psychometric properties of the collection of items for 

each competency. One potential solution is to use students’ deviation from expected performance on 

each item (based on overall grade-level mathematics scores) to determine their relative strengths in 

https://www.smarterbalanced.org/wp-content/uploads/2015/08/Mathematics-Content-Specifications.pdf
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core prealgebra areas and in later core algebra outcomes for the SBAC item standards identified by 

content experts (Table 16).  

Calculating and compiling item residuals requires a multi-step approach (described in more 

detail below). As a first step, we used the SBAC item parameters and overall estimates of student 

mathematics competence to compute the expected probability of a correct response (or for items 

scored in more than two categories, the probability of scoring in a particular category). These 

probabilities were computed for all items in the dataset. The deviation between the scored response 

and the expected probability for each item, for each student, is referred to as the item residual. These 

residuals are then standardized and averaged across the items associated with each competency for 

the predictor and outcome variables, respectively. These residual indices were subsequently used in a 

series of linear regressions to examine the relationship between relative strengths in early prealgebra 

domains and relative strengths in later core algebra outcomes.  



Preparation for Success in Algebra: Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) 

Final Report 2021 

28 

Table 16: Core Predictor and Algebra Outcome Variables 

Potential Predictive Factors 

Content Area Target Examples 

Predictor: Number Sense 

A1a - Whole Numbers 
Operations with and conceptual understanding of 

place value with whole numbers  
Released Items 

A1b - Fractions 
Operations with and conceptual understanding of 

proper fractions and mixed numbers  
Released Item 

A1c - Decimals and Place 

Value 

Read, write, and compare decimals to the 

thousands 
Released Item 

 Predictor: Problem Solving 

A2a - Basic Problem Solving: 

Whole Numbers 

One-step word problems involving whole 

numbers 
Released Item 

A2b - Basic Problem Solving: 

Fractions 
One-step word problems involving fractions Released Item 

A3a - Complex Problem 

Solving: Whole Numbers 

Multi-step or higher complexity word problems 

with whole numbers 
Released Item 

A3b - Complex Problem 

Solving: Rational Numbers 

Multi-step or higher complexity word problems 

with fractions or decimals 
Released Item 

Predictor: Reasoning & Communicating 

A4- Mathematical Reasoning 

& Communication 

Construction of arguments to support 

mathematical reasoning or to critique the 

reasoning of others  

Released Item 

Contrast: Geometry and Measurement 

AG - Understand shapes, 

volume and measurement 

Convert like measurements within a 

measurement system; Identify properties of 

shapes; volumes of solids 

Released Item 

Outcomes: Critical Components of Algebra I 

B1 - Quantitative Literacy 
Identify and graph relationships between 

quantities  
Released Item 

B2 - Algebra as Generalized 

Arithmetic 

Read, write, and transform expressions and 

equations using arithmetic operations 
Released Item 

B3 - Algebra as Functional 

Thinking 

Formulating and interpretating, linear, quadratic, 

and exponential relations between quantities 
Released Item 

B4- Algebra in Constraint 

Equations 

Solve constraint equations involving linear, 

quadratic, and exponential relations between 

quantities  

Released Item 

Contrast: Geometry and Statistics 

B5- Understand the properties 

of geometric figures and the 

basics of sampling, 

distributions, and inferences 

Construct and describe the features of 

geometrical figures and the relations between 

them; use random sampling to draw inferences 

about a population  

Geometry Released Item 

Statistics Released Item 

https://sampleitems.smarterbalanced.org/Item/200-183529?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183200?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183310?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183252?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183214?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183368?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183258?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/item/200-183338?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/item/200-183605?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183515?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183314?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183587?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;%5C&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183250?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183248?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
https://sampleitems.smarterbalanced.org/Item/200-183641?&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0&isaap=TDS_SCNotepad;TDS_WL_Glossary;TDS_Highlight1;TDS_CalcSciInv;TDS_ExpandablePassages1;TDS_ST1;TDS_PS_L0;TDS_CC0;TDS_Masking0;DISABLED;ENU;TDS_ILG0;TDS_ASL0;TDS_BT0;TDS_SLM0;TDS_TTS0;
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Expected performance. To determine the expected performance for each item, we used 

unidimensional IRT models for selected response and constructed response (polytomous) items. For 

selected-response items (e.g., multiple-choice, true/false), we used the two-parameter logistic (2PL) 

model (Birnbaum, 1968). The 2PL model is given by: 

Pi(𝜃j) = exp[Dai(𝜃j – bi)] / (1 + exp[Dai(𝜃j – bi)]),  Eq 1 

where Pi(𝜃j) is the probability of a correct response to item i by a student with an overall

mathematics competence 𝜃j, and ai is the item discrimination parameter and bi is the item difficulty

parameter. The student (𝜃j) parameters were provided as part of the data report for each student and

each academic year. The item parameters (ai and bi) were provided by Smarter Balanced for each item. 

D is a constant that puts the 𝜃 competence scale into the same metric as a normal ogive model (D =

1.7).  

For constructed-response items, that is, items scored in categories ranging from 0–5, we used 

the generalized partial credit model (GPCM; Muraki, 1992) to estimate performance for each item. 

GPCM is given by: 

 𝑃𝑖ℎ(𝜃𝑗) =
𝑒𝑥𝑝 ∑ [𝐷𝑎𝑖(𝜃𝑗−𝑏𝑖+𝑑𝑖𝑣)]ℎ

𝑣=1

∑ 𝑒𝑥𝑝 ∑ [𝐷𝑎𝑖(𝜃𝑗−𝑏𝑖+𝑑𝑖𝑣)]ℎ
𝑣=1

𝑛𝑖
ℎ=1

,  Eq 2 

where, Pih(𝜃j) is the probability of student j with overall mathematics competence 𝜃j obtaining a

score of h on item i, n is the number of item categories, 𝑏𝑖 is the item location parameter, 𝑑𝑖𝑣 is the

category parameter for item i for category v, and D is a scaling constant given previously. 

We used custom-built scripts written in Python to estimate for each item, student, and year, the 

expected performance using one of the models mentioned above (Python Software Foundation, 2020).
7

 

For the selected-response items, we used the parameters provided by SBAC to estimate expected 

performance. For constructed-response items, we used the generalized partial credit model to 

determine the probability of achieving each category-score and then summed all those probabilities to 

achieve an overall single performance score. 

Residual calculation. To calculate the deviation between the student’s actual score and the model 

predicted expected performance (calculated in the previous step), we subtracted the observed score by 

the predicted score and divided the resulting score by the number of categories - 1. In this way, all 

residuals were in the same scale and varied between -1 and 1. Note that positive residuals are observed 

for correct responses (i.e., a correct response scored as 1 will always be greater than the expected 

probability of a correct response). Conversely, negative residuals are observed for incorrect responses. 

For polytomous items, scored responses in higher categories will generally correspond to higher 

residuals, and vice versa.  

Residual standardization. To facilitate comparison across years, grades, and students, we 

standardized all residuals. We subtracted each item residual by the average residual on that item for 

the same grade and academic year and divided by the standard deviation of residuals for that item for 

the same grade and academic year. This standardization process transforms each residual in standard 

deviation units from the average residual for that item among students of the same grade and who 

took that item at the same time.  

Averaged standardized residuals by group of items. Finally, for each student, we calculated a single 

standardized residual score for each key algebra predictor and each algebra outcome of interest (see 

Table 16). This was done by averaging the standardized residuals of all items that belonged to each 

predictor or outcome variable. 

7

 All analytic scripts are available through Github: https://github.com/LearnSphere/EMERALDS-II 
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For Idaho, not all students completed items for all predictor variables (see Appendix D), and 

thus we used k-nearest neighbor (k-NN) models to impute missing data. If a student did not complete 

any item for a given predictor variable (e.g., A1a - Whole Numbers), we used k-NN models to impute 

this value. That is, taking as the full sample all students who had completed at least one item for the 

main outcome variable B (Table 16), we imputed data for predictor variables if the student did not 

complete at least one item for that predictor. Using k-NN imputation fills in missing values with the 

distance-weighted averaged of the k closest neighbor observations based on Euclidean distance 

(Altman, 1992). Following this process, we derived scores for all students for all predictor and outcome 

variables.  

To achieve our goal of longitudinally following students, an item had to have been classified as 

an early prealgebra predictor and had to have been completed when the student was in grades 3 to 5, 

inclusive (Table 16). Similarly, for an item to be considered as part of an Algebra variable, it had to be 

among the Algebra outcomes of interest and had to have been completed when the student was in 

grades 6 to 8, inclusive. 

Finally, to evaluate our approach we compared the residuals (before standardization) to the 

student’s overall mathematics scores (𝜃j ). The residuals should capture variation above and beyond the

students’ overall mathematics competence; therefore, correlations between residuals and mathematics 

competence should be approximately 0. The approach, as expected, resulted in a trivial correlation 

between students’ 𝜃j and their scores on the residualized items, as shown in Figure 2 for Idaho (r =

.039). Figures 3 and 4 show the same pattern for the 5/8 cohort for students from California in grades 

5 and 8 respectively; the results are the same for the 4/7 cohort. 

The residual approach is premised on the notion that student performance for a given cluster 

can be accurately distinguished from overall performance. To the extent that the construct is 

essentially unidimensional, average item residuals should be small and insignificant. On the other 

hand, if there is substantive variability in the clusters that is not explained by the overall score, one 

should expect to see larger average residuals for those clusters. If the average residuals by cluster are 

small, identifying relationships between proximal clusters (predictor clusters in the earlier grades) and 

distal clusters (outcome clusters in the later grades) may not be very informative.  

As an alternative to the residual approach, item responses could be modeled separately for 

each cluster of items (see Appendix C). With the residual approach, the goal was to partial out the 

variability associated with a subset of items from the overall performance score. Conversely, by only 

including a particular subset of items when creating an IRT subscale, only the associated variability in 

those specific items is considered. While this is a subtle difference, the approach may provide more 

interpretable results with respect to examinations of subscore reliability and the practical significance 

of any associated effects in the regression analyses. 
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Figure 2. Correlations Between Residual Scores and Overall Mathematical Competence for Idaho 

Figure 3. Grade 5 Correlations Between Residual Scores and Overall Mathematical Competence for 

California 
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Figure 4. Grade 8 Correlations Between Residual Scores and Overall Mathematical Competence for 

California 

IRT Subscore Variables 

The development of subscores for each of the item clusters described in Table 16 involved several 

stages. New scales were created for each cluster using the same general IRT approach used to establish 

the overall SBAC mathematics competence (i.e., theta) score. 

Item parameters (provided by SBAC) and student abilities were estimated separately for each 

cluster (i.e., separate unidimensional scales were created); a multidimensional model was not 

employed. In general, all available data were used to estimate the item and person parameters; 

however, items with fewer than 100 responses and students with fewer than three responses, for a 

given cluster, were excluded from the estimation. The output from the IRT subscore estimation was 

reviewed with particular attention to convergence, out-of-range item parameters (items with very low or 

negative slopes and items with absolute difficulty/location estimates greater than 6), item fit, and 

marginal reliability. Several items, across scales, had negative discrimination slopes; these items were 

excluded. Parameters for the retained items were re-estimated.  

Based on the marginal reliabilities, scores could not be created for several of the variables, 

primarily due to students having taken too few items in these clusters. As such, the design was 

expanded to include students from the 4/7 cohort. Due to staggered grades across the two cohorts, 

predictor clusters were established using grades 4 and 5 items across the cohorts; outcome clusters 

were established using grades 7 and 8 items across the cohorts. 

To combine the responses from the 5/8 and 4/7 cohorts for a given cluster, the set of all 

administered items was identified for fifth-grade students from the 5/8 cluster and fourth- and fifth-

grade students from the 4/7 cluster. The resulting dataset included one row per student (a total of 

850,057 rows) and columns for each unique item in the cluster. The grades 4 and 5 responses for the 

students from the 4/7 cohort were combined. That is, they were treated as if they were collected as 
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part of a single test administration. In the rare instances where a student received the same item in 

both years, the higher scored response was retained. The grade 7 and grade 8 data from the 5/8 

cohort were combined with the grade 7 data from the 4/7 cohort using the same approach. 

It is important to note that the defensibility of concatenating the item responses for the grades 

4 and 5 students and the grades 7 and 8 students is based on the assumptions that the same construct 

is measured at both grades and that student performance across grades is highly correlated. The 

scores in grades 4 and 5 from the 4/7 cohort are correlated at r = .86; the scores in grades 7 and 8 

from the 5/8 cohort are correlated at r = .87. While these correlations are high, the shared variance 

between grades is only around 75%. It is unclear how much of the unexplained variance is due to 

random error, systematic differences associated with student learning, and/or potential changes in the 

construct. As such, concatenating the responses may be reasonable to allow for the inclusion of a more 

complete set of subscores in the regression analyses; however, the approach is not ideal. 

The numbers of students, available items, and reliabilities for the subscore variables across the 

two cohorts are shown in Appendix E. With respect to the marginal reliabilities, the presumption is that 

each student has responses for the same number of items. While this is generally true, there are some 

clusters with notably greater variability in the number of responses. As such, the reported marginal 

reliabilities should be interpreted as rough indicators of stability. Note that all the predictor and 

outcome clusters were included in the regression analyses, with the exception of Basic Problem Solving 

with Whole Numbers (A2a, Table 16) or Algebra in Constraint Equations (B4, Table 16). These were 

excluded because there was not a sufficient number of items to construct reliable variables.  

Item parameters and student abilities were scaled separately for each item cluster. That is, each 

cluster was treated as a separate, unidimensional scale. Dichotomously scored items were fitted using 

the two-parameter logistic model (2PL); polytomously scored items were fitted using the generalized 

partial credit model (GPCM). A scaling constant of 1.7 was used to place the estimates on a normal 

metric. Item parameters were estimated via marginal maximum likelihood using the program MDLTM 

(von Davier, 2017) based on a single group design. That is, the combined data across cohorts were 

treated as a single population. For the purpose of identification, the item slopes were constrained to 

have a mean of unity; the item difficulty/location parameters were constrained to have a mean of zero. 

Expected a posteriori estimates of student ability were compiled and standardized. Convergence of the 

estimation algorithm was assured before the resulting parameter estimates were used in further 

analyses. 

After each estimation run, the item parameters were reviewed. Items with negative slopes 

and/or items with difficulties with an absolute value greater than six were excluded. The estimation for 

the scales in these instances were rerun. Marginal reliabilities were compiled based on the final ability 

estimates (see Appendix E; Table E1, Table E2). 

Regression Analyses 

Initial regression models for the IRT residuals were developed based on the data from Idaho and then 

replicated with the data from California and Washington. The initial models for the IRT subscale scores 

were first run based on the data from California and then replicated with data from Idaho and 

Washington.   

IRT residual variables. For these analyses, we only included data from students from whom we had 

both early prealgebra predictors and later algebra outcomes. We compared three models to estimate 

the unique influence of each prealgebra predictor on algebra outcomes: (1) a model predicting all 

Algebra outcomes; (2) a model predicting Geometry and Measurement outcomes in grades 6 to 8, 

inclusive; and (3) a model predicting English proficiency in grades 6 to 8, inclusive.  In all models, we 

used simultaneous linear regression including each of the prealgebra variables as well as the Geometry 

and Measurement contrast variable, and students’ overall English proficiency (as estimated by SBAC IRT 

models, ELA 𝜃𝑗) as predictors.
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The basic model provides information about the relative importance of prealgebra variables in 

the prediction of core Algebra outcomes. The models predicting later Geometry and Statistics and ELA 

outcomes provide important contrasts by determining if the same or different prealgebra variables 

predict later non-Algebra outcomes. The contrasts allow us to determine if some prealgebra variables 

are uniquely related to later Algebra outcomes. 

We also ran separate models predicting each specific Algebra subscore, that is, Algebra: 

Quantitative Literacy, Algebra: Generalized Arithmetic, Algebra: Functional Thinking, and Algebra: 

Constraint Equations. We compared each one of these with the results of models for Geometry and 

Statistics and ELA to extract unique predictors of each of these critical components of Algebra.  

For Idaho and Washington, we completed a second step of repeating all models including 

school and district as nested random variables to account for natural variation that is likely to occur 

across districts and schools inside districts across the state. This type of mixed model is more 

complicated for the data from California. This is due, in part, to single charter schools that are also 

designated as a single district.  

All regression models were run in R using the base linear modeling function (R Core Team, 

2017). Because all residuals were standardized previously to create variables, the regression estimates 

can be directly compared and interpreted as effect sizes, allowing us to compare the relative impact 

that 1 standard deviation increase/decrease in each predictor has on the outcome variable. 

IRT subscore variables. By combining the data across cohorts, scores were available for a large 

number of California students for all but two of the predictor and outcome clusters. To maximize the 

information available in the regression analyses, a multiple imputation approach was used to fill in the 

missing scores for the predictor variables. The R package, “Amelia,” was used for the imputation 

(Honaker et al., 2011). This approach uses the EM algorithm to replicate the observed covariance 

matrix. Five imputed datasets were created. The pairwise correlations between the predictor and 

outcome variables, including overall Math and ELA scores, before and after the imputation are shown in 

Appendix E; Table E1 and Table E2, respectively. The median absolute difference between the 

correlations is zero; the root mean squared difference is 0.008. In short, there are essentially no 

differences. 

Five separate regression models, as shown in Table 17, were fit for each of the three retained 

Algebra outcome measures (B1, B2, B3; see Table 15), the overall measure of Algebra performance 

(including all available items from B1, B2, B3, and B4), and the contrast Geometry and Statistics 

outcome. The model specification for each of the models was the same for each outcome measure (i.e., 

the only difference for a given model is the outcome variable). Below is an overview of the five models.  
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Table 17: Basic Regression Models 

Model 1 Main effects only for each of the predictor variables. 

o A1a, A1b, A1c, A2b, A3a, A3b, A4, AG

Model 2 Main effects only for each of the predictor variables with ELA score as a covariate. 

o A1a, A1b, A1c, A2b, A3a, A3b, A4, AG, ELA

Model 3 Main effects only for each of the predictor variables with overall Math score as a covariate. 

o A1a, A1b, A1c, A2b, A3a, A3b, A4, AG, Math

Model 4 Main effects only for each of the predictor variables with ELA and Math scores as covariates. 

o A1a, A1b, A1c, A2b, A3a, A3b, A4, AG, ELA, Math

Model 5 Model 5A: Main effects for A4 (the strongest predictor of algebra, based on the previous 

models), ELA score, and a range of demographic variables; additionally, interaction effects 

between A4 and the demographic variables (the interaction effects are denoted by the 

colons, e.g., A4: Female is the effect for Females with a given A4 score)  

Model 5B: Identical to Model 5A, except earlier overall Mathematics competence (theta 

 score) was substituted for A4 

MATHia 

All analyses were done at the workspace level instead of the problem level because, with the mastery 

and adaptive nature of the software, analyses would be confounded with initial knowledge and ability. 

  After inspection of the data to identify possible missing data or variable data by school and course 

to spot any potential issues, we conducted basic data cleaning. We removed students for whom we did 

not have outcome data; we imputed grade-attended data where missing based on previous years’ grade 

attended, and we removed students for whom we did not have both early FSA math and Algebra I EOC 

scores. In the clean data, we conducted two sets of analyses. The first focused on CCSS topics that 

were practiced by students. We did this at two levels: first, considering the entire dataset and second, 

considering only the sample of students for whom we also had Algebra I EOC scores. 

Second, mixed-effect regression models were used to predict Algebra I EOC scores using the 

number of CCSS-linked workspaces completed as predictors. The models included random effects for 

schools and type of class in which the student was enrolled while using MATHia (Regular Math, 

Advanced Math, Remedial Math, Algebra I). The grade enrolled and the standardized FSA Math test 

score were also added as covariates. Inspection of the data revealed that the distribution of the number 

of workspaces completed was skewed right. To address this potential issue, we transformed the 

variable by taking the log of the number of workspaces. Analyses with and without logging showed the 

same pattern of results. For ease of interpretability, we are reporting analyses without the log 

transformation.  

