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Modeling, High School

Introduction • January 27, 1921, address to the Prussian Academy of Sci-
ence, Berlin.

• 1960, “The Unreasonable Effectiveness of Mathematics," Com-
munications in Pure and Applied Mathematics.

A-CED.2 Create equations in two or more variables to represent
relationships between quantities; graph equations on coordinate
axes with labels and scales.

F-TF.5 Choose trigonometric functions to model periodic phe-
nomena with specified amplitude, frequency, and midline.

N-Q.1 Use units as a way to understand problems and to guide
the solution of multi-step problems; choose and interpret units
consistently in formulas; choose and interpret the scale and the
origin in graphs and data displays.

Mathematical models describe situations in the world, to the sur-
prise of many. Albert Einstein wondered, “How can it be that math-
ematics, being after all a product of human thought which is inde-
pendent of experience, is so admirably appropriate to the objects of
reality?"• This points to the basic reason to model with mathematics
and statistics: to understand reality. Reality might be described
by a law of nature such as that governing the motion of an object
dropped from a height above the groundA-CED.2 or in terms of the
height above the ground of a person riding a Ferris wheel,F-TF.5 the
unemployment rate,N-Q.1 how people’s heights vary,S-ID.1 a risk factor

S-ID.1 Represent data with plots on the real number line (dot
plots, histograms, and box plots).

for a disease,S-ID.5 the effectiveness of a medical treatment,S-ID.5 or

S-ID.5 Summarize categorical data for two categories in two-way
frequency tables. Interpret relative frequencies in the context of
the data (including joint, marginal, and conditional relative fre-
quencies). Recognize possible associations and trends in the
data.

the amount of money in a savings account to which periodic addi-
tions are made.A-SSE.4 On a more sophisticated level, modeling the

A-SSE.4 Derive the formula for the sum of a finite geometric se-
ries (when the common ratio is not 1), and use the formula to
solve problems.

spread of an epidemic, assessing the security of a computer pass-
word, understanding cyclic populations of predator and prey in an
ecosystem, finding an orbit for a communications satellite that keeps
it always over the same spot, estimating how large an area of solar
panels would be enough to power a city of a given size, under-
standing how global positioning systems (GPSs) work, estimating
how long it would take to get to the nearest star—all can be done
using mathematical modeling. A survey of how mathematics has im-
pacted recent breakthroughs can be found in Fueling Innovation and
Discovery: The Mathematical Sciences in the 21st Century.• • This report was published in 2012 by the National Academies

Press and can be read online at http://www.nap.edu/
catalog.php?record_id=13373.Mathematical modeling is fundamental to how mathematics is

used in medicine, engineering, ecology, weather forecasting, oil ex-
ploration, finance and economics, business and marketing, climate
modeling, designing search engines, understanding social networks,
public key cryptography and cybersecurity, the space program, as-
tronomy and cosmology, biology and genetics, criminology, using
genetics to reconstruct how early humans spread over the planet,
in testing and designing new drugs, in compressing images (JPEG)
and music (MP3), in creating the algorithms that cell phones use to
communicate, to optimize air traffic control and schedule flights, to
design cars and wind turbines, to recommend which books (Ama-
zon), music (Pandora) and movies (Netflix) an individual might like
based on other things they rated highly. The range of careers for
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M, HS 3

which mathematical and statistical modeling are good preparation
has expanded substantially in recent years, and the list continues
to grow.

What is a model?

The word “model” can be used as a noun, verb, or adjective. As
an adjective, “model” often signifies an ideal, as in “model
student.” In this progression, “model” will be a noun or a verb.

In elementary mathematics, a model might be a representation
such as a math drawing or a situation equation (operations and
algebraic thinking), line plot, picture graph, or bar graph
(measurement), or building made of blocks (geometry). In
Grades 6–7, a model could be a table or plotted line (ratio and
proportional reasoning) or box plot, scatter plot, or histogram
(statistics and probability). In Grade 8, students begin to use
functions to model relationships between quantities.

Models are also used to understand mathematical or statistical
concepts. In elementary grades, students use rows of dots or
tape diagrams to represent addition and subtraction. Later they
use tape diagrams, arrays, and area models to represent
multiplication and division. In Grade 6 geometry, nets can
represent a three-dimensional mathematical object (e.g., a
prism) as well as a design for a real world object (e.g., a
gingerbread house). In Grade 8, students use physical models,
transparencies, or geometry software to understand congruence
and similarity. In Grade 6–8 statistics, simulations help students
to understand what can happen during statistical sampling.

In high school, modeling becomes more complex, building on
what students have learned in K–8. Representations such as
tables or scatter plots are often intermediate steps rather than
the models themselves.

Mathematical and statistical models of real world situations range
in complexity from objects or drawings that represent addition and
subtraction situationsK.OA.2 to systems of equations that describe

K.OA.2Solve addition and subtraction word problems, and add
and subtract within 10, e.g., by using objects or drawings to rep-
resent the problem.

behaviors of natural phenomena such as fluid flow or the paths of
ballistic missiles. Sometimes models give rather complete infor-
mation about the situation. For example, writing total cost as the
product of the unit price and the number bought is often a complete
and accurate model of monetary costs. Some models do not give
exact and complete information but approximations that may result
from the features of the situation that are reasonably available or
of most interest.MP4 In the business world, the per item price when

MP4 Mathematically proficient students . . . are comfortable mak-
ing assumptions and approximations . . . realizing that these may
need revision later.

purchasing a large number of the same item is lower than for the
price for a single item. This is important in modeling some situations
but may be neglected in others. As another example, consider the
linear function describing the cost of purchasing an automobile and
gasoline for a number of years

C � � ���

where � is the purchase price, � is the number of years, and � is a
constant based on assumptions of the cost of gasoline (per gallon),
the number of miles driven per year and the fuel efficiency in miles
per gallon.F-BF.1 All of the quantities going into the constant � are

F-BF.1 Write a function that describes a relationship between
two quantities.

estimates and likely will not be constant over time, but a more com-
plex model of gasoline costs and expected driving habits requires
information not available and perhaps unnecessary for decision-
making. Further, there are costs not included—insurance and main-
tenance, for example—and the effect of a gasoline-powered auto-
mobile on the environment is not considered. However, the simple
model may suffice to decide, say, between the purchase of a hybrid
version and a gasoline version of an automobile, where the basic
differences are in purchase price (hybrids may cost more) and fuel
efficiency. Following the advice attributed to Einstein that, “Every-
thing should be made as simple as possible, but not simpler,"1 we
can get good evidence to support the choice of the simple model
C � � �� , so in this situation this is “as simple as possible," but
dropping the purchase price p, or the term at would delete critical
information for our decision, based on cost differences. That would
delete necessary information, moving us to Einstein’s “simpler [than
possible]."

Models mimic features of reality. These features are often se-
lected for particular uses. For example, a road map is a model. So

1Probably a paraphrase of “It can scarcely be denied that the supreme goal
of all theory is to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation of a single datum
of experience” from “On the Method of Theoretical Physics.”

Draft, 4 July 2013, comment at commoncoretools.wordpress.com .
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is a geological map. Features that are important on road maps, e.g.,
major highways, may not be important on a geological map. The fea-
tures of the real world situation mimicked by a mathematical model
fall into three categories:2

• Things whose effects are neglected.

• Things that affect the model but whose behavior the model is
not designed to study—inputs or independent variables.

• Things that the model is designed to study—outputs or de-
pendent variables.3

These features of a mathematical model are helpful to keep in mind.
For example, in the cost function C above, the effect on environment,
insurance costs, and maintenance costs are neglected. Inputs are
cost of gasoline, miles driven per year, and fuel efficiency rate. The
output, or dependent variable, is the cost .

Modeling in K–12

Modeling is critically important, but is not easy. Some idealized,
simple modeling problems are needed for learning throughout K–12,
but real problems easily available and solvable (perhaps with the as-
sistance of technology). Graphing utilities, spreadsheets, computer
algebra systems, and dynamic geometry software are powerful tools
that can be used to model purely mathematical phenomena as well
as physical phenomena. Situations which are not modeled by sim-
ple equations can often be understood by simulation on a calculator,
desktop, or laptop, a process which many students will find espe-
cially engaging because of its exploratory and open-ended nature.
These tools allow for modeling complex real world situations, and
most real world situations are complex.

While there is certainly no limit to the sophistication of a model
or of the mathematics used in a model, the essence of modeling is
often to use humble mathematics in rather sophisticated ways. For
example, percentages are often crucial in modeling situations. “Dis-
tance equals rate times time” is a powerful idea that is introduced
in grade 6 [cite] that nevertheless forms the basis for many useful
models throughout high school and beyond. Or as another example,
when high school students make an order of magnitude estimate,
they may learn a great deal by using only simple multiplication and
division. Likewise, statistical modeling in high school might often in-
volve only measures of center and variability, rather than relying on
a host of sophisticated statistical techniques. “Back of the envelope”
modeling is one of the discipline’s most powerful forms.