All numeric predictor and outcome variables were standardized in all regression analyses at the 

academic year, school, and class level by converting the raw values to z-scores. This transformation 

makes it easier to compare variables as standard deviations of change and interpret coefficients as 

standardized effect sizes. 
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Results 

The findings for each of the four questions are presented in succession. For readers who do not wish 

to read through the detailed analyses, the core findings associated with each set of analyses are 

previewed at the beginning of each of these sections. 

QUESTION A 

Question A: Can we identify the factors in K–8 achievement data most predictive of success in Algebra? 

Can we find factors more specific than “mathematics” and more useful than broad topics like “number” 

and “geometry”?  

In preview, for the IRT residuals, several earlier mathematics competencies (e.g., Problem Solving 

with Whole Numbers) predicted later overall Algebra scores for students in Idaho, controlling for 

earlier overall mathematics scores. However, these effects were not specific to Algebra (some 

also predicted later Geometry or ELA scores), and none of them were practically significant. There 

were few significant results for students in California.  

For the IRT factor scores, there are a few specific earlier mathematics competencies (e.g., 

Mathematical Reasoning & Communication) that predict later overall performance in Algebra for 

students in California, but these effects are small and not practically significant once earlier 

overall mathematical performance is controlled. The latter is a substantive predictor of later 

overall Algebra outcomes and reveals that performance in elementary grade CCSS, which 

emphasizes the concepts, procedural fluencies, and applications of arithmetic, is an early 

indicator of students’ preparation for learning algebraic material in later grades. This finding was 

also confirmed for students in Idaho and Washington.  

The first of two results sections present findings for the IRT residuals and the second for the IRT 

subscores.  

IRT Residuals 

Idaho and Washington 

An overall summary of the results for Idaho is presented in Table 18 without estimation of random 

effects for districts and schools; the individual regression results for overall Algebra, Geometry and 

Statistics, and ELA outcomes are in Appendix G. The initial model predicted overall Algebra outcomes 

using each of the critical prealgebra variables, as well as overall ELA ability and the contrast Geometry 

and Measurement score (also in grades 3–5). The model was significant and accounted for 4% of the 

variance in later Algebra outcomes (𝐹(10,42461)  =  156.3, 𝑝 < .0001).

As it can be seen in Table 18, multiple factors were positive predictors of overall Algebra 

performance, including Number Sense: Fractions, Basic Problem Solving with Whole Numbers, and 

Complex Problem Solving with Whole Numbers. The strongest of these predictors is Basic Problem 

Solving with Whole Numbers (𝛽 = 0.098), followed by Fractions (𝛽 = 0.009) and Complex Problem

Solving with Whole Numbers (𝛽 = 0.003). Basic Problem Solving with Fractions was a negative predictor

of overall Algebra knowledge (𝛽 = −0.004), controlling for other factors in the model. Both ELA and

Geometry and Measurement were positive predictors of later Algebra as well. However, it is important 

to note that both were weaker predictors than Basic Problem Solving with Whole Numbers (𝛽 = 0.007and

𝛽 = 0.011, respectively).

As mentioned before, to fully characterize the unique predictors of Algebra, it is important to 

compare the basic model (Algebra) with models predicting Geometry and Statistics and ELA. Both of the 
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latter models were significant, but only explained 0.33% (𝐹(10,42461) = 14.62, 𝑝 < .0001), and 0.49%

(𝐹(9,42461) = 24.28, 𝑝 < .0001) of the variance in Geometry and Statistics and ELA, respectively.

The key outcomes in Table 18 for Idaho and Table 19 for Washington are later overall Algebra 

scores, and the core contrast outcomes are later Geometry and Statistics and ELA scores. Earlier 

Fractions performance predicted all three outcomes, whereas Basic Problem Solving with Whole 

Numbers significantly predicted overall Algebra and Geometry and Statistics but was negatively related 

to later ELA scores. The pattern suggests that early Fractions knowledge and Whole Number Problem 

Solving were predictive of later math outcomes broadly and not algebra specifically, above and beyond 

earlier overall mathematics competence. Overall, however, the magnitude of these effects is not large 

and may not be practically important.   

Moreover, earlier Geometry and Measurement was as important as Fractions in predicting later 

Algebra and thus the specificity of the relation between early Fractions knowledge and later Algebra 

outcomes is uncertain. Complex Problem Solving with Whole Numbers was the one factor that 

predicted later Algebra but not Statistics and Geometry outcomes. This predictor did, however, predict 

later ELA scores and thus likely assesses reading and language comprehension, on top of early 

mathematical content knowledge.  

Looking at each critical aspect of Algebra, we see a pattern that is similar to the results for 

overall Algebra, but with the following exceptions. Although performance in Number Sense: Fractions 

was a positive predictor for most critical components of Algebra, it is a negative predictor of Algebra in 

Constraint Equations (B4). Similarly, Basic Problem Solving with Whole Numbers and Complex Problem 

Solving with Whole numbers were negative predictors of Quantitative Literacy only, while remaining 

positive predictors of all the other critical components of Algebra. 

Finally, to account for variability that might exist across districts and schools within districts, 

we re-ran all models with school nested in district as a random effect, which allows for variation across 

students from different schools in the same district and across districts. The summary results are 

presented below in Table 20 (Idaho) and Table 21 (Washington). As it can be seen, the pattern is similar 

to that shown in Tables 18 and 19, respectively. 
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Table 18: Summary of Standardized Estimates Across all Regression Models for Idaho (without 

School and District as Random Effects) 

*Statistically significant, p < .05.

Outcomes 
Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Constraint 

Equations 

Geometry 

and Statistics 
ELA 

Predictor 

A1a - Whole Numbers -0.002 0.004 0.006 -0.023* 0.045 -0.003 -0.055*

A1b - Fractions 0.009* 0.005* 0.010* 0.014* -0.018* 0.013* 0.050* 

A1c - Decimals and 

Place Value 
0.003 0.012* -0.013* -0.001 0.000 -0.011* 0.015 

A2a - Basic Problem 

Solving: Whole 

Numbers 

0.098* -0.040* 0.469* 0.056* 0.248* 0.081* -0.078*

A2b - Basic Problem 

Solving: Fractions 
-0.004* -0.004* -0.024* 0.009* 0.025* -0.006 -0.005

A3a - Complex 

Problem Solving: 

Whole Numbers 

0.003* -0.005* 0.018* 0.007 0.026* -0.002 0.050* 

A3b - Complex 

Problem Solving: 

Rational Numbers 

0.002 -0.002 0.003* 0.006 0.041* 0.002 -0.012

A4 - Mathematical 

Reasoning & 

Communication 

-0.001 0.008* -0.021* -0.008 -0.011 -0.002 0.097* 

ELA 0.007* -0.001 0.023* 0.007* 0.079* 0.011* --- 

Geometry and 

Measurement 
0.011* 0.004* 0.032* 0.013* -0.058* 0.010* 0.044* 
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Table 19: Summary of Standardized Estimates Across all Regression Models for 

Washington (without School and District as Random Effects) 

Outcomes 
Overall 

Algebra 

Quantitativ

e Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Constraint 

Equations 

Geometr

y 
ELA 

Predictor 

A1a - Whole 

Numbers 
-0.001 0.002* -0.007* -0.003 0.003 -0.003 -0.018*

A1b - Fractions 0.002* 0.008* -0.015* 0.003 0.000 0.010* -0.021*

A1c - Decimals 

and Place Value 
0.006* 0.010* 0.007* -0.001 -0.002 -0.003 -0.030*

A2a - Basic 

Problem Solving: 

Whole Numbers 

-0.009* 0.000 -0.020 -0.017* 0.009* -0.002 0.088* 

A2b - Basic 

Problem Solving: 

Fractions 

0.003* 0.005* 0.001 0.000 -0.003 -0.004* -0.029*

A3a - Complex 

Problem Solving: 

Whole Numbers 

-0.001 -0.001 -0.004 0.001 -0.001 0.004 0.047* 

A3b - Complex 

Problem Solving: 

Rational Numbers 

-0.001 -0.001 -0.008* 0.004* -0.008* 0.004* -0.020*

A4 - Mathematical 

Reasoning & 

Communication 

0.005* 0.010* 0.000 0.001 -0.005 0.007* 0.163* 

ELA 0.007* 0.000 0.022* 0.011* -0.013* 0.006* -- 

Geometry and 

Measurement 
0.000 0.004* -0.006* -0.001 -0.012* 0.012* 0.077* 

*Statistically significant, p < .05.
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Table 20: Summary of Standardized Estimates Across all Regression Models for Idaho (with 

School and District as Random Effects) 

Outcome Variables 
Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Constraint 

Equations 

Geometry 

and Statistics 
ELA 

Predictor Variables 

A1a - Whole Numbers -0.002 0.004 0.003 -0.021* 0.046* -0.003 -0.058*

A1b - Fractions 0.009* 0.005* 0.011* 0.013* -0.017* 0.013* -0.063*

A1c - Decimals and 

Place Value 
0.003* 0.011* -0.012* 0.000 0.000 -0.011* 0.011 

A2a - Basic Problem 

Solving: Whole 

Numbers 

0.096* -0.039* 0.453* 0.057* 0.248* 0.082* -0.087*

A2b - Basic Problem 

Solving: Fractions 
-0.004* -0.005* -0.021* 0.009* 0.025* -0.007 -0.009

A3a - Complex 

Problem Solving: 

Whole Numbers 

0.003* -0.005 0.016* 0.007 0.026* -0.002 0.051* 

A3b - Complex 

Problem Solving: 

Rational Numbers 

0.002 -0.002 0.004 0.005 0.041* 0.001 -0.009

A4 - Mathematical 

Reasoning & 

Communication 

-0.001 0.007* -0.017* -0.008 -0.011 -0.002 0.089* 

ELA 0.007* -0.001 0.026* 0.007 0.078* 0.009* --- 

Geometry and 

Measurement 
0.010* 0.003* 0.024* 0.013* -0.054* 0.012* 0.047* 

*Statistically significant, p < .05.
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Table 21: Summary of Standardized Estimates Across all Regression Models for Washington (with 

School and District as Random Effects) 

Outcome Variables 
Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Constraint 

Equations 

Geometry 

and Statistics 
ELA 

Predictor Variables 

A1a - Whole Numbers 0.000 0.003* -0.004* -0.003 0.004 -0.004* -0.021*

A1b - Fractions 0.002* 0.008* -0.013* 0.003 0.000 0.010* -0.031*

A1c - Decimals and 

Place Value 
0.005* 0.010* 0.006* -0.001 -0.002 -0.002 -0.012*

A2a - Basic Problem 

Solving: Whole 

Numbers 

-0.008* 0.000 -0.019* -0.017* 0.009* -0.002 0.085* 

A2b - Basic Problem 

Solving: Fractions 
0.003* 0.005* 0.001 0.000 -0.004 -0.004* -0.027*

A3a - Complex 

Problem Solving: 

Whole Numbers 

-0.001 -0.001 -0.004 0.002 -0.002 0.004 0.033* 

A3b - Complex 

Problem Solving: 

Rational Numbers 

-0.001 -0.001 -0.006* 0.004* -0.008* 0.004* -0.025*

A4 - Mathematical 

Reasoning & 

Communication 

0.005* 0.009* 0.002 0.000 -0.005 0.007* 0.138* 

Geometry and 

Measurement 
0.000 0.004* -0.006* -0.001 -0.012* 0.011* 0.057* 

ELA 0.008* 0.000 0.025* 0.012* -0.015* 0.006* -- 

California  

The same analyses, as noted, were conducted for California as in Idaho and Washington, with the 

exception of Algebra: Constraint Equations as an outcome and Problem Solving with Whole Numbers as 

a predictor. This is because reliable estimates of these variables could not be obtained for the IRT 

subscore analyses (below), and thus they were dropped for all California analyses. As with the Idaho 

and Washington analyses, later Geometry and Statistics and ELA scores were used as contrasts. As will 

be seen, the most consistent results emerge for the overall later Algebra measure, likely because it was 

more reliable than the more specific Algebra outcome measures.   

The most basic results, without control of early mathematics competence and ELA scores, are 

shown in Table 22. To provide an added control, the same predictors along with control of early ELA 

and overall mathematics competencies are shown in Table 23; the results for models with only control 

of ELA and early overall mathematics are in Appendix H. Note that cluster-adjusted standard errors are 

presented in these tables; district was used as the clustering variable (Bell & McCaffrey, 2002). 

Unlike the findings for Idaho and Washington, there are few significant results for California; 

overall R
2

s for all models was < 1% (Appendix I). One potential reason is the inclusion of three grade 

levels for predictors and outcomes in Idaho and Washington and only two grade levels in California. The 

inclusion of only two grade levels had the benefit of focusing on the end of the elementary school years 

but may have come with the cost of less variation among students for both predictors and outcomes.  
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Table 22: Model 1 Standardized Regression Coefficients for IRT Residuals for California 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking SE 

Geometry & 

Statistics 

Beta 

Geometry & 

Statistics SE 

Predictor 

Variables 

A1a - Whole 

Numbers 
-0.0005 0.0016 0.0012 0.0017 -0.0005 0.0016 -0.0027* 0.0013 -0.0009 0.0019 

A1b - Fractions 0.0012 0.0010 0.0004 0.0010 0.0015 0.0011 -0.0001 0.0011 -0.0015 0.0011 

A1c - Decimals -0.0010 0.0011 -0.0003 0.0011 -0.0014 0.0010 -0.0013 0.0011 0.0008 0.0010 

A2b – Basic 

Problem Solving: 

Fractions 

0.0002 0.0012 0.0004 0.0012 -0.0013 0.0014 0.0019 0.0013 -0.0009 0.0014 

A3a – Complex 

Problem Solving: 

Whole Numbers 

-0.0002 0.0015 -0.0007 0.0014 -0.0004 0.0014 0.0014 0.0014 -0.0005 0.0012 

A3b – Complex 

Problem Solving: 

Fractions 

0.0004 0.0013 -0.0006 0.0012 0.0021 0.0012 0.0001 0.0011 -0.0001 0.0010 

A4 – 

Mathematical 

Reasoning & 

Communication 

0.0005 0.0011 0.0007 0.0011 0.0003 0.0011 -0.0009 0.0011 -0.0004 0.0011 

AG - Geometry & 

Measurement 
0.0001 0.0014 -0.0014 0.0014 0.0016 0.0011 0.0010 0.0013 0.0004 0.0011 

*Statistically significant, p < .05.



Preparation for Success in Algebra: Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) 

Final Report 2021 

43 

Table 23: Model 4 Standardized Regression Coefficients for IRT Residuals for California Controlling Overall Mathematics and ELA Scores 

*Statistically significant, p < .05.

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Geometry 

& Statistics 

Beta 

Geometry & 

Statistics SE 

Predictor 

Variables 

A1a - Whole 

Numbers 
-0.0005 0.0016 0.0012 0.0017 -0.0005 0.0016 -0.0027* 0.0013 -0.0009 0.0019 

A1b – Fractions 0.0012 0.0010 0.0004 0.0010 0.0015 0.0011 -0.0001 0.0011 -0.0015 0.0011 

A1c – Decimals -0.0010 0.0011 -0.0003 0.0011 -0.0014 0.0010 -0.0013 0.0011 0.0008 0.0010 

A2b – Basic 

Problem Solving: 

Fractions 

0.0002 0.0012 0.0004 0.0012 -0.0013 0.0014 0.0020 0.0013 -0.0009 0.0014 

A3a – Complex 

Problem Solving: 

Whole Numbers 

-0.0001 0.0015 -0.0009 0.0014 -0.0005 0.0014 0.0025 0.0014 -0.0012 0.0012 

A3b – Complex 

Problem Solving: 

Fractions 

0.0004 0.0013 -0.0006 0.0012 0.0021 0.0012 0.0001 0.0011 -0.0001 0.0010 

A4 – Mathematical 

Reasoning & 

Communication 

0.0005 0.0011 0.0007 0.0011 0.0003 0.0011 -0.0009 0.0011 -0.0004 0.0011 

AG – Geometry & 

Measurement 
0.0001 0.0014 -0.0014 0.0014 0.0016 0.0011 0.0010 0.0013 0.0004 0.0011 

ELA -0.0027 0.0019 -0.0011 0.0018 -0.0019 0.0018 -0.0015 0.0019 0.0018 0.0017 

Math 0.0023 0.0020 0.0013 0.0020 0.0019 0.0018 -0.0002 0.0018 -0.0005 0.0017 
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IRT Subscore Variables 

California 

The overall percentage of variance in the outcome measures explained by the predictor models are 

shown in Table 24; reliabilities of predictor and outcome variables are in Appendix E. The standardized 

coefficients for Model 1 and Model 4 are shown in Table 25 and Table 26, respectively; results from 

Model 2 and Model 3 are in Appendix J.  

As noted, Model 1 includes the simultaneous estimation of all of the reliable prealgebra 

variables in the prediction of later overall Algebra scores (across all B items, Table 16) and (separately) 

for each of the specific later outcomes (Table 25); the one exception was Algebra: Constraint 

Equations, which could not be reliably estimated. These results are only presented for readers who 

might be interested in seeing the magnitude of the relations between earlier specific math 

competencies and later math outcomes before the control of earlier overall mathematics competence 

and ELA scores. 

The key results are in Model 4, which includes the same predictors as in Model 1, along with 

overall ELA scores and overall mathematics scores (Table 26). A summary of the overall findings for the 

prediction of later ELA scores (as a contrast to the prediction of mathematics scores) across all models 

is provided in Table 27.   

Table 24: Overall Variance Explained (R
2

) for IRT Subscores for California 

Outcome 

Variables 

Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Geometry & 

Statistics 
ELA 

Model 1 0.618 0.564 0.164 0.162 0.156 0.522 

Model 2 0.641 0.581 0.176 0.177 0.168 0.659 

Model 3 0.656 0.597 0.179 0.175 0.164 0.551 

Model 4 0.665 0.603 0.184 0.183 0.171 0.662 

All models are statistically significant, p < 05. 