2Bender, 1978, An Introduction to Mathematical Modeling, John Wiley and Sons.
3Statistical modeling also involves relationships among variables, but the rela-

tionship may be construed as association (e.g., correlation) rather than dependency.
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Many situations in the real world involve rate of change, with
models that involve a differential equation. Although differential
equations are not in the Standards, the interpretation of rates of
changeS-ID.7 and the study of functions with base rules of growthF-LE.1 S-ID.7 Interpret the slope (rate of change) and the intercept

(constant term) of a linear model in the context of the data.

F-LE.1 Distinguish between situations that can be modeled with
linear functions and with exponential functions.

prepares the way for the study of more sophisticated models in col-
lege. Likewise, using probability in modeling greatly extends the
scope of real world situations which can be modeled.

News media accounts of topics of current interest often illustrate
why modeling and understanding the models of others is important,
mostly for informed citizenship. For example, probabilities often are
stated in terms of odds in media accounts. Thus, to connect such
accounts to school mathematics, students need to know the relation-
ship between the two. Learning to model and understand models is
enhanced by seeing the same mathematics or statistics model sit-
uations in different contexts.• Media accounts provide those varied

• For example, right triangles are a frequent model for situations
that students may initially see as different mathematically, e.g.,
finding the length of the shadow cast by an upright pole and find-
ing the height of a tree or building. A line fitted to a scatter plot is
often used in statistics to model relationships between two mea-
surement quantities. Risk factors are often derived from relative
frequency within a single sample.

contexts in circumstances that require critical thinking. Analyzing
these accounts provides opportunities for students to maintain and
deepen their understanding of modeling in high school and after
graduation.4

The Modeling Process
In the Standards, modeling means using mathematics or statistics
to describe (i.e., model) a real world situation and deduce additional
information about the situation by mathematical or statistical com-
putation and analysis. For example, if the annual rate of inflation
is assumed to be 3% and your current salary is $38,000 per year,
what is an equivalent salary t years in the future? What salary is
equivalent in 10 years? The model is a familiar one to many:

S � 38�000 1�03

� �

This aspect of modeling produces information about the real world
situation via the mathematical model, i.e. the real world is under-
stood through the mathematics.

Complex models are often built hierarchically, out of simpler com-
ponents which can then be artfully joined together to capture the
behavior of the complex system. Certain simplifications have become
standard based on historical use. For example, the consumer price
index (CPI) and the cost of living index (COLI) are commonly cited
measures that serve as agreed-upon proxies for important economic
circumstances, substituting a single quantity for a more complicated
collection of quantities that tend to move as a group. There is even
an index of indexes, the index of leading economic indicators. The
monthly payments required to amortize a home mortgage over 30
years are computed by summing a geometric series and manipu-
lating the results.A-SSE.4 Numerous political and economic debates

A-SSE.4 Derive the formula for the sum of a finite geometric se-
ries (when the common ratio is not 1), and use the formula to
solve problems.4For further examples, see Dingman & Madison, 2010, “Quantitative Reasoning

in the Contemporary World” [two-part article], Numeracy, http://scholarcommons.
usf.edu/numeracy/vol3/iss2/.
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center on how one measures amounts of money, that is, what units
are used. Measuring amounts of money in nominal dollars (dollars-
of-the-day) over periods of several years is very different from mea-
suring in constant dollars (the dollar of a particular year). Mea-
suring in percent of gross domestic product (GDP) is also different.
Understanding what these are and how to move from one unit to the
others is critical in understanding many issues important to personal
prosperity and responsible citizenship.

Probability and statistical models abound in news media re-
ports. Complex and heretofore unusual graphics are made possible
by technology and in recent years the diversity of graphical models
in media accounts has increased enormously. Many of these mod-
els and the situations they describe are very important for making
decisions about health issues or political circumstances. Political
polls model elections themselves,S-IC.1 and skeptics decry their pre-

S-IC.1 Understand statistics as a process for making inferences
about population parameters based on a random sample from
that population.dictions because they are based on a small sample of all eligible

voters. Lack of understanding leads to suspicion and distrust of
democratic processes.