As shown in Table 24, all of the models were predictors of later overall Algebra and 

Quantitative Literacy; the results for these two outcomes are similar due to the high correlation 

between them (r = .96, Table F1). The prediction of Generalized Arithmetic and Functional Thinking, as 

well as Geometry and Statistics, is considerably lower but still statistically significant.
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Table 25: Model 1 Standardized Regression Coefficients for IRT Subscores for California 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Geometry 

& Statistics 

Beta 

Geometry 

& Statistics 

SE 

Predictor 

Variables 

A1a - Whole 

Numbers 
0.059* 0.001 0.056* 0.001 0.037* 0.002 0.023* 0.002 0.025* 0.002 

A1b - Fractions 0.159* 0.001 0.158* 0.001 0.058* 0.002 0.074* 0.002 0.084* 0.002 

A1c - Decimals 0.057* 0.001 0.053* 0.001 0.038* 0.001 0.027* 0.001 0.021* 0.001 

A2b - Basic 

Problem Solving: 

Fractions 

0.071* 0.001 0.069* 0.001 0.033* 0.002 0.028* 0.001 0.042* 0.002 

A3a - Complex 

Problem Solving: 

Whole Numbers 

0.095* 0.001 0.087* 0.001 0.049* 0.002 0.046* 0.002 0.049* 0.002 

A3b - Complex 

Problem Solving: 

Fractions 

0.198* 0.001 0.192* 0.001 0.093* 0.002 0.103* 0.002 0.103* 0.002 

A4 - Mathematical 

Reasoning & 

Communication 

0.386* 0.002 0.367* 0.002 0.208* 0.004 0.207* 0.003 0.188* 0.003 

AG - Geometry & 

Measurement 
0.080* 0.001 0.069* 0.001 0.068* 0.002 0.051* 0.001 0.042* 0.001 

*Statistically significant, p < .05.
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Table 26: Model 4 Standardized Regression Coefficients for IRT Subscores for California 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Geometry & 

Statistics 

Beta 

Geometry 

& Statistics 

SE 

Predictor 

Variables 

A1a - Whole 

Numbers 
0.037* 0.001 0.036* 0.001 0.022* 0.002 0.009* 0.002 0.013* 0.002 

A1b - Fractions 0.023* 0.001 0.032* 0.001 -0.027* 0.002 -0.004* 0.002 0.023* 0.001 

A1c - Decimals 0.013* 0.001 0.011* 0.001 0.010* 0.001 0.002* 0.001 0.002 0.001 

A2b - Basic 

Problem Solving: 

Fractions 

0.017* 0.001 0.019* 0.001 -0.001 0.002 -0.002 0.001 0.019* 0.002 

A3a - Complex 

Problem Solving: 

Whole Numbers 

0.035* 0.001 0.034* 0.001 0.009* 0.002 0.006* 0.002 0.015* 0.002 

A3b - Complex 

Problem Solving: 

Fractions 

0.053* 0.001 0.060* 0.002 0.000 0.002 0.015* 0.002 0.033* 0.002 

A4 - Mathematical 

Reasoning & 

Communication 

0.130* 0.002 0.135* 0.002 0.043* 0.003 0.048* 0.003 0.059* 0.002 

AG - Geometry & 

Measurement 
0.010* 0.001 0.006* 0.001 0.023* 0.001 0.009* 0.001 0.008* 0.001 

ELA 0.165* 0.002 0.130* 0.002 0.129* 0.003 0.160* 0.002 0.151* 0.002 

Math 0.454* 0.005 0.430* 0.005 0.269* 0.004 0.225* 0.003 0.163* 0.004 

*Statistically significant, p < .05.
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Given the high correlation between overall Algebra and Quantitative Literacy and the lower 

overall variance explained in the prediction of Generalized Arithmetic and Functional Thinking, we 

focused on a contrast of overall Algebra and Geometry and Statistics and later ELA scores. The 

estimates for the prealgebra prediction of overall Algebra are about double those for the prediction of 

Geometry and Statistics, suggesting earlier competencies are better predictors of later Algebra than 

Geometry and Statistics. However, early Geometry and Measurement is also a better predictor of overall 

Algebra than later Geometry and Statistics, and thus it cannot be stated with certainty that the stronger 

relation to later Algebra is related to the identified content of the prealgebra and overall Algebra 

measures; the relations could be stronger because overall Algebra is a more reliable measure than 

Geometry and Statistics (see Appendix E), or because the latter items require arithmetic. 

Most of the prealgebra variables were more strongly related to later Algebra than to later ELA, 

indicating the prealgebra measures were better indicators of domain-specific mathematical knowledge 

than reading and language comprehension. There were, however, two exceptions, Complex Problem 

Solving with Whole Numbers and Geometry and Measurement, that were more strongly related to later 

ELA than to later Algebra. The implication is that these measures have a relatively strong reading and 

language comprehension component to them. Complex Problem Solving with Fractions and Reasoning 

& Communicating were also good predictors of later ELA, suggesting reading and language 

comprehension contribute to performance on these measures.  

As shown in Table 26, controlling for earlier mathematics and English Language Arts scores 

lowers the magnitude of the relations between early prealgebra predictors and later Algebra outcomes. 

Nevertheless, nearly all the prealgebra variables remain significant predictors of later overall Algebra 

but also of later Geometry and Statistics, but in both cases the magnitude of these effects was small. 

The most important early predictors of later Algebra are those that result in larger estimates in the 

prediction of Algebra than Geometry and Statistics and larger estimates than were found for the 

relation between Geometry and Measurement and overall Algebra (i.e., 0.010 in column 2 of Table 26).  

Using these criteria, better earlier performance in Whole Numbers, Complex Problem Solving 

with Whole Numbers, and Reasoning & Communication better predicted Algebra than Geometry and 

Statistics competencies in later grades. Importantly, these relations emerge controlling for earlier 

overall mathematics and ELA performance and are stronger than the relation between earlier Geometry 

and Measurement and later Algebra. There is also some evidence for the importance of Fractions and 

Complex Problem Solving with Fractions, as the strength of the relation between these and later 

Algebra is at least double the strength of the relation between Geometry and Measurement and later 

Algebra, but both of these variables are also predictors of later Geometry and Statistics. Again, the 

magnitude of these effects was small and much lower than the effect of earlier overall mathematics 

competence (beta = 0.454 for prediction of overall Algebra).  
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Table 27: Standardized Regression Coefficients for IRT Subscores Predicting ELA for California 

Regression Models 
Model 

1 Beta 

Model 

1 SE 

Model 

2 Beta 

Model 

2 SE 

Model 

3 Beta 

Model 

3 SE 

Model 

4 Beta 

Model 

4 SE 

Predictor Variables 

A1a – Whole Numbers 0.041* 0.002 0.018* 0.002 0.024* 0.002 0.013* 0.002 

A1b – Fractions 0.108* 0.001 0.031* 0.001 -0.012* 0.002 -0.004* 0.001 

A1c – Decimals 0.029* 0.003 0.010* 0.002 -0.012* 0.003 -0.002* 0.002 

A2b – Basic Problem Solving: 

Fractions 
0.043* 0.003 0.016* 0.003 -0.005* 0.003 0.001* 0.003 

A3a – Complex Problem 

Solving: Whole Numbers 
0.120* 0.003 0.040* 0.003 0.080* 0.003 0.031* 0.003 

A3b – Complex Problem 

Solving: Fractions 
0.185* 0.003 0.061* 0.002 0.070* 0.003 0.029* 0.002 

A4 – Mathematical Reasoning 

& Communication 
0.371* 0.003 0.124* 0.002 0.175* 0.003 0.072* 0.003 

AG – Geometry & 

Measurement 
0.086* 0.003 0.027* 0.003 0.030* 0.003 0.012* 0.003 

ELA 0.608* 0.001 0.579* 0.001 

Math 0.471* 0.002 0.154* 0.002 

*Statistically significant, p < .05.

Controlling for earlier ELA, the relation between the prealgebra measures and later ELA 

is substantively reduced. Whole Numbers stands out as the only predictor with estimates at 

least twice as large in the prediction of Algebra than Geometry and Statistics or ELA, and more 

than three times larger than early Geometry and Measurement in the prediction of Algebra. 

Fractions and Complex Problem Solving with Fractions predict later Algebra and Geometry and 

Statistics but are effectively unrelated to later ELA, suggesting Fractions knowledge is important 

across mathematical domains.  

Finally, both Complex Problem Solving and the Reasoning & Communicating measures 

predict later ELA, even with control of earlier ELA, in keeping with a reading and language 

comprehension component to these measures. Even so, Complex Problem Solving with 

Fractions and Reasoning & Communication are more strongly related to later Algebra than 

Geometry and Statistics or ELA. Nevertheless, the relation between overall early mathematics 

competence and later Algebra is much stronger than the relation between any specific 

prealgebra predictor and later Algebra.  
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Idaho and Washington 

The overall percentage of variance in the outcome measures explained by the predictor models 

are shown in Table 28 and Table 29 for Idaho and Washington, respectively. The standardized 

coefficients for Model 1 are shown in Table 30 and Table 31 for Idaho and Washington, 

respectively; respective results for Model 4 are in Table 32 and Table 33. As noted for 

California, Model 1 includes the simultaneous estimation of all of the reliable prealgebra 

variables in the prediction of later overall Algebra scores (across all B items, Table 16) and 

(separately) for each of the specific later outcomes. Model 4 includes the same predictors, 

along with overall ELA scores and overall mathematics scores. 

Table 28: Overall Variance Explained (R
2

) for IRT Subscores for Idaho 

Outcome 

Variables 

Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Constraint 

Equations 

Geometry & 

Statistics 
ELA 

Model 1 0.58 0.45 0.20 0.30 0.19 0.16 0.45 

Model 2 0.62 0.50 0.22 0.33 0.20 0.18 0.64 

Model 3 0.65 0.50 0.23 0.33 0.20 0.18 0.51 

Model 4 0.66 0.51 0.23 0.34 0.20 0.19 0.64 

Table 29: Overall Variance Explained (R
2

) for IRT Subscores for Washington 

Outcome 

Variables 

Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Constraint 

Equations 

Geometry & 

Statistics 
ELA 

Model 1 0.629 0.518 0.022 0.359 0.192 0.211 0.501 

Model 2 0.663 0.540 0.236 0.389 0.207 0.231 0.664 

Model 3 0.690 0.567 0.248 0.397 0.211 0.232 0.553 

Model 4 0.690 0.578 0.252 0.415 0.213 0.231 0.668 

As in California, all of the models were predictors of later overall Algebra and Quantitative 

Literacy (see Table 28 and Table 29). The prediction of Generalized Arithmetic, Functional Thinking, 

Constraint Equations, as well as Geometry and Statistics is considerably lower, but is still statistically 

significant.
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Table 30: Model 1 Standardized Regression Coefficients for IRT Subscores for Idaho 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy Beta 

Quant- 

itative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Constraint 

Equations 

Beta 

Constraint 

Equations 

SE 

Geometry 

& Statistics 

Beta 

Geometry 

& Statistics 

SE 

Predictor 

Variables 

A1a - Whole 

Numbers 
0.139 0.004 0.116 0.004 0.097 0.005 0.118 0.005 0.000 0.004 0.099 0.005 

A1b - Fractions 0.181 0.004 0.162 0.004 0.074 0.005 0.137 0.005 0.085 0.005 0.114 0.005 

A1c - Decimals 0.071 0.003 0.068 0.004 0.043 0.004 0.039 0.004 0.084 0.005 0.023 0.005 

A2a - Basic 

Problem Solving: 

Whole Numbers 

0.014 0.003 -0.020 0.004 0.033 0.005 0.043 0.004 0.033 0.004 -0.005 0.005 

A2b - Basic 

Problem Solving: 

Fractions 

0.125 0.003 0.107 0.004 0.085 0.005 0.077 0.004 0.036 0.005 0.077 0.005 

A3a – Complex 

Problem Solving: 

Whole Numbers 

0.154 0.004 0.131 0.004 0.127 0.005 0.133 0.005 0.114 0.005 0.064 0.005 

A3b – Complex 

Problem Solving: 

Fractions 

0.207 0.004 0.183 0.004 0.101 0.005 0.165 0.005 0.054 0.005 0.114 0.005 

A4 – Mathematical 

Reasoning & 

Communication 

0.232 0.004 0.202 0.005 0.129 0.006 0.122 0.005 0.131 0.005 0.086 0.006 

Geometry & 

Measurement 
0.082 0.003 0.077 0.004 0.051 0.005 0.056 0.004 0.129 0.006 0.048 0.005 
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Table 31: Model 1 Standardized Regression Coefficients for IRT Subscores for Washington 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quant- 

itative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Constraint 

Equations 

Beta 

Constraint 

Equations 

SE 

Geometry 

& Statistics 

Beta 

Geometry & 

Statistics SE 

Predictor 

Variables 

A1a - Whole 

Numbers 
0.098 0.002 0.092 0.002 0.056 0.002 0.075 0.002 0.045 0.002 0.055 0.002 

A1b - Fractions 0.194 0.002 0.181 0.002 0.091 0.002 0.156 0.002 0.130 0.002 0.130 0.002 

A1c - Decimals 0.059 0.001 0.058 0.002 0.045 0.002 0.032 0.002 0.023 0.002 0.027 0.002 

A2a - Basic 

Problem 

Solving: Whole 

Numbers 

0.042 0.001 0.039 0.002 0.029 0.002 0.039 0.002 -0.005 0.002 0.005 0.002 

A2b - Basic 

Problem 

Solving: 

Fractions 

0.101 0.001 0.091 0.002 0.075 0.002 0.053 0.002 0.085 0.002 0.056 0.002 

A3a – Complex 

Problem 

Solving: Whole 

Numbers 

0.121 0.002 0.104 0.002 0.080 0.002 0.096 0.002 0.030 0.002 0.060 0.002 

A3b – Complex 

Problem 

Solving: 

Fractions 

0.199 0.002 0.179 0.002 0.113 0.002 0.161 0.002 0.127 0.002 0.127 0.002 

A4 – 

Mathematical 

Reasoning & 

Communication 

0.294 0.002 0.265 0.002 0.176 0.003 0.212 0.002 0.173 0.003 0.165 0.003 

Geometry & 

Measurement 
0.076 0.001 0.069 0.002 0.056 0.002 0.058 0.002 0.014 0.002 0.047 0.002 
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As with California, all of the prealgebra variables are significant predictors of all later outcomes (Model 1), although the most 

weight should be given to Number Sense: Fractions and Reasoning & Communication because these were the most reliable 

predictors (Table E3). Again, we focused on a contrast of overall Algebra and Geometry and Statistics and focused on the key results 

found for California. As shown in Table 30 and Table 31, the results are consistent with the core findings for California in that 

Number Sense: Whole Numbers, Number Sense: Fractions, Complex Problem Solving with Fractions, and Reasoning & 

Communication are all stronger predictors of later Algebra than later Geometry and Statistics. Moreover, each of these variables is 

more strongly related to later Algebra than is earlier Geometry and Measurement. One additional finding is that Problem Solving with 

Fractions is a stronger predictor of later Algebra performance in Idaho than in California.  

Table 32: Model 4 Standardized Regression Coefficients for IRT Subscores for Idaho 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy Beta 

Quant-

itative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Constraint 

Equations 

Beta 

Constraint 

Equations 

SE 

Geometry 

& Statistics 

Beta 

Geometry 

& Statistics 

SE 

Predictor 

Variables 

A1a – Whole 

Numbers 
0.080 0.003 0.066 0.004 0.061 0.005 0.076 0.005 0.058 0.005 0.000 0.004 

A1b – Fractions -0.007 0.004 -0.006 0.005 -0.041 0.006 0.014 0.006 -0.001 0.006 0.066 0.005 

A1c – Decimals 0.011 0.003 0.014 0.004 0.007 0.004 0.002 0.004 0.007 0.005 0.015 0.006 

A2a – Basic 

Problem Solving: 

Whole Numbers 

-0.019 0.003 -0.049 0.004 0.013 0.004 0.020 0.004 0.020 0.005 -0.007 0.005 

A2b – Basic 

Problem Solving: 

Fractions 

0.037 0.003 0.029 0.004 0.031 0.005 0.018 0.004 0.074 0.005 -0.023 0.005 

A3a – Complex 

Problem Solving: 

Whole Numbers 

0.050 0.004 0.043 0.004 0.063 0.005 0.056 0.005 0.005 0.006 0.030 0.005 

A3b - Complex 

Problem Solving: 

Fractions 

0.024 0.004 0.023 0.005 -0.011 0.006 0.041 0.005 0.048 0.006 0.005 0.006 

A4 – Mathematical 

Reasoning & 

Communication 

0.048 0.004 0.042 0.005 0.016 0.006 -0.006 0.006 0.044 0.006 0.016 0.006 

Geometry & 

Measurement 
0.002 0.003 0.006 0.004 0.002 0.005 0.001 0.004 0.017 0.005 -0.015 0.006 

ELA 0.157 0.005 0.098 0.006 0.106 0.007 0.181 0.007 0.087 0.007 0.004 0.005 

Math 0.533 0.007 0.500 0.009 0.319 0.011 0.307 0.010 0.233 0.011 0.126 0.007 
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As in California, controlling for earlier mathematics and ELA scores lowers the magnitude of the relations between early 

prealgebra predictors and later Algebra outcomes in both Idaho and Washington (Table 32 and Table 33). As an example, for Idaho, 

the relation between Fractions and later Algebra is no longer significant. For Idaho, the effects for Whole Numbers and Complex 

Problem Solving with Fractions remain significant but predict later Geometry and Statistics almost as well as they predict later 

Algebra. In other words, early competence with Whole Numbers and Problem Solving with Fractions predicts better performance in 

later Algebra and later Geometry and Statistics, controlling for overall mathematics competence. In contrast, Reasoning & 

Communicating not only remains a significant predictor of later Algebra, but it is also a stronger predictor of later Algebra than later 

Geometry and Statistics in Idaho. This pattern is confirmed for the data from Washington.  
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Table 33: Model 4 Standardized Regression Coefficients for IRT Subscores for Washington 

Outcome 

Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy Beta 

Quant-

itative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Constraint 

Equations 

Beta 

Constraint 

Equations 

SE 

Geometry 

& Statistics 

Beta 

Geometry & 

Statistics SE 

Predictor 

Variables 

A1a – Whole 

Numbers 
0.046 0.001 0.046 0.002 0.024 0.002 0.032 0.002 0.016 0.002 0.022 0.002 

A1b – Fractions 0.018 0.002 0.023 0.002 -0.020 0.003 0.019 0.002 0.033 0.003 0.030 0.003 

A1c – Decimals 0.012 0.001 0.016 0.001 0.013 0.002 -0.003 0.002 0.000 0.002 0.004 0.002 

A2a – Basic 

Problem Solving: 

Whole Numbers 

0.012 0.001 0.013 0.001 0.010 0.002 0.013 0.002 -0.021 0.002 -0.015 0.002 

A2b – Basic 

Problem Solving: 

Fractions 

0.026 0.001 0.024 0.002 0.026 0.002 -0.004 0.002 0.041 0.002 0.014 0.002 

A3a – Complex 

Problem Solving: 

Whole Numbers 

0.034 0.001 0.030 0.002 0.026 0.002 0.023 0.002 -0.021 0.002 0.003 0.002 

A3b – Complex 

Problem Solving: 

Fractions 

0.039 0.002 0.037 0.002 0.013 0.003 0.033 0.002 0.035 0.003 0.031 0.003 

A4 – Mathematical 

Reasoning & 

Communication 

0.102 0.002 0.097 0.002 0.054 0.003 0.056 0.003 0.062 0.003 0.049 0.003 

Geometry & 

Measurement 
0.003 0.001 0.004 0.002 0.008 0.002 -0.001 0.002 -0.026 0.002 0.003 0.002 

ELA 0.152 0.002 0.105 0.002 0.098 0.003 0.174 0.003 0.110 0.003 0.145 0.003 

Math 0.508 0.003 0.471 0.004 0.331 0.005 0.366 0.004 0.253 0.005 0.254 0.005 
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As shown in Table 34 and Table 35, most of the early prealgebra measures also predict 

later ELA scores. In fact, Reasoning & Communicating is a better predictor of later ELA than 

later Algebra (Model 1) in Idaho and about as good in Washington, in keeping with a strong 

language and reading component to the former measure.  