Modeling in High School

The Modeling Cycle
In high school, modeling involves a way of thought different from
what students are taught when they learn much of the core K–8
mathematics. It provides experience in approaching problems that
are not precisely formulated and for which there is not necessar-
ily a single “correct" answer. Deciding what is left out of a model
can be as important as deciding what is put in. Judgment, ap-
proximation, and critical thinking enter into the process. Modeling
can have differing goals depending on the situation—sometimes the
aim is quantitative prediction, for example in weather modeling, and
sometimes the aim is to create a simple model that captures some
qualitative aspect of the system with a goal of better understanding
the system, for example modeling the cyclic nature of predator-prey
populations.

Why is modeling difficult? Modeling requires multiple mental
activities and significant human skills of abstraction, analysis, and
communication. First, a real world situation must be understood in
terms familiar to the student. Critical variables must be identified
and those that represent essential features are selected. Second,
the interpreted situation must be represented—by diagrams, graphs,
equations, or tables. Moving from the interpretation to the represen-
tation involves reasoning—algebraic, proportional, quantitative, ge-
ometric, or statistical. Symbolic manipulation and calculationA-SSE.3

A-SSE.3 Choose and produce an equivalent form of an expres-
sion to reveal and explain properties of the quantity represented
by the expression.may follow to produce expressions for the desired quantities. A crit-

ical step is now to interpret the quantitative information in terms
of the original situation. The quantitative information must be ana-
lyzed or synthesized, that is, information is either combined to make
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some judgment or separated into pieces to do so. During this anal-
ysis or synthesis, assumptions are either made or assumptions are
evaluated. At this point, the information obtained is evaluated in
terms of the original situation. If the information is unreasonable or
inadequate, then the model may need to be modified to re-start the
whole process. If the information is reasonable and adequate, the
results are communicated in terms reflecting the original real world
context and the information sought by the student. Understanding
the limitations of the model involves critical thinking.

Problem
Represent
Mathematically

Reflect to
Validate

Communicate/

Report

Manipulate

Model

Analyse Results/

Interpret

This figure is a variation of the figures in the introduction to high
school modeling in the Standards.

Diagrams of modeling processes vary. For example, a diagram
that focuses on reasoning processes has four components: Descrip-
tion, Manipulation, Translation or Prediction, and Verification.5 Par-
titioning the modeling process into reasoning components is help-
ful in identifying where reasoning is succeeding or failing. This is
important in both assessing student work and guiding instruction.
These diagrams of modeling processes are intended as guides for
teachers and curriculum developers rather than as illustrations of
steps to be memorized by students.

Units and Modeling
Throughout the modeling process, units are critical for several rea-
sons, including guiding the symbolic or numeric calculations.N-Q.1

N-Q.1 Use units as a way to understand problems and to guide
the solution of multi-step problems; choose and interpret units
consistently in formulas; choose and interpret the scale and the
origin in graphs and data displays.Keeping track of units is very helpful in determining if the calcula-

tions are meaningful and lead to the desired results. Units are also
critical in the analysis and synthesis and in making or evaluating
assumptions, as well as determining reasonableness of answer. For
example, if analysis of a cost equation for driving an automobile in-
dicates that a typical driver in the US will drive 5000 miles per year,
one should check units to make sure that the gallons are US gallons
and the fuel efficiency is in miles per US gallon. Most of the world
measures gasoline in liters and distances in kilometers rather than
miles. (According to the Federal Highway Administration, the aver-
age number of miles driven per year by US drivers is over 13,000.)

5See Lesh & Doerr, 2003, Beyond Constructivism: Models and Modeling Perspec-
tives on Mathematics Problem Solving, Learning, and Teaching, Lawrence Erlbaum
Associates, p. 17.

Draft, 4 July 2013, comment at commoncoretools.wordpress.com .



M, HS 8

Units are almost always essential in communicating the results of a
model since answers to real world problems are usually quantities,
that is, numbers with units. Modeling prior to high school produces
measures of attributes such as length, area, and volume. In high
school, students encounter a wider variety of units in modeling such
as acceleration, percent of GDP, person-hours, and some measures
where the units are not specified and have to be understood in the
way the measure is defined.N-Q.2 For example, the S&P 500 stock

N-Q.2 Define appropriate quantities for the purpose of descrip-
tive modeling.index is a measure derived from the quotient of the value of 500

companies now and in 1940–42.