Table 34: Standardized Regression Coefficients for IRT Subscores Predicting ELA for Idaho 

Regression Models 
Model 1 

Beta 

Model 1 

SE 

Model 2 

Beta 

Model 2 

SE 

Model 3 

Beta 

Model 3 

SE 

Model 4 

Beta 

Model 4 

SE 

Predictor Variables 

A1a – Whole Numbers 0.107 0.004 0.044 0.004 0.061 0.004 0.035 0.004 

A1b – Fractions 0.133 0.004 0.026 0.004 -0.042 0.005 -0.018 0.004 

A1c – Decimals 0.040 0.004 0.018 0.003 -0.018 0.004 0.002 0.003 

A2a – Basic Problem 

Solving: Whole 

Numbers 

0.042 0.004 0.014 0.003 0.013 0.004 0.008 0.003 

A2b – Basic Problem 

Solving: Fractions 
0.086 0.004 0.025 0.003 0.007 0.004 0.006 0.003 

A3a – Complex 

Problem Solving: 

Whole Numbers 

0.185 0.004 0.064 0.004 0.105 0.004 0.048 0.004 

A3b – Complex 

Problem Solving: 

Fractions 

0.187 0.004 0.049 0.004 0.026 0.005 0.011 0.004 

A4 – Mathematical 

Reasoning & 

Communication 

0.217 0.005 0.057 0.004 0.060 0.005 0.022 0.004 

Geometry & 

Measurement 
0.077 0.004 0.018 0.003 0.005 0.004 0.001 0.003 

ELA -- -- 0.645 0.004 -- -- 0.600 0.005 

Math -- -- -- -- 0.577 0.008 0.170 0.008 
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Table 35: Standardized Regression Coefficients for IRT Subscores Predicting ELA for Washington 

Regression Models 
Model 1 

Beta 

Model 1 

SE 

Model 2 

Beta 

Model 2 

SE 

Model 3 

Beta 

Model 3 

SE 

Model 4 

Beta 

Model 4 

SE 

Predictor Variables 

A1a – Whole Numbers 0.079 0.002 0.033 0.001 0.035 0.002 0.022 0.001 

A1b – Fractions 0.144 0.002 0.038 0.002 -0.022 0.002 -0.007 0.002 

A1c – Decimals 0.021 0.002 0.004 0.001 -0.031 0.002 -0.011 0.001 

A2a – Basic Problem 

Solving: Whole Numbers 
0.079 0.002 0.035 0.001 0.057 0.002 0.032 0.001 

A2b – Basic Problem 

Solving: Fractions 
0.063 0.002 0.019 0.001 -0.007 0.002 0.000 0.001 

A3a – Complex Problem 

Solving: Whole Numbers 
0.150 0.002 0.044 0.002 0.085 0.002 0.032 0.002 

A3b – Complex Problem 

Solving:  Fractions 
0.178 0.002 0.051 0.002 0.038 0.002 0.016 0.002 

A4 – Mathematical 

Reasoning & 

Communication 

0.255 0.002 0.081 0.002 0.094 0.002 0.043 0.002 

Geometry & 

Measurement 
0.082 0.002 0.024 0.001 0.017 0.002 0.008 0.001 

ELA -- -- 0.633 0.002 -- -- 0.586 0.002 

Math -- -- -- -- 0.563 0.004 0.179 0.003 

QUESTION B 

Question B: Are we spending too much time on some less important standards and not enough 

on some more important standards? Where should more time and effort be invested in 

mathematics instruction, and where less? 

In preview, engagement with and mastery of algebra-related and CCSS-aligned workspaces 

during the middle school years was a substantive predictor of later Algebra I EOC 

performance. Across students, a 1 standard deviation increase in the number of mastered 

workspaces was associated with a 0.406 standard deviation increase in later Algebra I 

EOC performance, controlling for prior mathematics competence. Moreover, students who 

scored lower on prior mathematics assessments appeared to gain more than their peers 

with higher prior mathematics scores by mastering these workspaces, which was 

associated by a smaller difference in later Algebra I EOC performance. However, the 

relations between mastering specific CCSS-aligned workspaces and later Algebra I 

performance was much weaker than the overall number of mastered workspaces.   
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Student Engagement with Different CCSS 

There was high variability in the level of practice of different CCSS, across both the entire 

dataset and for the students who completed the Algebra I EOC exam. For some CCSS, students 

completed on average nine workspaces. Table 36 shows the most frequently and infrequently 

practiced CCSS for the entire dataset, only the analyses sample, and separately for seventh 

and eighth grade students. 

Table 36: Most Frequently and Least Frequently Practiced CCSS 

(means and confidence intervals in parentheses) 

Most Frequently Practiced Least Frequently Practiced 

Entire Dataset All grades 

HSF.BF.B.3 (9.62, [5.73,17.39]) 

6.EE.B.7 (9.48, [5.91,16.62])

6.EE.A.3 (7.94, [3.18,17.48])

7.EE.B.4.a (7.79, [2.93,18.79])

HSF.TF.B.5 (1.02, [0.89,1.27]) 

HSS.CP.A.5 (1.01, [0.90,1.23]) 

HSA.SSE.A.1.b (1.00, [0.94,1.14]) 

HSS.CP.A.3 (1.00, [0.95,1.11]) 

Analyses Sample 

All grades 

7.EE.B.4.a (12.59, [8.58,16.93])

6.EE.B.7 (11, [11,11])

HSF.BF.B.3 (10.11, [6.66,13.56]) 

6.EE.A.3 (7, [1.48,12.51])

8.SP.A.1 (1.02, [0.88,1.14])

8.SP.A.3 (1.02, [0.88,1.14])

HSG.CO.A.4 (1.01, [0.90,1.22]) 

HSG.GPE.B.6 (1.00, [0.93,1.08]) 

Grade 7 

7.EE.B.4.a

HSF.BF.B.3 

6.EE.B.7

HSA.APR.A.1 

HSS.ID.A.1 

HSF.BF.A.1.b 

HSF.LE.A.1.c 

8.SP.A.3

Grade 8 

6.EE.A.4

6.EE.B.7

6.EE.A.3

HSF.BF.B.3 

HSF.LE.A.1.c 

HSG.CO.A.5 

HSG.CO.A.4 

HSG.GPE.B.6 

Note. The terms refer to grade-level and specific CCSS. For instance, 6.EE.B.7 refers to grade 6 

standard, Expressions and Equations (Solve real-world and mathematical problems by writing 

and solving equations of the form x + p = q and px = q for cases in which p, q and x are all 

nonnegative rational numbers). 

CCSS Predictors of Algebra I EOC Exam Performance 

The first task was to establish if practice in the MATHia Tutor was related to later Algebra I EOC 

exam performance. To do this, we predicted the Algebra score using the number of workspaces 

mastered, number of workspaces not mastered (moved forward before mastery), and number of 

workspaces that were incomplete. If practice in the system is important, we should find that 

higher Algebra I EOC scores are predicted by the number of workspaces mastered, as opposed 

to those not mastered or incomplete. For this analysis, the earliest available FSA Math 

standardized test score and enrolled grade were covariates, and school and type of class were 

random effects. All scores were standardized with a mean of 0 and standard deviation of 1.  

The results show that the previous mathematics score was the best predictor of Algebra 

I EOC scores, followed by the number of mastered workspaces (Table 37). The latter effect is 

substantive: a 1 standard deviation (SD) increase in number of mastered workspaces is related 

to a 0.406 SD increase in later Algebra 1 scores; overall R
2

 = .66. The numbers of non-mastered

and incomplete workspaces were both negative predictors of Algebra scores. The interaction 

between number of mastered workspaces and previous mathematics scores was significant, 
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indicating that gains associated with mastered workspaces varied by prior mathematics 

competence.  

Figure 5 shows the interaction effect (based on parameter estimates) and suggests that 

students with lower scores gain more than ones with higher scores by mastering additional 

workspaces. In other words, the gap between higher- and lower-scoring students in later 

Algebra I EOC scores becomes smaller with increases in the number of mastered workspaces.  

Table 37: Results of Regression Predicting Algebra I EOC Exam Scores Based on Different 

Types of Tutor Usage Frequency 

Predictor Estimate Std Error t p 

(Intercept) -1.747 0.225 -7.77 0.000 

Workspaces Mastered 0.406 0.024 17.28 < .001 

Workspaces Not Completed -0.029 0.011 -2.65 0.008 

Workspaces Not Mastered -0.167 0.012 -13.45 < .001 

Previous Mathematics Score 0.707 0.020 35.66 < .001 

Mathematics Course Grade (grades 6 or 7) 0.232 0.027 8.57 < .001 

Interaction: Mastered by Previous Mathematics Score -0.049 0.016 -3.14 0.002 

Figure 5: Interaction Between Prior Mathematics Score and Workspaces Mastered in the 

Prediction of Later Algebra I EOC Scores 
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To explore the relation between specific CCSS engagement and later Algebra I EOC 

scores, we selected all the CCSS with variability in usage (regardless of mastered, non-mastered, 

or incomplete status), using the frequency analyses from the previous section (Table 37). CCSS 

mastered by all students were removed from the analyses.(See Appendix K for the list of these 

standards.) If a particular student did not complete any workspaces for a given CCSS, we 

entered 0 for that CCSS. We then repeated the same regression as above using the number of 

workspaces for each CCSS as predictors. We included in the analyses only CCSS where more 

than 25% of the students saw more than 0 workspaces. Using these criteria, the model included 

50 CCSS.  

To account for the large number of predictors (CCSS, grade, and previous math score), we used 

a significance criterion of p < .01. The model was significant and explained 64% of the variance. 

As shown in Table 38, two CCSS were significant predictors of later Algebra I EOC success, 

controlling for grade and prior mathematics performance; engagement in one was inversely 

related to engagement in the other (r = -.44). The absolute magnitude of both of these effects 

was modest. For instance, a 1 SD increase in the mastery of workspaces related to 7.EE.B.4.a 

was associated with a 0.149 SD increase in later Algebra I EOC scores, controlling for prior 

math scores.  
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Table 38: Practiced Workspaces that Predict Later Algebra I EOC Exam Scores 

Predictor (CCSS) Estimate Std Error t p 
Non-Zero 

Values 

Mean Use 

in Sample 

Grade 7: Expressions & Equations. 

Solve word problems leading to 

equations of the form px + q = r and 

p(x + q) = r, where p, q, and r are 

specific rational numbers. Solve 

equations of these forms fluently. 

(7.EE.B.4.a) 

0.149 0.039 3.87 <.0001 1369    11.33 

High School: Interpreting Functions. 

Compare properties of two functions 

each represented in a different way 

(algebraically, graphically, 

numerically in tables, or by verbal 

descriptions).  (HSF.IF.C.9) 

0.165 0.054 3.05 <.0001 2288 2.31 

Grade 0.334 0.030 11.11 <.0001 --- --- 

Previous Mathematics Score 0.836 0.020 41.96 <.0001 --- --- 

Mismatches Between Predictors of Algebra I Success and 

Practice Emphasis 

Finally, to investigate the degree of practice time that is being spent on CCSS topics that do not 

predict later Algebra I EOC scores, we examined the CCSS that were practiced most frequently 

and least frequently. The goal was to determine which of these were significantly related to 

later Algebra success. 

Table 39 includes six CCSS topics practiced least frequently (top) and six CCSS topics 

practiced most frequently (bottom); these were assessed in terms of workspaces seen for the 

students with Algebra I EOC score and included only CCSS with at least 25% non-zero values.  

As can be seen in the Table, none of the least frequently practiced items predicted later Algebra 

performance. The only significant frequently practiced CCSS was also identified in Table 38 

(e.g., 7.EE.B.4.a).  

The five remaining CCSS were weakly and non-significantly related to later Algebra I EOC 

performance. For instance, build new functions from existing functions (HSF.BF.B.3) is frequently

practiced, but this practice is not related to later Algebra I EOC scores. The reasons for this 

(e.g., the students already had sufficient competencies in these areas, or the areas were not 

emphasized in the Algebra I EOC exam) cannot be determined from these data. 
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Table 39: Least and Most Practiced CCSS As Related to Later Algebra I EOC Scores 

CCSS Estimate p 
Mean Use in 

Sample 

Low Frequency of Practice 

High School: Functions, Linear, Quadratic, & Exponential Models. 

Construct and compare linear, quadratic, and exponential models 

and solve problems. (HSF.LE.A.1.c) 

0.061 0.263 1.01 

High School: Reasoning with Equations & Inequalities.   

Solve equations and inequalities in one variable. (HSA.REI.B.4.a) 
-0.022 0.592 1.02 

High School: Reasoning with Equations & Inequalities. Represent 

and solve equations and inequalities graphically. (HSA.REI.D.11) 
-0.054 0.206 1.02 

High School: Statistics & Probability.  

Interpreting Categorical & Quantitative Data » Summarize, represent, 

and interpret data on a single count or measurement variable. 

(HSS.ID.A.1+HSS.ID.A.2+HSS.ID.A.3)  

0.035 0.403 1.03 

High School: Interpreting Functions.  

Analyze functions using different representations. (HSF.IF.C.8.a) 
-0.060 0.102 1.03 

High School: Interpreting Functions.  

Interpret functions that arise in applications in terms of the context. 

(HSF.IF.B.5) 

0.078 0.086 1.03 

High Frequency of Practice 

Grade 7: Expressions & Equations.  

Solve word problems leading to equations of the form px + q = r and 

p(x + q) = r, where p, q, and r are specific rational numbers.  

Solve equations of these forms fluently. (7.EE.B.4.a) 

0.149 <.0001 11.33 

High School: Building Functions.  

Build new functions from existing functions. (HSF.BF.B.3) 
0.083 0.161 10.05 

High School: Arithmetic with Polynomials & Rational Expressions. 

Perform arithmetic operations on polynomials. (HSA.APR.A.1) 
-0.032 0.409 6.60 

Grade 8: Functions.  

Use functions to model relationships between quantities. (8.F.B.4) 
0.026 0.169 4.84 

High School: Arithmetic with Polynomials & Rational Expressions. 

Rewrite rational expressions. (HSA.APR.D.6) 
0.036 0.443 3.92 

High School: Creating Equations.   

Create equations that describe numbers or relationships. 

(HSA.CED.A.1) 

-0.066 0.116 3.20 
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QUESTION C 

Question C: How do clusters of students classified according to their profiles across assessment 

items fare over time? Do the achievement gaps widen for some clusters (controlling for 

background factors) but not others? Students with different profiles may benefit differently 

from different interventions. Some topics (see Question A) may be more difficult for some 

profiles, while other topics are more difficult for others. Are there some schools outperforming 

the expectations based on students’ demographic profiles for some clusters?

In preview, using IRT subscores from California, we assessed whether there were 

differences across demographic groups in the relation between earlier performance in 

Mathematical Reasoning & Communication and overall mathematics competence and later 

overall Algebra scores. These analyses revealed several statistically significant effects, 

but these were all small and of little practical importance. In all, strong performance in 

elementary mathematics CCSS, which emphasizes the concepts, procedural fluencies, and 

applications of arithmetic, was important for the later Algebra performance of all 

students. The results were similar for the MATHia analyses; that is, the benefits of 

engagement with and mastery of CCSS workspaces in middle school is associated with 

similar gains in later Algebra I EOC performance across most demographic groups. The 

benefits may have differed, however, because the level of engagement differed across 

demographic groups.  

California 

As noted before, the SBAC data did allow not us to reliably assess of many of the earlier 

prealgebra abilities (e.g., fractions vs. overall math), and thus we focused on the Mathematical 

Reasoning & Communication. The latter was the strongest predictor among the A variables and 

had the highest marginal reliability (0.74). We also assessed earlier overall mathematics 

competence (i.e., the theta score; Model 5B); the theta score was from fourth grade for the 4/7 

cohort and fifth grade from the 5/8 cohort.  

We used these as predictors (IRT subscores) of later performance in Algebra (overall IRT 

subscore). The Algebra outcomes were the same as those reported for Question A (for 

completeness) and included Geometry and Statistics as a contrast, but the results for overall 

Algebra should be considered the most reliable. As described in the methods, the associated 

regression model is the same as Model 4 but with the inclusion of an interaction between the 

Mathematical Reasoning & Communication measure and demographic groups (including English 

learner status, having a 504 Plan, and eligibility for subsidized lunches) in the prediction of 

later Algebra outcomes, and in a separate model, the interaction between overall Mathematical 

Competence and demographic group in the prediction of later Algebra outcomes.  

The main effects for the Mathematical Reasoning & Communication model are shown in 

Table 40, and the associated interaction effects are shown in Table 41. The corresponding 

results for earlier overall mathematics competence are shown in Tables 42 and 43, respectively. 

Statistically significant effects are in bold, although these do not necessarily indicate practically 

important effects.  

As an illustration of these effects, the coefficient for earlier mathematics competence 

(for all students) in the prediction of later overall Algebra (Table 42) is 0.637. This indicates 

that being 1 standard deviation above average in math skills at the end of the elementary 

school years (i.e., end of grades 4 or 5) is associated with being 0.637 standard deviations 

above average in later overall Algebra, controlling for all other factors in the model. This result 

is not surprising since we generally expect higher math performance in earlier grades to be 

associated with higher math performance in later grades.  



63 

Preparation for Success in Algebra: Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) 

Final Report 2021 

The interactions in Table 41 and Table 43 indicate the extent to which the strength of 

the relation between earlier competencies (Mathematical Reasoning & Communication and 

overall mathematics) and later Algebra outcomes differ across demographic groups. As can be 

seen in these tables, there are many statistically significant effects, but all of them are very 

small and of no practical significance. As an example, the interaction effect (Table 41) for 

economic disadvantage (eligible for free or reduced lunch) is -0.007, which is statistically 

significant. However, controlling for all other variables in the model, the strength of the relation 

between earlier Reasoning & Communication scores and later overall Algebra is 0.435, meaning 

that a 1 standard deviation increase in Reasoning & Communication scores is associated with a 

0.435 standard deviation increase in later overall Algebra scores for students who are not 

eligible for free or reduced lunch. For students who are eligible for free or reduced lunch, the 

relation between earlier Reasoning & Communication scores and later overall Algebra is 0.428 

(0.435 – 0.007).  

The overall results mean that strong earlier competencies in mathematics are similarly 

predictive of strong later outcomes in Algebra across gender, ethnic, and racial groups, English 

learner status, students with and without a 504 Plan, and students with and without economic 

disadvantage.  
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Table 40: Model 5A IRT Scores Main Effects by Student Group with Predictor A4 by Outcome Variables—Reasoning & Communication 

Predictor Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Geometry 

& Statistics 

Beta 

Geometry 

& Statistics 

SE 

A4 – Reasoning & 

Communication 
0.435* 0.003 0.442* 0.003 0.142* 0.006 0.175* 0.003 0.224* 0.004 

Female -0.050* 0.001 -0.054* 0.002 -0.004* 0.002 0.007* 0.002 -0.043* 0.002 

Hispanic or Latino -0.031* 0.005 -0.040* 0.005 0.036* 0.007 0.007 0.005 -0.064* 0.005 

American Indian or 

Alaska Native 
-0.008* 0.012 -0.007* 0.012 -0.002* 0.018 -0.006* 0.016 -0.005* 0.016 

Asian 0.090* 0.014 0.084* 0.014 0.065* 0.011 0.047* 0.010 0.031* 0.007 

Black or African 

American 
-0.040* 0.008 -0.046* 0.007 0.004* 0.011 -0.006* 0.009 -0.034* 0.008 

Native Hawaiian or 

Other Pacific Islander 
-0.001* 0.013 -0.002 0.013 0.004 0.018 0.001 0.017 -0.004* 0.015 

Filipino 0.017* 0.009 0.016* 0.009 0.014 0.012 0.018* 0.011 -0.009* 0.008 

English learner status -0.038* 0.008 -0.051* 0.008 0.033 0.008 -0.020* 0.007 -0.042* 0.004 

504 Plan -0.006* 0.008 -0.004* 0.008 -0.006* 0.010 -0.004* 0.010 -0.001 0.011 

Economic Disadvantage -0.051* 0.006 -0.059* 0.006 0.013* 0.007 -0.001* 0.005 -0.063* 0.005 

ELA 0.363* 0.002 0.325* 0.002 0.220* 0.004 0.242* 0.003 0.223* 0.002 

*Statistically significant, p < .05.  
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Table 41: Model 5A Factor Scores Interaction Effects by Student Group with Predictor A4 by Outcome Variables—Reasoning & Communication 

 

Predictor Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Geometry & 

Statistics 

Beta 

Geometry & 

Statistics 

SE 

A4: Female -0.034* 0.001 -0.026* 0.002 -0.029* 0.002 -0.017* 0.002 -0.033* 0.002 

A4: Hispanic or Latino -0.007* 0.003 -0.016* 0.003 0.042* 0.004 0.006* 0.004 -0.040* 0.003 

A4: American Indian or 

Alaska Native 
-0.002 0.010 -0.003* 0.011 0.003 0.015 -0.001 0.017 -0.004 0.017 

A4: Asian 0.001 0.007 0.001 0.007 -0.001 0.008 -0.004 0.007 0.015* 0.007 

A4: Black or African 

American 
-0.011* 0.006 -0.023* 0.006 0.029* 0.007 0.009* 0.006 -0.015* 0.006 

A4: Native Hawaiian or 

Other Pacific Islander 
-0.001 0.010 -0.003* 0.010 0.003 0.016 0.001 0.016 0.000 0.018 

A4: Filipino -0.003* 0.006 -0.003* 0.006 -0.005* 0.008 0.005* 0.008 -0.001 0.008 

A4: English learner status -0.028* 0.005 -0.044* 0.006 0.064* 0.004 -0.018* 0.004 -0.028* 0.003 

A4: 504 Plan -0.001 0.007 -0.001 0.007 0.000 0.012 -0.002 0.011 -0.002 0.011 

A4: Economic Disadvantage -0.007* 0.003 -0.020* 0.003 0.046* 0.004 0.020* 0.004 -0.047* 0.003 

*Statistically significant, p < .05.  
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Table 42: Model 5A Factor Scores Main Effects by Student Group with Predictor Overall Mathematics  

  

 Overall 

Algebra  

Quantitative 

Literacy  

Generalized 

Arithmetic  

Functional 

Thinking  

Geometry & 

Statistics  

 
Beta SE Beta SE Beta SE Beta SE Beta SE 

Math – Overall 0.637* 0.001 0.640* 0.001 0.238* 0.001 0.264* 0.001 0.306* 0.000 

Female 0.002* 0.001 -0.007* 0.001 0.028* 0.001 0.032* 0.001 -0.013* 0.000 

Hispanic or Latino -0.015* 0.001 -0.022* 0.001 0.023* 0.001 0.010* 0.001 -0.041* 0.001 

American Indian or Alaska Native -0.006* 0.008 -0.005* 0.009 -0.003* 0.008 -0.004* 0.005 -0.003* 0.003 

Asian 0.071* 0.002 0.064* 0.002 0.057* 0.002 0.042* 0.001 0.009* 0.001 

Black or African American -0.028* 0.003 -0.029* 0.003 -0.005* 0.003 -0.006* 0.002 -0.025* 0.001 

Native Hawaiian or Other Pacific 

Islander 
0.000 0.008 0.000 0.008 0.003* 0.008 0.000 0.005 -0.004* 0.003 

Filipino 0.018* 0.003 0.017* 0.004 0.018* 0.003 0.014* 0.002 -0.008* 0.001 

English learner status -0.032* 0.002 -0.040* 0.002 0.005* 0.002 -0.012* 0.001 -0.033* 0.001 

504 Plan -0.005* 0.005 -0.004* 0.005 -0.006* 0.005 -0.002* 0.003 0.001 0.002 

Economic Disadvantage -0.034* 0.001 -0.037* 0.001 -0.002 0.001 -0.004* 0.001 -0.037* 0.001 

ELA 0.184* 0.001 0.152* 0.001 0.126* 0.001 0.157* 0.001 0.154* 0.000 

*Statistically significant, p < .05.  
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Table 43: Model 5A Factor Scores Interaction Effects by Student Group with Predictor Overall Mathematics  

  

 
Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Geometry & 

Statistics 

 Beta SE Beta SE Beta SE Beta SE Beta SE 

Math: Female -0.002* 0.001 0.004* 0.001 -0.012* 0.001 -0.002 0.001 -0.017* 0.000 

Math: Hispanic or Latino -0.011* 0.001 -0.019* 0.001 0.035* 0.001 0.006* 0.001 -0.032* 0.001 

Math: American Indian or Alaska Native -0.004* 0.006 -0.005* 0.007 0.003* 0.006 0.000 0.004 -0.003* 0.003 

Math: Asian -0.001 0.002 -0.001 0.002 0.001 0.002 -0.004* 0.001 0.017* 0.001 

Math: Black or African American -0.019* 0.002 -0.028* 0.002 0.017* 0.002 0.003* 0.002 -0.016* 0.001 

Math: Native Hawaiian or Other Pacific 

Islander 
-0.002* 0.007 -0.003* 0.007 0.001 0.007 0.000 0.005 -0.001 0.003 

Math: Filipino 0.000 0.003 0.000 0.003 -0.004* 0.003 0.004* 0.002 0.001 0.001 

Math: English learner status -0.031* 0.001 -0.044* 0.001 0.038* 0.001 -0.014* 0.001 -0.022* 0.001 

Math: 504 Plan -0.002* 0.004 -0.002* 0.004 -0.001 0.004 -0.002 0.003 -0.002 0.002 

Math: Economic Disadvantage -0.009* 0.001 -0.020* 0.001 0.036* 0.001 0.017* 0.001 -0.041* 0.000 

*Statistically significant, p < .05.  
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MATHia 

 
The MATHia data were also used to determine if the relation between completion (i.e., mastered) of 

CCSS workspaces and later Algebra I EOC scores varied across demographic groups. To do this, the 

interaction between a demographic group variable (e.g., male, female) and workspaces completed in 

the prediction of Algebra I EOC scores was estimated, as with the California analyses. These regression 

analyses also included the main effects of the demographic group, workspaces completed (mastered), 

workspaces not completed, workspaces not mastered, prior mathematics achievement, and grade level. 

For all groups, Algebra I EOC scores increased with increases in the number of CCSS workspaces that 

were mastered.   

 

One significant difference to emerge was for gender (p = .009). Here, there was no gender 

difference in later Algebra I EOC scores for students with lower levels of workspace mastery, but boys 

had higher Algebra I scores than did girls with higher levels of workspace mastery. Another significant 

effect was the contrast of non-gifted-designated and gifted-designated students, whereby the gap in 

later Algebra I EOC scores became smaller as the number of completed workspaces increased (p = 

.002).   

 

The interactions between number of workspaces completed (mastered) and later Algebra I EOC 

scores were not significant for English learner status (p = .132), ethnic status (ps > .28), average-

scoring students with a disability as compared to average students (p =  .66), or family economic status 

(as indexed by eligibility for free lunch; p = .471).  

 

At the same time, there were differences in the numbers of workspaces that were attempted 

and mastered (p = .003), but no differences in the number of workspaces not completed or not 

mastered (ps > .786). Asian students attempted (n = 58.25) and mastered (n = 52.53) more workspaces 

than White (n = 52.73, 46.73), Hispanic (n = 49.68, 43.13) and Black or African American (n = 47.46, 

40.23) students. 

 

In all, the results are largely consistent with those found for California; that is, the benefits of 

engagement with and mastery of CCSS workspaces in middle school are associated with similar gains 

in later Algebra I EOC performance across most demographic groups (with the exceptions of gender 

and gifted status). However, this result is qualified by differences in engagement with MATHia across 

racial/ethnic groups that will likely contribute to later differences in Algebra I EOC performance.   
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QUESTION D 

 

Question D: Can the factors (Question A), emphasis (Question B), or student profiles (Question C), or 

trajectories in achievement differences among sub-populations be associated with the proportion of the 

variance in mathematics achievement among districts compared to among schools within districts 

compared to among classrooms within schools compared to among students within classrooms? 

 

In preview, for California there were no substantive differences across districts or schools within 

districts in preparing students for success in Algebra once students’ prior mathematics 

performance was taken into consideration.  However, prior case studies of individual districts 

indicate that district-level reforms can promote the mathematics performance of historically 

underserved students. Students in all schools benefited from mastery of MATHia algebra 

workspaces and the magnitude of these benefits may have varied across the demographic 

composition of the schools, but there was too little school-level variation in demographics to 

draw strong conclusions.  

 

California 

 

On the basis of the results for Question A and Question C, we examined overall (across demographic 

groups) differences in Algebra outcomes across districts, schools nested within districts, and students 

nested within schools. The approach involved using the regression model (Model 4) presented for 

Question A, but with intercepts at the school and district level modeled as random effects; in the 

previously presented results for Model 4, the regression models were based on an assumption that the 

intercepts and slopes are the same for all schools and districts. The basic model is: 

 

• Model 4A—Main effects only for each of the predictor variables with earlier overall ELA and 

mathematics competence (theta) scores as covariates 

– A1a, A1b, A1c, A2b, A3a, A3b, A4, AG, ELA, Math 

– Random intercepts for schools and districts 

Intraclass correlations (ICCs) were computed to evaluate the utility of fitting random intercepts, 

relative to the previously specified fixed-effects models. Table 44 shows the ICCs for each of the 

models. The within-school correlations and the within-district, within-school correlations are all small, 

controlling for individual differences in the predictor variables and the earlier ELA and mathematics 

competence scores.   

 

Table 44: Model 4A Factor Score Intraclass Correlations by Outcome Variables 

Intraclass Correlation Levels 
Overall 

Algebra 

Quantitative 

Literacy 

Generalized 

Arithmetic 

Functional 

Thinking 

Geometry 

& Statistics 

Within school 0.104 0.071 0.040 0.027 0.012 

Within district, within school 0.067 0.028 0.017 0.011 0.006 

 

 

 These results suggest that there is not enough variability in the effects at the school and district 

levels to justify fitting a series of multilevel models. This does not mean that there are no differences 

across districts or schools in Algebra outcomes, but rather any such effects are small once earlier 

prealgebra, ELA, and overall mathematics competencies are taken into consideration. However, this is 

not the same as concluding that districtwide policies and instructional practices do not matter. In fact, 

there is evidence that such policies and practices can make a substantive difference in achievement 

outcomes, even if most districts and schools appear to be more similar than different.  

 

To illustrate the point, Figure 6 shows mathematics achievement changes for Black or African 

American students in two geographically close districts in California; the districts serve predominantly 

Hispanic students but enroll large numbers of Black or African American students. The figure shows 

the percentage of Black or African American students who met or exceeded expectations for Common 
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Core State Standards from fifth to eighth grade, inclusive, across four cohorts of students. As an 

example, the red lines indicate districtwide performance for students who were in fifth grade during 

the 2014–15 academic year. The black line shows statewide performance for Black or African American 

students in this same cohort.  

 

District A began updating its policies and practices in anticipation of the CCSS assessments that 

began in 2014–15 (Carver-Thomas & Podolsky, 2019). The changes included high and clearly 

articulated achievement expectations, frequent professional development centered on the mathematics 

standards, and increased availability of eighth-grade Algebra courses, among other changes. As can be 

seen in Figure 6, the percentage of fifth-grade Black or African American students who met or 

exceeded expectations in mathematics was similar across districts for the 2014–15 and 2015–16 

academic years, and both were similar to statewide results.  Within two years, the districts began to 

diverge. In District B and statewide, there is little change in the percentage of Black or African American 

students who met or exceeded expectations for any of the grades or cohorts. The pattern is clearly 

different for District A several years after the changes in policies and practices.  

 

Figure 6. Changes in Percentage of Black or African American Students Who Meet or Exceed 

Mathematics Expectations in Two California School Districts  

 

 

 

 

MATHia 

 

The MATHia data were used to assess whether engagement with and mastery of CCSS workspaces in 

the prediction of later Algebra I EOC scores varied with the racial/ethnic composition of individual 

middle schools. First, the relation between the number of workspaces mastered and later Algebra I EOC 

scores was estimated for each school. To do this, we developed a model predicting Algebra I EOC using 

number of workspaces mastered and allowed the slope of this model to vary across schools. This slope 

indicates the impact that mastering more workspaces has on Algebra I EOC for each school. Then we 

relate the impact of mastering more workspaces on Algebra outcomes (y-axis in Figure 7) for each 

school with the percentage of students of color in the school (x-axis in Figure 7). 

 

As shown in the figure, nearly all of the effects are positive, meaning that students in nearly all 

middle schools benefitted from mastery of CCSS workspaces. Figure 7 also shows that there is more 
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variation in outcomes among schools with a majority of students of color. Schools showing the least 

and most gains from engagement with and mastery of CCSS workspaces are those with more than 90% 

students of color. There is also a small positive trend, suggesting that students in middle schools with 

larger numbers of students of color may gain more, in terms of later Algebra I EOC performance, by 

engagement and mastery of CCSS workspaces, but these results need to be interpreted with caution 

because there was not a lot of school-level variation in the percentage of students of color.  

 

Figure 7. The School-Level Gains in Algebra I EOC Performance as Related to the Percentage of 

Students of Color in the School  

 

 

 

 

 

In follow-up analyses, we examined whether the impact of mastering more workspaces on later 

Algebra I EOC scores varied across school characteristics. Figure 8 shows that the relation between 

workspaces mastered and later Algebra I score is stronger for schools with a larger percentage of 

students receiving free or reduced lunches (p = .041). Figure 9 shows that the number of mastered 

workspaces did not vary across these schools (p = .87), suggesting that students in schools with a high 

percentage of students receiving free or reduced lunches show more gains for each mastered 

workspace than do students in other schools.    

 

 

 

 

 

  

Students of Color % 
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Figure 8. The School-Level Relations between Workspaces Mastered and Later Algebra I EOC 

Scores as Related to Percentage of Students Receiving Free or Reduced Lunches 

 

 

Figure 9. The Number of Workspaces Mastered and the Percentage of Students Receiving Free or 

Reduced Lunches 
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Figure 10 shows the same analyses across school that vary in the percentage of students of 

color. As can be seen, the relation was not significant (ps > .14), indicating that the strength of the 

relationship between mastered workspaces and later Algebra I EOC performance is similar across 

schools with different demographic makeups.  

 

 

Figure 10. The Number of Workspaces Mastered and the Percentage of Students of Color 

 

 

 

 

% Students of Color in the school 
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Discussion 

The purpose of this paper is to provide a final report of the EMERALDS study. The study involved large-

scale, longitudinal student assessment data sets from Idaho, California, and Washington as well as 

more detailed assessments of middle school students’ engagement with pre-algebraic and algebraic 

material in the computer adaptive tutor MATHia (formerly the Cognitive Tutor), as related to their 

Algebra I end-of-course performance. 

 

The initial goal was to identify the core mathematics competencies at the end of the elementary 

school years that best predict students’ later success in core algebra topics, above and beyond overall 

mathematics competence. There were some earlier competencies that appeared to be more important 

than others in predicting later algebra (Question A, below), but the effects were small and overwhelmed 

by the influence of overall mathematics competencies. That said, it is clear that students with a strong 

foundation in the elementary school CCSS at the end of the elementary school years tend to do better 

in later algebra, or conversely students who are not well prepared by the end of elementary school are 

likely to struggle with algebra. Because the measure for this study—the SBAC assessment—follows the 

CCSS in upper elementary grades by emphasizing the concepts, procedural fluencies, and applications 

of arithmetic (such as base-10 and fractions knowledge but also assessing complex problem solving, 

communicating reasoning, and the ability to use modeling to solve real-world problems), this result 

suggests a validation of the importance of arithmetic for algebra. The results for the MATHia 

component of the project indicate that intensive engagement with computer adaptive tutoring related 

to CCSS can significantly improve later Algebra I EOC performance (Question B, below).  

 

The relation between earlier mathematics competencies and later algebra outcomes is largely 

the same across gender, ethnicity, race, disability status, English learner status, and economic 

disadvantage (Question C, below). Note that we did not compare groups in terms of absolute levels of 

performance on the earlier and later mathematics measures, as this was not the goal, but rather 

assessed whether the strength of the relationship between earlier mathematics competencies and later 

Algebra outcomes differed across groups; for the most part, it did not. With control of students’ prior 

mathematics competencies, districts and schools are more similar than different in algebra outcomes, 

although case studies indicate that substantial improvements in outcomes can be achieved with wide-

scale reforms (Question D, below).  

 

QUESTION A  

 
Implications for Better Preparing Students for Success in Algebra  

 

The decomposition of SBAC algebra items into the subdomains of Quantitative Literacy, Generalized 

Arithmetic, Functional Relations, and Constraint Equations makes sense in terms of students’ 

progression through algebraic material. However, there were not enough item responses to construct a 

Constraint Equations measure, and the reliabilities for Generalized Arithmetic (reliability = .48) and 

Functional Relations (reliability = .33) were significantly lower in comparison to Quantitative Literacy 

(reliability = .80) and overall Algebra (reliability = .86; see Table E2). The two latter measures were 

highly correlated (e.g., r = .96 in California) and thus essentially are measuring the same competencies. 

As a result, the best outcome was overall Algebra. The contrast outcome of Geometry and Statistics 

was not particularly reliable (reliability = .25) due to too few items; therefore, the associated results 

need to be interpreted with caution. Nevertheless, the outcome was retained to provide a non-algebra 

contrast.   

 

In the prediction of later overall Algebra performance, modest effects in the IRT subscore 

analyses suggested that students who had relative advantages in Whole Numbers and Fractions 

performed better in later Algebra, controlling for overall mathematics competence and ELA scores. The 

former was uniquely related to later Algebra, whereas the latter was related to later Algebra and later 

Geometry and Statistics, but neither was related to later ELA scores. The results suggest that—above 

and beyond overall mathematics competence—mastery of conceptual knowledge and procedural skills 

in whole number arithmetic may contribute to later outcomes in Algebra, whereas mastery of 

conceptual knowledge and procedural skills in fractions may contribute to later mathematics more 
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broadly. These patterns are consistent with recommendations of the National Mathematics Advisory 

Panel (2008), but the size of these effects was small, and it is not clear that they are practically 

significant.     

 

 Interpretations of the relations between earlier performance on the Problem Solving, Complex 

Problem Solving, and Reasoning & Communicating measures are not straightforward, because these 

measures are complex and go beyond the ability to use mathematical knowledge in a problem-solving 

context. Performance in problem-solving contexts, as typically measured by word problems, is 

influenced by reading and language comprehension (Fuchs et al., 2020), students’ prior knowledge as 

related to the context of the problem (Thevenot, 2017), and domain-general abilities, such as working 

memory (Geary & Widaman, 1992) and visuospatial abilities (Casey et al., 1995). 

 

 The contrast of the relations between prealgebra problem solving and reasoning competencies 

and later Algebra and ELA scores will help to control for some of these confounds but will not likely 

control all of them (Bailey et al., 2014). Although the size of these effects was small, especially in 

comparison to the effect of overall mathematics competence, the current findings indicate that 

Complex Problem Solving with Fractions and Reasoning & Communicating may be more related to later 

Algebra than to later Geometry and Statistics or later ELA scores. The pattern suggests that the earlier 

ability to use fractions and other arithmetical knowledge in the context of complex problem solving 

(e.g., multistep word problems) and reasoning could be important for later performance in Algebra, but 

again the size of these effects was small, and it is not clear that they are practically significant.  

 

Despite small effects for specific areas, such as fractions, there was a substantive and 

practically important relation between overall performance on the SBAC mathematics assessment at the 

end of elementary school and performance in algebra four years later. The assessment follows the 

CCSS in upper elementary grades by emphasizing the concepts, procedural fluencies, and applications 

of arithmetic. So when the results of this study point to the importance of quality preparation in upper 

elementary grades mathematics, that should be read as a validation of the importance of arithmetic for 

algebra. This is not to say that students should be denied algebra in middle grades contingent on this 

or that level of arithmetic competency, but rather to say that elementary educators should be aware of 

the stakes of what they teach for what comes next. 

 

QUESTION B 

 

The results from the MATHia component were promising and worthy of follow-up study. The core 

finding was that successful completion of algebraic workspaces, that is, the solving of multi-step 

problems related to CCSS, during the middle school years resulted in improved Algebra I EOC 

performance, controlling for prior mathematics competencies. More fine-grain analyses suggested that 

skill at translating word problems into algebra equations and an understanding of the different ways in 

which functions can be represented (e.g., equation, graphically) were uniquely related to later Algebra I 

EOC performance, controlling for prior mathematics competencies. There were also several frequently 

engaged CCSS topics, such as arithmetic with polynomials and basic work with functions, that did not 

predict later Algebra I EOC performance, and thus might be de-emphasized. Given the limitations of 

the sample and understanding of how the program was used, these latter results should be considered 

tentative and in need of replication.  

 

The second core finding was that there was an interaction between prior mathematics 

competencies and successful engagement with MATHia. The interaction revealed that extensive and 

successful engagement with MATHia reduced the Algebra I EOC performance differences comparing 

students who had higher and lower scores on prior assessments. Follow-up studies with larger, more 

randomized samples are needed to confirm this interaction and, if possible, determine the key 

mathematical activities (e.g., practice with solving expressions or linear equations) that will have 

substantive and positive effects on the mathematical development of students who have been 

historically marginalized in educational systems, and whether these activities vary across gender, 

ethnicity, race, 504 status, English learner status, and economic disadvantage. 

 

QUESTION C 
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The core question here was whether the relation between earlier mathematics competencies and later 

algebra outcomes varied across different groups; specifically, across gender, ethnicity, race, 504 

status, English learner status, and economic disadvantage. We focused on the California data to 

address this question due to the large and very diverse sample afforded by these data.  

 

The most straightforward way to assess this question is through an interaction between earlier overall 

mathematics competences, such as overall SBAC score in fifth grade, and group membership in the 

prediction of later algebra performance. For instance, the relation between earlier mathematics 

competencies and later algebra was strong (𝛽 = 0.637), and the interaction between earlier math and 

student gender was significant but very small (𝛽 = -0.002). This means that the strength of the relation 

between earlier math and later algebra was slighter smaller for girls than for boys, but the magnitude 

of this difference is of no practical importance. The same pattern emerged for all of the other group 

differences; some were statistically significant, due to the large sample size, but none of them is of 

practical significance. 

 

 The core finding here is that a strong mathematical foundation in elementary grade CCSS, 

which emphasizes the concepts, procedural fluencies, and applications of arithmetic, is critical to 

success in later algebra. This relation between earlier math and later algebra appears to be 

independent of student gender, ethnicity, race, disability status, English language proficiency, family 

income, or students’ prior English language arts competencies. This is not to say that students in all 

demographic groups have had the same opportunities to acquire this early foundation or have done so, 

but rather that those students who have a solid foundation, independent of demographic group, are on 

track for success in later Algebra.   

 

The results from the analyses of the MATHia data are largely consistent with the results for 

California. Specifically, all middle school students benefit from engagement with and mastery of CCSS 

workspaces in terms of later Algebra I EOC scores. These gains are similar across demographic groups, 

but there were significant differences across these groups in engagement with MATHia. Lower 

engagement with MATHia, or a similar algebra curriculum, will likely contribute to later differences in 

Algebra I EOC performance.    

 

QUESTION D  

 

The core question here was whether any of the above-described effects varied across districts, schools, 

or classrooms. Due to limitations of the data set, we were unable to assess classroom-level effects but 

were able to assess variation in algebra outcomes across districts and schools, controlling for students’ 

prior mathematics competencies. Again, we focused on California due to the large and diverse sample. 

Preliminary results indicated that, once prior achievement was controlled, there was not substantive 

variation in algebra outcomes across districts or schools. This does not mean that there is not variation 

in algebra outcomes across districts and schools, but rather this variation is largely explained by the 

level of preparation of students entering the middle schools where the algebra outcomes were 

assessed.  

 

 In other words, most districts and schools are more similar than different once prior 

achievement is taken into account. This does not mean that districtwide or schoolwide reforms cannot 

substantively improve the mathematical development of their students, as was illustrated by Carver-

Thomas and Podolsky’s (2019) case studies of individual districts. Their analysis indicates that 

systematic and wide-scale (e.g., involving teacher training, higher expectations for student 

performance, rigorous standards) reforms can have substantive and positive effects on the 

mathematical development of students who have been historically marginalized in educational 

systems.  

 
 Carver-Thomas and Podolsky’s (2019) case studies are consistent with the MATHia results for 

middle school students in Florida. In terms of later Algebra I EOC performance, students in nearly all 

schools gained from engagement with and mastery of MATHia workspaces. The gains were, however, 

more variable for schools with more than 90% students of color, with the largest and smallest gains 

emerging for these schools. The reasons for the variation in these outcomes are not clear but merits 

follow-up study.   
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Recommendations  

 

 

 

What should states and districts do to help every student leave elementary school with a solid 

foundation in elementary school CCSS and support middle school mathematics growth? 

1. Communicate to teachers, students, families and caregivers, and the 

community the importance of a strong mathematical foundation in 

elementary grades for later success in Algebra. Since the findings in this 

report emphasize the progress that all students can make in middle-grade 

Algebra, messaging must not lead to middle-grade students being denied 

opportunities to learn pre-algebra and algebra on the basis of their opportunities 

in elementary grades. Thus, provide educators with resources and professional 

learning aimed at the goal of regularly engaging students in grade-level and 

challenging mathematics even in cases where the educational system has not 

provided them an adequate mathematical foundation (Balfanz, Mac Iver & Byrnes, 

2006; Baker, Gersten & Lee, 2002; Burris, Heubert & Levin, 2006; Global Family 

Research Project, 2017; TNTP, 2021). S, PR, RAC 
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2. Adopt an integrated, arithmetic-focused curriculum for the entire elementary 

grade span. The curriculum should be coherently organized around key content 

threads (e.g., an understanding of numerical magnitude) that tie material 

together across grades in order to better prepare students for later success in 

Algebra. Structure adoption processes to ensure the curriculum is designed to 

explicitly support teachers to facilitate the learning of students who have been 

historically marginalized by ensuring their unique identities, culture and needs 

are honored (Brown, 2007; Howard-Hamilton, 2002; Santamaria, 2009). PR, RAC 

 

3. Support student transitions from elementary to middle school and middle 

school to high school by maintaining coherence of the K–12 mathematics 

learning pathway. For example, adopt curricular materials that build coherently 

across the grades, and ensure that school-based staff understand the value of 

instructional coherence across the grades in their school and beyond (ACT, 

2008; National Research Council, 1999). PR, RAC 

 

4. Provide professional learning opportunities that help teachers develop their 

own strong mathematical identity and a solid understanding of the key 

mathematical threads of their curricular programs. (Feiman-Nemser, 2001; 

Gallagher, 2016; Schoenfeld, 2014).  PR, RAC 

 

5. Consider providing students with supplemental grade-level practice for 

content with significant evidential support for improving Algebra 

performance (e.g., fractions in upper elementary grades, Siegler et al., 2012; 

Algebra by Example during Algebra 1, Booth et al., 2015). The supplementals 

should support and coherently reinforce the tier 1 instructional materials 

(Gersten, Beckmann, Clarke, Foegen, Marsh, Star & Witzel, 2009). PR 

 

What should curriculum developers do to support states, districts, teachers, and students to 

succeed in teaching and learning a coherent mathematics curriculum? 

6. Invest in designing materials and explicit support for teachers in order to 

focus on students who have been historically marginalized by ensuring their 

unique identities, culture, and needs are honored. For example, consider how 

the curricular materials cultivate or become a barrier to cultivation of positive 

mathematical identities for students who are Black or Latino, and how they 

engage students learning English. This is in service to the core goal of students 

acquiring a solid understanding of whole number and rational number arithmetic 

during the elementary school years and prealgebra and early algebra in the 

middle school years (Leonard, Knapp & Adeleke, 2009; Peoples, Islam & Davis, 

2021; Ukpokodu, 2011). PR, RAC 

 

 

 

 

7. Design curricular materials and programs—including supplementals—in the 

elementary school grades that emphasize the concepts, procedural 
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fluencies, and applications of arithmetic as well as CCSS’s practice standards 

for complex problem solving, communicating reasoning, and the ability to 

use modeling to solve real-world problems. Curricular materials and programs 

should be coherently organized around key content threads and tie material 

together across grades. Specifically, these key threads would include number 

sense, that is, a developing understanding of numerical magnitudes (including 

fractions and later rational numbers) and the arithmetical operations that can be 

applied to them (Siegler & Braithwaite, 2017). Success at using this knowledge to 

better understand mathematical relationships as well as to apply it to problem-

solving contexts, as in word problems, is a critical component of early 

mathematics education and preparation for later algebra. S, RAC 

 

8. Attend to the content and coherence of the curricula materials, but also their 

mathematical fidelity and the quality of the mathematical tasks with which 

students are asked to engage. For instance, in pre-CCSS textbooks in the 

United States, arithmetic problems were typically presented overwhelmingly in a 

result-unknown format as a + b = ? (e.g., 4 + 3 = ?), an approach that results in 

many students inferring that the ‘=’ sign means to operate on the numbers to 

the left rather than indicating the equality of the quantities to the left and right 

of it (McNeil et al., 2006). Textbooks must follow CCSS in this area (see, e.g., 

1.OA.D.7) by coherently integrating the forms of number relationships (e.g., c = 

b + a) that express number decompositions and facilitate students’ 

understanding of the ‘=’ as a relational construct (McNeil et al., 2011). PR, RAC 

 

What should designers of professional development and teacher preparation programs do to 

support teachers in helping historically marginalized students succeed in learning a solid 

foundation in elementary mathematics and have success in Algebra? 

9. Design professional learning which helps teachers develop their own strong 

mathematical identity in order to positively impact their teaching of 

mathematics (Ball & Forzani, 2011; Thompson, 1992; Wei, Darling-Hammond, 

Andree, Richardson & Orphanos, 2009). PR, RAC 

 

10. Design professional learning to support K–5 teachers to develop a solid 

understanding of the key threads of their curricular programs, specifically 

how knowledge at earlier grades provides the foundation for later learning 

and is not only a steppingstone but also is conceptually related to later 

material. Professional learning should help teachers support students’ 

unfinished learning by building on their understandings and assets to access the 

topic at hand, as opposed to re-teaching prior-grades material. Professional 

learning should also help teachers build their knowledge and ability to navigate 

decisions about when and how to modify the curriculum to make it stronger and 

more relevant for students, and not make changes that unravel the coherence 

and priorities of a strong curriculum (as described above). For example, 

improvising and skipping tasks in number and operations can cause incoherence 

in the curriculum leading to algebra. Teachers who are well equipped understand 

that working through these tasks provides additional practice on basic skills. 

http://www.corestandards.org/Math/Content/1/OA/D/7/
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(Darling-Hammond, Hyler & Gardner, 2017; National Mathematics Advisory Panel, 

2008). PR, RAC 

 

11. Require preservice teachers to take one or more courses aimed at helping 

teachers develop a solid mathematical understanding of fundamental 

mathematical concepts and the conceptual connections. (Conference Board of 

the Mathematical Sciences, 2012; National Research Council, 2001). PR, RAC 

 

 

What should researchers do to support students, teachers, states, districts, curriculum developers 

and designers of professional development and teacher preparation programs?  

12. Explore in greater detail the core components of a strong elementary school 

mathematics foundation through a modified replication of this study, using 

a non-computer-adaptive assessment with sufficient items in key predictor 

content from other states with different geographic and student demographic 

profiles; the study may require the inclusion of additional assessment items to 

assess core math areas (e.g., fractions).  Such a study would benefit from close 

partnership with state departments of education and districts. One goal of the 

latter should be to better understand aspects of curricular implementation and 

other contextual factors for mathematics success, such as student experience. S  

 

13. Follow up on the promising middle school MATHia results to understand the 

extent to which engagement with computer adaptive tutoring during the 

middle school years results in gains in later Algebra I performance. A follow 

up study with larger samples as well as a greater understanding of the usage and 

student experience would help to verify these findings and enable a more fine-

grained assessment of how computer adaptive tutoring supports mathematical 

development and identity, and if there are experience and usage differences 

across students who are Black, Latino, English learner-designated, experiencing 

poverty, and/or female. Of course, strong causal conclusions will also have to 

await randomized controlled trials. S 

 

14. Look inside upper elementary classrooms to learn about key curricular and 

instructional factors that make a difference for students who are Black, 

Latino, English learner-designated, experiencing poverty, and/or female and 

who are successful in upper elementary grades mathematics. Studying the 

practices of teachers of students who are Black, Latino, English learner-

designated, experiencing poverty, and/or female and are succeeding in learning 

upper elementary mathematics can help identify key factors that can support 

students on the path for future success in Algebra. Observations and interviews 

of students and teachers would document student-teacher relationships, 

classroom or school environment, curriculum implementation, and instructional 

practices that contribute to student success. RAC  

 

15. Examine how targeted professional learning for upper elementary teachers 

may affect the performance of students. Using research-backed practices, 

design, deliver and evaluate the effectiveness of professional learning which 

integrates Mathematics Practice 1 (make sense of problems and persevere in 



Preparation for Success in Algebra: Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) 

Final Report 2021 

 

  82 

solving them), fractions, supporting student identity, and instruction for equity. 

A study such as this would require the active involvement of district staff, school 

leaders, teachers, caregivers, and students, including but not limited to 

interviews and surveys, observations, student work analysis, and shared 

interpretation of findings.  RAC 
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Appendices 

 

Appendix A: The Development of the Smarter Balanced 

Assessment System 

 

2010–2014 

 

The Smarter Balanced Assessment System was developed by a consortium of states in response to a 

federal Race To The Top Grant to develop a summative assessment that would assess students’ 

learning and their readiness for college and careers after graduation from high school. The consortium 

of states developed the application for funds and was awarded the four-year grant to develop the 

summative assessment system aligned to the Common Core State Standards (CCSS). The Consortium 

was made up of two groups of states that joined together around the goals of 1) technology innovation 

(Smarter) to improve the accessibility and opportunity for students to demonstrate their knowledge in a 

variety of ways and 2) commitment to a balanced assessment system (Balanced) with the formative 

assessment process, interim, and summative assessments as three legs of the stool. This balanced 

system supports students and teachers in understanding what has been learned and what needs to 

continue to be improved for students to perform at a level that demonstrates college and career 

readiness.  

 

The federal grant provided resources and guidance that encouraged innovation in the 

development of state summative assessments. Smarter Balanced incorporated evidence-based design 

to ground the assessment in a tight alignment to the implementation of the CCSS in the classroom. The 

assessment is built around Claims (what knowledge can students demonstrate) and Targets (the 

evidence students can provide to show they have a deep understanding). Related CCSS standards are 

grouped within Targets, which are organized under Claims described in the Smarter Balanced Content 

Specifications. Educators participated in an extensive review and feedback process to finalize the 

Content Specifications. Once the Consortium adopted the Content Specifications in 2012, they became 

the foundation for the development of item specifications, rubrics, and sample items to guide item 

writing. Updates to the Content Specifications continued throughout the test development, with the 

latest update in 2015.  

 

A foundational theory of action was to include educators at all steps along the way to ensure 

their feedback impacted the item development process. Educators from participating states developed 

guidelines for item writing based on best practices for classroom instruction. The technology available 

through online testing opened up the opportunity for all students, including students with special 

needs, to respond to different types of items. All items were reviewed by teams of practicing teachers 

who compared the evidence expected by the item writer with their own knowledge of student 

competencies. There were strict guidelines for readability, accessibility, and language density that 

made the inclusion of all students a priority at the item development stage. Whole groups of students 

traditionally excluded from state testing were included through accessibility tools and supports. The 

Consortium engaged in cognitive labs in 2012–2013 to answer key questions about how the students 

would respond to different types of items and be able to use technology tools. The first field test of 

items was held in 2013–2014. The assessment went operational during the 2014–2015 school year.  

 

Another innovation in the operational summative assessment was the use of computer adaptive 

technology. This approach to assessment had not been widely used in K–12 state assessments 

previously. The advantage of the computer adaptive technology was the ability to elicit sufficient 

evidence to evaluate student learning with fewer test questions and still cover the depth and breadth of 

the CCSS. The Consortium developed the blueprint for the assessment over two years as they engaged 

the member states in discussions of the benefits and constraints of a computer adaptive assessment 

for large-scale state assessment. The blueprint was finalized with two parts to the summative 

assessment: a computer adaptive test (CAT) and a performance task. The two tests are combined to 

make a complete test for a student with evidence from both tests contributing to the claim scores and 

the overall score. The result is a “constrained CAT” where at least 60% of the assessment uses grade-

level items. The CAT algorithm may pull off-grade items (up to 2 grades) if the performance of students 

https://portal.smarterbalanced.org/library/en/v1.0/end-of-grant-report.pdf
https://contentexplorer.smarterbalanced.org/test-development#content
https://contentexplorer.smarterbalanced.org/test-development#content
https://contentexplorer.smarterbalanced.org/test-development#content
https://contentexplorer.smarterbalanced.org/test-development#content
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at the very high end or low end of the performance scale has not been adequately measured. The 

performance task is written at grade level with multiple items that build toward the completion of a 

task. The blueprint specifies the percentage of items in each Claim that must be at Depth of Knowledge 

(DOK) Levels 2 and 3 to ensure the student provides evidence of higher order thinking and deep 

understanding necessary for college and career readiness through applications and interpretations. 
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Appendix B: State Data Requests and Data Agreements 

 

The Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) Phase II project 

analyzed longitudinally linked student-level responses to state summative assessment items from 

2015–16, 2016–17, 2017–18, and 2018–19 to determine if student knowledge in earlier grades 

predicted success in high school algebra. Although states have developed policies and procedures to 

facilitate research aligned with state goals to improve student learning, analysis of individual student 

responses is novel and has great potential to inform basic research on students’ mathematical 

development and to inform statewide educational policies and mathematics standards. 

 

Approaching States in the Smarter Balanced Assessment Consortium 

 

Student Achievement Partners (SAP) approached the Smarter Balanced Assessment Consortium (SBAC) 

with the proposed research in April of 2019. The SBAC leadership staff and an SAP representative 

discussed the research proposal with the representatives from each member state. In June 2019, an 

interest survey was sent out to the member states to volunteer for the research study. Seven states—

California, Connecticut, Idaho, Nevada, Oregon, South Dakota, and Washington—indicated an interest 

in participating. Accordingly, EMERALDS project staff submitted data requests through the state 

websites or by direct communication with the state agency representative in all seven states in July 

2019. Once the data requests were received by the designated state agency staff, each state followed a 

data request review process to determine whether the data request would meet the minimum state 

criteria (e.g., to maintain student confidentiality).  

 

Once the applications were accepted, they were sent to Data Request Review Committees in 

three of the states (Nevada, Oregon, and Washington) while four other states (California, Connecticut, 

Idaho, and South Dakota) completed the review by state agency staff. Of the seven original states, two 

(Nevada and Oregon) declined to participate due to concerns about releasing student-level responses; 

two (Connecticut and South Dakota) declined due to concerns with the complications and time required 

to complete the state contracting process, and three states (Idaho, Washington, and California) agreed 

to move the request to the next level. At this stage, the negotiation of the data-sharing agreements 

took place between the states and the EMERALDS data analysis partner, Carnegie Mellon University 

(CMU).  

 

Data Agreements with Idaho, Washington, and California 

 

The established data-agreement templates went through multiple revisions by state agencies and CMU 

to meet state and university requirements. The first agreement was executed between Idaho and CMU 

on 1/10/20. It followed the most straightforward process, managed by the Idaho State Director of 

Assessment. The data-agreement template provided by CMU was adjusted by the state agency to meet 

the state laws related to data privacy and the acceptable uses of student assessment data for research 

to benefit the state. The agreement language was approved by several departments in the state agency 

and CMU. The negotiation and signature process between CMU and Idaho took 161 days from 

7/20/19–1/10/20. 

 

Washington’s data request and data-agreement process required the data analysis partner to 

agree to the state data agreement prior to submitting the request. For this reason, the process started 

with CMU on 8/7/19 with the evaluation of the state data agreement prior to finalizing the data 

request. CMU requested modifications in the data agreement that Washington state legal staff 

countered with proposed alternative language. Once the staff in both agencies had confidence the 

issues could be resolved, the state agency in Washington advised the EMERALDS staff to submit the 

data request to be reviewed by the Data Request Committee at their November 2019 meeting. The 

request was submitted and approved on 11/22/19 with the requirement that a more detailed data 

agreement be executed with CMU. The data-agreement negotiations began again as of 12/15/19 with 

several revisions on both sides. The agreement was executed on 1/5/21. 

 

The data agreement with California experienced the most complicated path. State agency staff 

were concerned that the long data-agreement process would impede the progress of the research such 

that the findings would not be available in time to inform the California Mathematics Framework 
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Committee during the summer of 2020. The first approach was to seek approval from SBAC to act as 

an agent of the state to share the data. By October 2019, they determined the approach would be 

unsuccessful due to the limited scope of the existing agreements between SBAC and the state agency. 

State agency staff began the traditional data-agreement process with CMU, requiring the university to 

accept the terms of the CA data agreement “as is” and be approved for an IRB with the California 

Committee for Protection of Human Subjects (CPHS), also known as the “State IRB.” CMU proposed 

several revisions to the state agency, which were not accepted by the California legal staff.  

 

In January 2020, EMERALDS started a parallel process facilitated by California state agency staff 

to discuss the research project with the state assessment contractor, Educational Testing Service (ETS). 

As the state's testing contractor, ETS stores California state assessment data and thus no data transfer 

was necessary. ETS was still required to complete the data request and data-agreement process 

including approval for the IRB. However, since ETS had already accepted the California data-agreement 

terms, there were no apparent impediments to executing the agreement.  
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Appendix C: Matching Smarter Balanced Correlates to Item 

Metadata 

What kinds of problems do students need to be successful on in earlier grades (Table C1) to be 

successful in algebra (Table C2)? 

To identify appropriate items, the item metadata was filtered by Grade + Claim + CCSS + Target 

Model based on the metadata criteria on the table, Matching Smarter Balanced Correlates to Item 

Metadata. The corresponding item categories were used to create IRT residual and IRT subscore 

predictor and outcome variables. 

Table C1: CCSS and Metadata Used to Create Predictor Variables 

Correlates of Interest 

Description 

Common Core 

State Standards 

Metadata Combinations Matching 

Correlates of Interest 

Predictor: Number Sense 

A1a - Number sense of whole 

numbers 

3.NBT.A.1

4.NBT.A.1*

4.NBT.A.2

4.NBT.A.3

1: Claim 1 & Standard 3.NBT.A.1 

2: Claim 1 & Standard 4.NBT.A.1 & TM 5a 

3: Claim 1 & Standard 4.NBT.A.2 

4: Claim 1 & Standard 4.NBT.A.3 

A1b - Number sense of fractions 3.NF.A*

4.NF.A*

5.NF.B.5

1: Claim 1 & Standard 3.NF.A.2 

2: Claim 1 & Standard 3.NF.A.3c 

3: Claim 1 & Standard 3.NF.A.3d 

4: Claim 1 & Standard 4.NF.A.1 & TM 1a 

5: Claim 1 & Standard 4.NF.A.1 & TM 1b 

6: Claim 1 & Standard 4.NF.A.1 & TM 1d 

7: Claim 1 & Standard 4.NF.A.1 & TM 2b 

8: Claim 1 & Standard 4.NF.A.2 

9: Claim 1 & Standard 5.NF.B.5a 

10: Claim 1 & Standard 5.NF.B.5b 

A1c - Number sense of decimals 

and understanding of the place 

value system 

4.NF.C.6

4.NF.C.7

5.NBT.1*

5.NBT.2

5.NBT.3a

5 NBT 3b 

5.NBT.4

1: Claim 1 & Standard 4.NF.C.6 

2: Claim 1 & Standard 4.NF.C.7 

3: Claim 1 & Standard 5.NBT.A.2 

4: Claim 1 & Standard 5.NBT.A.3a 

5: Claim 1 & Standard 5.NBT.A.3b 

6: Claim 1 & Standard 5.NBT.A.4 

Predictor: Problem Solving 

A2 - Elementary Modeling: one step problems that correspond to those in tables 1 and 2, pp. 88–89, 

CCSS 
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Correlates of Interest 

Description 

Common Core 

State Standards 

Metadata Combinations Matching 

Correlates of Interest 

A2a - One-step word problems 

involving only whole numbers 

 

3.OA.A.3*@ 

3.MD.A.1@ 

3.MD.A.2@ 

3.MD.B.3@ 

3.MD.C.7b@ 

4.OA.A.2*@ 

4.MD.A.2*@ 

4.MD.A.3@ 

5.MD.C.5b@ 

{any 5.NBT that 

match the 

language of A2a} 

1: Claim 1 & Standard 3.OA.A.3 

2: Claim 1 & Standard 3.MD.A.1 & TM 2 

3: Claim 1 & Standard 3.MD.A.2 

4: Claim 1 & Standard 3.MD.B.3 & TM 2 

5: Claim 1 & Standard 4.OA.A.2 & TM 1a 

6: Claim 1 & Standard 4.OA.A.2 & TM 1b 

7: Claim 1 & Standard 4.OA.A.2 & TM 1c 

8: Claim 1 & Standard 4.MD.A.3 & TM 4a 

9: Claim 1 & Standard 5.MD.C.5b & TM 2b 

10: Claim 1 & Standard 5.MD.C.5b & TM 2e 

A2b - One-step word problems 

involving fractions 

 

4.NF.B.3d*@ 

4.NF.B.4c*@ 

4.MD.A.2*@ 

4.MD.A.3@ 

5.NF.B.3*@ 

5.NF.B.4 

5.NF.B.6*@ 

5.NF.B.7c*@ 

5.MD.B.2@ 

6.NS.A.1*@ 

  

  

1: Claim 1 & Standard 4.NF.B.3 & TM 3a 

2: Claim 1 & Standard 4.NF.B.3 & TM 3b 

3: Claim 1 & Standard 4.NF.B.3 & TM 3c 

4: Claim 1 & Standard 4.NF.B.3 & TM 3d 

5: Claim 1 & Standard 4.NF.B.4 & TM 6a 

6: Claim 1 & Standard 4.NF.B.4 & TM 6b 

7: Claim 1 & Standard 5.NF.B.3 & TM 1b 

8: Claim 1 & Standard 5.NF.B.3 & TM 2 

9: Claim 1 & Standard 5.NF.B.4 & TM 4b 

10: Claim 1 & Standard 5.NF.B.6 

11: Claim 1 & Standard 5.NF.B.7 

12: Claim 1 & Standard 5.MD.B.2 & TM2 

13: Claim 1 & Standard 6.NS.A.1 &TM 2b 

14: Claim 1 & Standard 6.NS.A.1 &TM 2c 

Predictor: Reasoning & Communicating 

A3a - Multi-step or higher 

complexity word problems with 

no fractions or decimals 

 

3.OA.D.8* 

3.MD.A.1@ 

3.MD.B.3@ 

3.MD.C.7b@ 

3.MD.C.7d@ 

3.MD.D.8@ 

4.OA.A.2*@ 

4.OA.A.3* 

4.MD.A.2*@ 

4.MD.A.3@ 

5.MD.C.5b@ 

5.MD.C.5c@ 

5.G.A.2@ 

 Claim 2 & any standard listed to the left 

(omit 4.MD.A.3 and 5.G.A.2) 

  

Claim 4 & any standard listed to the left 

A3b - Multi-step or higher 

complexity word problems with 

fractions or decimals 

 

4.NF.B.3d*@ 

4.NF.B.4c*@ 

4.MD.A.2*@ 

4.MD.A.3@ 

5.NF.B.3*@ 

5.NF.B.6*@ 

5.NF.B.7c*@ 

5.MD.1@ 

5.MD.2@ 

5.G.A.2@ 

1:Claim 2 & Standard 5.NF.B.3*@, 5.NF.B.6*@, 

5.NF.B.7c*@ 

  

2: Claim 2 & Standard 4.NF.B.3d*@, 

4.NF.B.4c*@ 

  

3: Claim 4 & Domain NF 

4: Claim 4 & Standard 5.MD.B.2 

5: Claim 4 & Standard 6.NS.A.1 
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Correlates of Interest 

Description 

Common Core 

State Standards 

Metadata Combinations Matching 

Correlates of Interest 

{any 5.NBT that 

match the 

language of A3b} 

6.NS.A.1*@

A4 - Reasoning & 

Communication  

Problems where students can 

clearly and precisely construct 

viable arguments to support 

their own reasoning and to 

critique the reasoning of others 

3.OA.B

3.NF.A

3.NF.1

3.NF.2

3.NF.3

3.MD.A

3.MD.7

4.OA.3

4.NBT.A

4.NBT.5

4.NBT.6

4.NF.A

4.NF.1

4.NF.2

4.NF.3a

4.NF.3b

4.NF.3c

4.NF.4a

4.NF4b

4.NF.C

4.NF.7

5.NBT.2

5.NBT.7

5.NF.1

5.NF.2

5.NF.B

5.NF.3

5.NF.4

5.NF.7a

5.NF.7b

5.MD.5a

5.MD.5b

1: Claim 3 & any standard listed to the left. 

Contrast Variable 

Least likely to predict later 

outcomes in Algebra 

Task models in 

OA & NBT that 

are strictly 

procedural; 

geometry of 

shapes (non-

formula based); 

MD items that 

only have 

1: 3.G.A.1 

2: 3.G.A.2 

3: 4.G.A.1 

4: 4.G.A.2 

5: 4.G.A.3 

6: 4.MD.C.6 

7: 4.MD.C.7 

8: 5.G.B.3 

9: 5.G.B.4 

10: 5.MD.C.3 
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Correlates of Interest 

Description 

Common Core 

State Standards 

Metadata Combinations Matching 

Correlates of Interest 

students 

produce a graph. 

11: 5.MD.C.4 

  

* A central standard or CCSS organizer for the correlate in question  

 @ A “bucket” containing tasks that match the correlate as well as tasks that don’t match.  

For codes with @ symbol attached, the principle for identifying tasks that match the correlate is to 

apply the language of the correlate as a filter. For example, the language of correlate A3a (“Multi-step 

or higher complexity word problems with no fractions or decimals”) implies disregarding tasks in 5.G.2 

if they are one-step problems or if they contain fractions or decimals. Note that the term task here 

refers not only to math problems, but also more generally to any student encounter with mathematics 

that generates the desired data.  

HCII mapped standards codes in the data to the standards codes in Column A and Column B using both 

exact match and fuzzy match logic (to handle issues of data format—for example, codes of 3.MD.A vs. 

3.MD.A.1). Limitations on available item metadata resulted in corresponding limitations on the coding 

process. 
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Table C2: CCSS and Metadata Used to Create Outcome Variables 

Correlate of Interest 
Common Core State 

Standards 

Metadata Combinations Matching 

Correlates of Interest 

B1 - Quantitative literacy 

(without use of variables) 

connecting magnitude sense to 

numbers and operations). 

Identify and express 

relationships among quantities. 

Represent quantities graphically. 

[Here we restricted the selection 

of quantitative literacy to that 

which is most applicable to the 

work of Algebra 1 and distant 

enough from the predictor 

variables identified in the “A” 

table.] 

6.NS.C.5,

6.NS.C.7b,

6.NS.C.7c,

6.NS.C.8,

7.RP.A.3*,

7.NS.A.3*,

7.EE.B.3*,

7.G.A.1@,

7.G.B.6@,

8.EE.A.3,

8.F.B.5*,

8.G.B.7,

8.SP.A.1,

8.SP.A.2,

HSN-Q.A.1,  

HSN-Q.A.3,  

{higher-intensity high 

school modeling tasks 

where present}, 

{“Column 6” high 

school modeling tasks 

where present} 

1: 8.SP.A.1 

2: 8.SP.A.2 

3: 8.G.B.7 

4: 8.F.B.5 

5: 8.EE.A.3 

6: 7.G.B.6 

7: 7.G.A.1 

8: 7.EE.B.3 

9: 7.NS.A.3 

10: 7.RP.A.3 

11: Claim 3 & 6.NS.C.7b 

12: Claim 3 & 6.NS.C.7c 

13: Claim 3 & 6.NS.C.8 

14: Claim 3 & 6.NS.C.6 

15: Claim 3 & 6.NS.C.6b 

16: Claim 3 & 6.NS.C.6c 

(This bucket includes both 

conceptual quantitative literacy and 

application-based problems; it 

doesn’t require algebraic 

expressions or equations.) 

B2 - Algebra as generalized 

arithmetic writing and reading 

expressions and equations, 

transforming expressions and 

equations into equivalent 

expressions or equations using 

the properties of arithmetic 

operations and equality. (linear, 

quadratic, exponential, or 

conceptual/general) 

6.EE.A*

7.EE.A.1*

8.EE.C.7b

HSA-SSE.A.2  

HSA-SSE.B.3a* 

HSA-SSE.B.3b* 

HSA-SSE.B.3c* 

HSA-CED.A.4 

1: Claim 1 & 6.EE.A.3 

2: Claim 1 & 6.EE.A.4 

3: Claim 1 & 7.EE.A.1 

4: Claim 1 & 8.EE.C.7b 

(These are all non-application, or 

problems with no context.) 

B3 - Algebra as functional 

thinking (linear, quadratic, 

exponential, or 

conceptual/general). 

Formulating, interpreting and 

using mathematical 

expressions, tables and graphs 

that refer to variable quantities 

and relationships between 

quantities. 

6.EE.C.9*,

7.RP.A.2b,

7.RP.A.2c,

7.EE.B.4@,

8.F.B.5,

HSA-REI.D.11, 

HSF-IF*@,  

HSF-BF*@, 

HSF-LE.A.1, 

HSF-LE.A.2, 

HSF-LE.A.3, 

HSF-LE.B.5 

1: 6.EE.C.9 

2: 7.RP.A.2b 

3: 7.RP.A.2c 

4: 8.F.B.4 

5: 8.F.B.5 

6: 7.RP.A.2a 

7: 7.RP.A.2d 



Preparation for Success in Algebra: Exploring Math Education Relationships by Analyzing Large Data Sets (EMERALDS) 

Final Report 2021 

 

  96 

Correlate of Interest 
Common Core State 

Standards 

Metadata Combinations Matching 

Correlates of Interest 

B4 - Algebra as writing and 

solving constraint equations 

to solve problems in modeling 

scenarios (linear, quadratic, 

exponential, or 

conceptual/general) 

 

6.EE.B.5,  

6.EE.B.6*, 

6.EE.B.7*,  

7.EE.B.4*,  

8.EE.C.7@,  

8.EE.C.8c*,  

HSA-REI.C.6,  

HSA-CED.A.3@,  

HSA-REI.A.1,  

HSA-REI.B.3,  

HSA-REI.B.4*, 

HSA-REI.D.10,  

F-LE.A.4, {word 

problems matching 

the language of B4 

not otherwise 

captured} 

1: Claim 4 & 6.EE.B.6 

 

3: Claim 4 & 6.EE.B.7 

4: Claim 4 & 7.EE.B.4 

5: Claim 4 & 7.EE.B.4a 

6: Claim 4 & 8.EE.C.7 

7: Claim 4 & 8.EE.C.7a 

8: Claim 4 & 8.EE.C.7b 

9: Claim 4 & 8.EE.C.8c 

 

(These are currently all application, 

or problems that have real-world 

context) 

 

 

Contrast Variable 

Least Associated with Algebra 

1 

1: 8.G.A.1 

2: 8.G.A.2 

3: 8.SP.A.4 

4: 7.G.A.3 

5: 7.G.A.2 

6: 7.SP.A.1 

7: 7.SP.A.2 

8: 7.SP.B.3 

9: 7.SP.B.4 

10: 7.SP.C.5 

11: 7.SP.C.6 

12: 7.SP.C.7 

13: 7.SP.C.8 

1: 8.G.A.1 

2: 8.G.A.2 

3: 8.SP.A.4 

4: 7.G.A.3 

5: 7.G.A.2 

6: 7.SP.A.1 

7: 7.SP.A.2 

8: 7.SP.B.3 

9: 7.SP.B.4 

10: 7.SP.C.5 

11: 7.SP.C.6 

12: 7.SP.C.7 

13: 7.SP.C.8 

 

* A central standard or CCSS organizer for the correlate in question  

 @ A “bucket” containing tasks that match the correlate as well as tasks that don’t match.  

For codes with @ symbol attached, the principle for identifying tasks that match the correlate is to 

apply the language of the correlate as a filter. For example, the language of correlate A3a (“Multi-step 

or higher complexity word problems with no fractions or decimals”) implies disregarding tasks in 5.G.2 

if they are one-step problems or if they contain fractions or decimals. Note that the term task here 

refers not only to math problems, but also more generally to any student encounter with mathematics 

that generates the desired data.  

HCII mapped standards codes in the data to the standards codes in Column A and Column B using both 

exact match and fuzzy match logic (to handle issues of data format—for example, codes of 3.MD.A vs. 

3.MD.A.1). Limitations on available item metadata resulted in corresponding limitations on the coding 

process. 
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Appendix D: Descriptive Information for Predictor and 

Outcomes Items for Idaho 

 

The descriptions of the prealgebra predictors (e.g., A1a) and algebra outcomes (e.g., B1) are in Table 

16 of the main text. :Overall Prealgebra” is based on all of the A items, and “Overall Algebra” is based 

on all of the algebra outcome items (i.e., across B1 to B4, inclusive, from Table C2).  

 

Table D1: Descriptive Information on the Number of Items Available Per Student for Idaho 

 

 Min Qt1 Median Qt3 Max Mean SD 

Prealgebra Predictors 

Overall Prealgebra 0 14 27 36 55 25.84 11.55 

Geometry 0 3 5 6 11 4.82 2.01 

A1a 0 0 1 2 5 1.21 1.04 

A1b 0 3 4 6 11 4.46 2.14 

A1c 0 2 2 3 5 2.32 0.57 

A2a 0 0 0 2 10 1.16 1.86 

A2b 0 1 1 2 9 1.64 1.28 

A3a 0 1 4 5 11 3.30 2.50 

A3b 0 2 3 3 8 2.79 1.06 

A4 0 5 9 13 22 8.97 4.60 

Algebra Outcomes 

Overall Algebra 0 4 17 23 39 14.69 9.51 

Geometry 0 0 2 4 11 2.53 2.35 

B1 0 1 9 12 25 7.19 5.37 

B2 0 1 3 4 9 3.10 1.71 

B3 0 1 4 6 15 4.15 3.09 

B4 0 0 0 1 5 0.40 0.67 
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Appendix E: Descriptive Information for Predictor and 

Outcomes Clusters for California and Idaho 

 

The descriptions of the prealgebra predictors (e.g., A1a) and algebra outcomes (e.g., B1) are in Table 

16 of the main text. The outcome B is based on all of the algebra outcome items (i.e., across B1 to B4, 

inclusive, from Table C2).  

 

For example, for cluster A1b (Number Sense: Fractions), there were 117 items with observed 

responses; 108 were dichotomously scored, and 9 were polytomously scored. Of the 850,057 students 

in the combined dataset, 632,374 had three or more responses. Across all 850,057 students, the 

number of responses ranged from 0 to 9, with an overall mean of 3.51 responses. After excluding 

students with responses to fewer than three items, the mean number of responses increased to 4.19. 

Hence, even though the number of identified items for the cluster is quite large, due to the SBAC 

design, each student received relatively few of these items. Despite the small number of observed 

responses per student for these students, the marginal reliability is 0.61. 

Table E1: Cluster Information for Predictor Variables for California 

 Prealgebra Predictors 

 A1a A1b A1c A2a A2b A3a A3b A4 Geometry 

Number of Items 74 117 113 3 86 161 113 379 142 

Dichotomous 74 108 113 3 82 133 63 287 141 

Polytomous 0 9 0 0 4 28 50 92 1 

N Students 

(w/3+ Resp) 
27378 632374 246416 0 158922 473373 604023 849875 714222 

Min Num 

Responses 
0 0 0 0 0 0 0 0 0 

Max Num 

Responses 
4 9 4 2 8 15 11 20 11 

Mean Num 

Responses 
0.90 3.51 2.26 0.02 1.38 3.94 3.54 14.68 4.28 

Mean Num 

Responses (3+) 
3.01 4.19 3.00 NA 3.35 6.43 4.25 14.69 4.77 

Reliability 0.42 0.61 0.30 NA 0.46 0.64 0.55 0.74 0.48 
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Table E2: Cluster Information for Outcome Variables for California 

 Algebra Outcomes 

 B B1 B2 B3 B4 Geometry 

Number of Items 521 283 118 114 6 74 

Dichotomous 498 262 118 112 6 73 

Polytomous 23 21 0 2 0 1 

N Students (w/3+ Resp) 849775 849733 727779 617096 0 431431 

Min Num Responses 0 0 0 0 0 0 

Max Num Responses 29 22 5 10 2 5 

Mean Num Responses 17.15 10.84 2.85 3.41 0.04 2.62 

Mean Num Responses (3+) 17.15 10.85 3.00 4.09 NA 3.24 

Reliability 0.86 0.80 0.48 0.33 NA 0.25 

  

Table E3: Cluster Information for Predictor Variables for Idaho 

 Prealgebra Predictors 

 A1a A1b A1c A2a A2b A3a A3b A4 Geometry 

Number of Items 80 137 113 25 88 157 106 269 157 

Dichotomous 80 120 113 25 83 140 63 215 157 

Polytomous 0 17 0 0 5 17 43 54 0 

Number of 

Students 
20236 41829 42375 1115 31616 29583 42354 42473 20236 

Min Num 

Responses 
0 0 0 0 0 0 0 0 0 

Max Num 

Responses 
4 8 4 5 7 9 7 17 10 

Mean Num 

Responses 
0.84 3.52 2.27 0.03 1.43 2.32 2.78 6.44 4.03 

Reliability 0.35 0.62 0.29 0.29 0.26 0.41 0.43 0.59 0.40 
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Table E4: Cluster Information for Outcome Variables for Idaho 

Algebra Outcomes 

B B1 B2 B3 B4 Geometry 

Number of Items 785 355 169 264 18 136 

Dichotomous 766 343 169 259 16 126 

Polytomous 19 12 0 5 2 10 

Number of Students 42474 42472 42375 42468 18494 42473 

Min Num Responses 3 0 0 0 0 1 

Max Num Responses 39 25 9 15 5 11 

Mean Num Responses 21.31 10.90 4.18 5.89 0.57 3.99 

Reliability 0.69 0.57 0.40 0.36 0.21 0.26 
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Appendix F: Correlations Among Predictors and Outcomes 

for California 

 

The descriptions of the prealgebra predictors (e.g., A1a) and algebra outcomes (e.g., B1) are in Table 

16 of the main text. Math is the overall fifth-grade mathematics competence (i.e., theta) score, and ELA 

is the overall score for English Language Arts. The variable B is based on all of the algebra outcome 

items (i.e., across B1 to B4, inclusive, from Table C2).  

 

Table F1: Pairwise Correlations based on Non-Imputed Scores for California 

  Math ELA A1a A1b A1c A2b A3a A3b A4 AG B B1 B2 B3 B5 

Math 
1.00 - - - - - - - - - - - - - - 

ELA 0.81 1.00 - - - - - - - - - - - - - 

A1a 0.44 0.39 1.00 - - - - - - - - - - - - 

A1b 0.65 0.51 0.28 1.00 - - - - - - - - - - - 

A1c 0.26 0.18 0.15 0.07 1.00 - - - - - - - - - - 

A2b 0.40 0.32 0.19 0.16 0.10 1.00 - - - - - - - - - 

A3a 0.65 0.59 0.38 0.41 0.16 0.29 1.00 - - - - - - - - 

A3b 0.72 0.62 0.33 0.43 0.12 0.26 0.49 1.00 - - - - - - - 

A4 0.85 0.74 0.43 0.53 0.20 0.34 0.62 0.62 1.00 - - - - - - 

AG 0.34 0.30 0.17 0.10 0.10 0.11 0.24 0.18 0.27 1.00 - - - - - 

B 0.80 0.72 0.40 0.52 0.21 0.33 0.56 0.61 0.73 0.28 1.00 - - - - 

B1 0.76 0.67 0.38 0.50 0.19 0.32 0.53 0.58 0.70 0.26 0.96 1.00 - - - 

B2 0.42 0.39 0.22 0.25 0.12 0.17 0.29 0.31 0.38 0.17 0.58 0.42 1.00 - - 

B3 0.41 0.39 0.19 0.26 0.10 0.16 0.28 0.31 0.37 0.15 0.53 0.39 0.25 1.00 - 

B5 0.40 0.38 0.19 0.26 0.09 0.18 0.28 0.31 0.37 0.14 0.39 0.37 0.20 0.21 1.00 
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Table F2: Pairwise Correlations based on Imputed Scores for California 

 
Math ELA A1a A1b A1c A2b A3a A3b A4 AG B B1 B2 B3 B5 

Math 1.00 - - - - - - - - - - - - - - 

ELA 0.81 1.00 - - - - - - - - - - - - - 

A1a 0.42 0.37 1.00 - - - - - - - - - - - - 

A1b 0.66 0.51 0.26 1.00 - - - - - - - - - - - 

A1c 0.26 0.18 0.12 0.07 1.00 - - - - - - - - - - 

A2b 0.39 0.30 0.15 0.15 0.10 1.00 - - - - - - - - - 

A3a 0.64 0.58 0.33 0.41 0.15 0.26 1.00 - - - - - - - - 

A3b 0.72 0.62 0.31 0.43 0.12 0.25 0.49 1.00 - - - - - - - 

A4 0.85 0.74 0.41 0.53 0.20 0.33 0.62 0.62 1.00 - - - - - - 

AG 0.34 0.30 0.14 0.10 0.10 0.11 0.23 0.18 0.27 1.00 - - - - - 

B 0.80 0.72 0.38 0.52 0.21 0.32 0.56 0.61 0.73 0.28 1.00 - - - - 

B1 0.76 0.67 0.36 0.51 0.19 0.30 0.53 0.58 0.70 0.26 0.96 1.00 - - - 

B2 0.42 0.39 0.20 0.25 0.12 0.16 0.29 0.31 0.38 0.17 0.58 0.42 1.00 - - 

B3 0.41 0.39 0.19 0.26 0.10 0.16 0.29 0.31 0.38 0.15 0.53 0.40 0.25 1 - 

B5 0.40 0.38 0.19 0.27 0.09 0.16 0.28 0.31 0.37 0.14 0.39 0.37 0.20 0.21 1 
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Appendix G: Additional Regression Models IRT Residuals for 

Idaho 

 

The following tables provide the detailed results associated with Table 18 in the main text.  

 

Table G1: Standardized Regression Estimates of the Relations Between Early Prealgebra 

Predictors and Later Overall Algebra in Idaho 

 

Predictor Estimate SD t-value p 

Intercept -0.017 0.001 -15.13 < 2e-16 

A1a: Numbers -0.002 0.002 -1.02 0.306 

A1b: Fractions 0.009 0.001 5.93 0.000 

A1c: Decimals and Place Value 0.003 0.001 1.94 0.052 

A2a: PS: Whole Numbers 0.098 0.003 36.77 < 2e-16 

A2b: PS: Fractions -0.004 0.001 -3.43 0.001 

A3a: CPS: Whole Numbers 0.003 0.002 2.06 0.039 

A3b: CPS: Rational Numbers 0.002 0.001 1.21 0.227 

A4: Mathematical Reasoning & Communication -0.001 0.002 -0.60 0.550 

ELA 0.007 0.002 4.29 0.000 

Geometry and Measurement 0.011 0.001 13.71 < 2e-16 
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Table G2: Standardized Regression Estimates of the Relations Between Early Prealgebra 

Predictors and Later Geometry and Statistics in Idaho 

Predictor Estimate SE t-value p 

Intercept -0.014 0.003 -1.05 0.294 

A1a - Whole Numbers -0.003 0.004 1.71 0.088 

A1b - Fractions 0.013 0.004 2.03 0.042 

A1c - Decimals and Place Value -0.011 0.004 5.48 0.000 

A2a - PS: Whole Numbers 0.081 0.008 -9.43 < 2e-16 

A2b - PS: Fractions -0.006 0.004 -2.02 0.043 

A3a - CPS: Whole Numbers -0.002 0.005 -1.98 0.047 

A3b - CPS: Rational Numbers 0.002 0.004 -0.97 0.331 

A4 - Mathematical Reasoning & Communicating -0.002 0.006 2.18 0.029 

ELA 0.011 0.004 -0.54 0.590 

Geometry and Measurement 0.010 0.002 2.77 0.006 
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Table G3: Standardized Regression Estimates of the Relations Between Early Prealgebra 

Predictors and Later English Language Arts in Idaho 

Predictor Estimate SE t-value p 

Intercept 0.685 0.006 121.34 < 2e-16 

A1a - Whole Numbers -0.055 0.009 -5.95 0.000 

A1b - Fractions -0.050 0.008 -5.94 0.000 

A1c - Decimals and Place Value 0.015 0.008 1.95 0.052 

A2a - PS: Whole Numbers -0.078 0.016 -5.06 0.000 

A2b - PS: Fractions -0.005 0.008 -0.62 0.535 

A3a - CPS: Whole Numbers 0.050 0.010 5.25 0.000 

A3b - CPA: Rational Numbers -0.012 0.009 -1.41 0.157 

A4 - Mathematical Reasoning & Communicating 0.097 0.013 7.62 0.000 

Geometry and Measurement 0.044 0.009 4.86 0.000 
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Appendix H: Additional Regression Models IRT Residuals for California 

The following tables supplement the results shown in Table 23 of the main text; the latter includes control of ELA and early overall 

mathematics competencies and the following includes only control of ELA (Table H1) or overall mathematics competencies (Table H2). 

Table H1: Model 2 Standardized Regression Coefficients for IRT Residuals for California Controlling Overall ELA Scores 
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Table H2: Model 3 Standardized Regression Coefficients for IRT Residuals for California Controlling Overall Mathematics Scores 
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Appendix I: Variance Explained for IRT Residual Models for California 

The table shows the overall explained variance for the IRT residual models. 

Table I1: Overall Variance Explained (R
2

) for IRT Residuals for California 

Outcome 

Variables 

Overall 

Algebra 

Quantitative 

Literacy 

 Generalized 

Arithmetic 

Functional 

Thinking 

Geometry & 

Statistics 

Model 1 0.000006 0.000005 0.000015 0.000020 0.000008 

Model 2 0.000007 0.000005 0.000015 0.000020 0.000008 

Model 3 0.000006 0.000005 0.000015 0.000020 0.000008 

Model 4 0.000009 0.000005 0.000016 0.000020 0.000009 
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Appendix J: Additional Regression Models IRT Subscores for California 

The following tables are for Model 2 (Table J1) and Model 3 (Table J2) that supplement the results for Model 1 (Table 25) and Model 4 (Table 

26) in the main text.

Table J1: Model 2 Standardized Regression Coefficients for IRT Subscores for California Controlling Overall ELA Scores 
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Table J2: Model 3 Standardized Regression Coefficients for IRT Subscores for California Controlling Overall Mathematics Scores 

Outcome Variables 

Overall 

Algebra 

Beta 

Overall 

Algebra 

SE 

Quantitative 

Literacy 

Beta 

Quantitative 

Literacy SE 

Generalized 

Arithmetic 

Beta 

Generalized 

Arithmetic 

SE 

Functional 

Thinking 

Beta 

Functional 

Thinking 

SE 

Geometry 

& 

Statistics 

Beta 

Geometry 

& 

Statistics 

SE 

Predictor Variables 

A1a - Whole 

Numbers 0.040 0.001 0.038 0.001 0.025 0.002 0.012 0.002 0.016 0.002

A1b - Fractions 0.020 0.001 0.030 0.001 -0.029 0.002 -0.006 0.002 0.021 0.002

A1c - Decimals 0.010 0.001 0.009 0.001 0.008 0.001 -0.001 0.001 -0.001 0.001

A2b - Basic Problem-

Solving: Fractions 0.015 0.001 0.018 0.001 -0.003 0.002 -0.004 0.001 0.017 0.002

A3a - Complex 

Problem Solving: 

Whole Numbers 0.049 0.001 0.045 0.002 0.020 0.002 0.020 0.002 0.028 0.002

A3b - Complex 

Problem Solving: 

Fractions 0.064 0.002 0.069 0.002 0.009 0.002 0.026 0.002 0.043 0.002

A4 - Mathematical 

Reasoning & 

Communication 0.160 0.002 0.159 0.002 0.066 0.004 0.077 0.003 0.086 0.002

Geometry and 

Measurement 0.016 0.001 0.010 0.001 0.027 0.001 0.014 0.001 0.013 0.001

Math 0.544 0.004 0.502 0.005 0.340 0.004 0.313 0.004 0.245 0.004
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Appendix K: CCSS Mastered by All Students in the MATHia Analyses Samples 

The following includes CCSS that were mastered by all students who were exposed to them and thus not included in the Mathia analyses. 

Table K1: Standards Mastered by All Students in the  2017–2018 MATHia Analyses Sample 

Common Core State Standards Workspaces 
Mastered by All Students 2017–2018 

Number of 
Students 

6.EE.A.2 3 
6.EE.A.2.b~~6.EE.A.3~~6.EE.A.4 3 
6.EE.A.2.c 3 
6.EE.A.3 3 
6.EE.B.5 3 
6.EE.B.6~~6.EE.B.7 3 
6.EE.B.6~~6.EE.C.9 3 
6.EE.B.7 3 
6.EE.B.8 3 
6.EE.C.9 2 
6.G.A.1 3 
6.G.A.1~~7.G.B.6 3 
6.G.A.2 3 
6.G.A.3~~6.NS.C.8 2 
6.NS.A.1 3 
6.NS.B.3 3 
6.NS.B.4 3 
6.NS.C.6 6 
6.NS.C.6.a 6 
6.NS.C.6.c 2 
6.NS.C.7.c 6 
6.RP.A.1 3 
6.RP.A.3.a 3 
6.RP.A.3.a~~7.RP.A.2 3 
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Common Core State Standards Workspaces 
Mastered by All Students 2017–2018 

Number of 
Students 

6.RP.A.3.c 3 
6.RP.A.3.d 3 
6.SP.A.3~~6.SP.B.5.c 1 
6.SP.B.4~~6.SP.B.5 1 
6.SP.B.5.c 1 
8.F.A.1 141 
8.G.C.9~~HSG.GMD.A.3 87 
HSA.APR.A.1~~HSF.BF.A.1.b 5 
HSA.APR.B.2 4 
HSA.APR.B.3 4 
HSA.SSE.A.1 6 
HSA.SSE.A.1.a~~HSA.SSE.B.4~~HSF.BF.A.2 4 
HSA.SSE.A.1.b~~HSF.BF.B.3 6 
HSA.SSE.A.1~~HSA.SSE.A.2 6 
HSA.SSE.A.2 4 
HSA.SSE.B.4 4 
HSF.IF.C.7.b 4 
HSF.IF.C.8.b 1023 
HSF.LE.A.4 4 
HSF.TF.A.1~~HSF.TF.A.2 4 
HSF.TF.B.5 4 
HSF.TF.C.8 4 
HSG.C.A.1~~HSG.C.A.2 12 
HSG.C.A.2 12 
HSG.C.A.3 11 
HSG.C.B.5 11 
HSG.CO.A.3 31 
HSG.CO.A.4 31 
HSG.CO.B.7~~HSG.CO.B.8 18 
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Common Core State Standards Workspaces 
Mastered by All Students 2017–2018 

Number of 
Students 

HSG.GMD.B.4 16 
HSG.GPE.A.1 11 
HSG.SRT.A.2 11 
HSG.SRT.B.4 11 
HSG.SRT.B.5 11 
HSG.SRT.C.7 12 
HSN.CN.A.1 6 
HSN.CN.A.2 6 
HSN.CN.C.7 5 
HSS.CP.A.2 6 
HSS.CP.A.3 6 
HSS.CP.A.4 6 
HSS.CP.A.5 6 
HSS.CP.B.6~~HSS.CP.B.7 6 
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Table K2: Standards Mastered by All Students in the  2018–19 MATHia Analyses Sample 

Common Core State Standards Workspaces 
Mastered by All Students  2018–2019 

Number of 
Students 

6.EE.A.2.b~~6.EE.A.3~~6.EE.A.4 1 
6.EE.A.2.c 1 
6.EE.A.3~~6.EE.A.4~~7.EE.A.1 1 
6.EE.B.5 1 
6.EE.B.6~~6.EE.B.7 1 
6.EE.B.6~~6.EE.C.9 1 
6.EE.B.7 1 
6.EE.B.8 1 
6.EE.C.9 1 
6.G.A.1 2 
6.G.A.1~~7.G.B.6 2 
6.G.A.3~~6.NS.C.8 1 
6.NS.A.1 1 
6.NS.B.3 1 
6.NS.B.4 2 
6.NS.C.6 1 
6.NS.C.6.a 1 
6.NS.C.6.c 1 
6.NS.C.7.c 1 
6.RP.A.3.a 1 
6.RP.A.3.a~~7.RP.A.2 1 
6.RP.A.3.b 3 
6.RP.A.3.c 1 
6.RP.A.3.d 1 
6.SP.A.3~~6.SP.B.5.c 1 
6.SP.B.4~~6.SP.B.5 1 
6.SP.B.4~~6.SP.B.5.a~~6.SP.B.5.b 1 
6.SP.B.5.c 1 
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Number of 
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7.EE.A.1 1 
7.EE.B.4 1 
7.EE.B.4.a 44 
7.EE.B.4.b 1 
7.G.A.1 1 
7.G.A.3~~HSG.GMD.B.4 19 
7.G.B.4 3 
7.NS.A.1 1 
7.NS.A.2.a~~7.NS.A.2.b~~7.NS.A.2.c 1 
7.NS.A.2.d 1 
7.NS.A.3 1 
7.RP.A.2.a 2 
7.RP.A.2.a~~7.RP.A.2.b 2 
7.RP.A.2.b 44 
7.RP.A.2.b~~7.RP.A.2.c 2 
7.RP.A.2.c 2 
7.RP.A.3 2 
8.EE.A.1 4 
8.EE.A.2~~8.G.B.7 3 
8.EE.A.2~~8.NS.A.1~~8.NS.A.2 3 
8.EE.A.3 3 
8.EE.A.4 3 
8.EE.B.5~~8.F.A.3 42 
8.EE.C.7.b 43 
8.EE.C.8.a~~8.EE.C.8.b~~8.EE.C.8.c 42 
8.EE.C.8.b 42 
8.F.A.1 40 
8.G.A.3 3 
8.G.A.5 3 
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Common Core State Standards Workspaces 
Mastered by All Students  2018–2019 

Number of 
Students 

8.G.B.6 3 
8.G.C.9 2 
8.NS.A.1~~8.NS.A.2 3 
8.SP.A.1~~8.SP.A.2 40 
8.SP.A.2~~8.SP.A.3 40 
HSA.APR.A.1~~HSF.BF.A.1.b 2 
HSA.APR.B.2 1 
HSA.APR.B.3 1 
HSA.CED.A.3 16 
HSA.REI.B.4.a 692 
HSA.REI.D.11 626 
HSA.SSE.A.1 4 
HSA.SSE.A.1.b~~HSF.BF.B.3 4 
HSA.SSE.A.1~~HSA.SSE.A.2 4 
HSA.SSE.A.2 1 
HSF.BF.A.1.c 3 
HSF.IF.C.7.b 8 
HSG.C.A.3 44 
HSG.C.B.5 13 
HSG.CO.B.7~~HSG.CO.B.8 45 
HSG.CO.C.11 12 
HSG.GMD.B.4 21 
HSG.SRT.A.2 17 
HSG.SRT.C.6 11 
HSG.SRT.C.7 11 
HSN.CN.A.1 4 
HSN.CN.C.7 2 
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