Modeling and the Standards for Mathematical Practice
One of the eight mathematical practice standards—MP4 Model with
mathematics—focuses on modeling and modeling draws on and de-
velops all eight. This helps explain why modeling with mathematics
and statistics is challenging. It is a capstone experience, the proof
of the pudding. To embody this, students might complete a capstone
experience in modeling.

Make sense of problems and persevere in solving them (MP1) be-
gins with the essence of problem solving by modeling: “Mathemati-
cally proficient students start by explaining to themselves the mean-
ing of a problem and looking for entry points to its solution." Solving
a real life problem in a non-mathematical context by mathematiz-
ing (i.e. modeling) requires knowing the meaning of the problem
and finding a mathematical representation. Later in this standard,
“Younger students might rely on using concrete objects or pictures
[i.e. models] to help conceptualize and solve a problem."

Reason abstractly and quantitatively (MP2) includes two critical
modeling activities. The first is “the ability to decontextualize—to
abstract a given situation and represent it symbolically and manip-
ulate," and the second is that “Quantitative reasoning entails habits
of creating a coherent representation of the problem at hand; con-
sidering the units involved." Decontextualizing and representing are
fundamental to problem solving by modeling.

Construct viable arguments and critique the reasoning of others
(MP3) notes that mathematically proficient students “reason induc-
tively about data, making plausible arguments that take into ac-
count the context from which the data arose"—the data being the
model educed from some context. Further, “Elementary students can
construct arguments using concrete referents (i.e. models) such as
objects, drawings, diagrams, and actions." Discussing the validity of
the model and the level of uncertainty in the results makes use of
these skills.

Use appropriate tools strategically (MP5) notes that “When mak-
ing mathematical models, [mathematically proficient students] know
that technology can enable them to visualize the results of varying
assumptions, explore consequences, and compare predictions with
data." Simulation provides an important path to explore the conse-
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quences of a model, and to see what happens when parameters of
the model are varied.

Attend to precision (MP6). Here the most important consider-
ation of modeling is to “express numerical answers with a degree
of precision appropriate for the problem context" and in appropriate
units. For example, if one is modeling the annual debt or surplus
(there were no surpluses) in the US federal budget over the decade
2001–2010, then common options for a unit are nominal dollars, con-
stant dollars, or percent of GDP. The degree of precision appropriate
for understanding the model is to the nearest billion dollars (or near-
est tenth percent of GDP) or perhaps the nearest ten billion dollars
(or nearest percent of GDP).N-Q.3 Beyond accuracy, modeling raises

N-Q.3 Choose a level of accuracy appropriate to limitations on
measurement when reporting quantities.the issue of uncertainty—how likely are the quantities we want to

model to be within a certain range. How much do features the model
neglects affect accuracy and uncertainty?

Look for and make use of structure (MP7). Here, looking closely
at a real world situation to discern relationships between quantities
is critical for mathematical modeling. Students look for patterns or
structure in the situation, for example, seeing the side of a right
triangle when a shadow is cast by an upright flagpole as part of a
right triangle or seeing the rise and run of a ramp on a staircase.

Look for and express regularity in repeated reasoning (MP8).
Modeling activities often involve multistep calculations and the whole
modeling cycle may need to be repeated. Here, mathematically pro-
ficient students “continually evaluate the reasonableness of their in-
termediate results" and “maintain oversight of the process" (in this
case, the modeling process).

Modeling and Reasonableness of Answers
Continually evaluating reasonableness of intermediate results in
problem solving is important in several of the standards for mathe-
matical practice. Doing this often requires having reference values,
sometimes called anchors or quantitative benchmarks, for compari-
son. Joel Best, in his book Stat-Spotting,6 lists a few quantitative
benchmarks necessary for understanding US social statistics: the
US population, the annual birth and death rates, and the approxi-
mate fractions of the minority subpopulations. Without these refer-
ence values, an answer of 27 million 18-year-olds in the US popu-
lation may seem reasonable. Such benchmarks for other measures
are helpful, providing quick ways to mentally check intermediate
answers while solving multistep problems. For example, it is very
helpful to know that a kilogram is approximately 2 pounds, a meter
is a bit longer than a yard, and there are about 3 liters in a gallon.
This kind of quantitative awareness can be developed with prac-

62008, Stat-Spotting: A Field Guide to Identifying Dubious Data, University of
California Press.
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tice, and easily expanded with the immense amount of information
readily available from the internet.

Statistics and Probability
Specific modeling standards appear throughout the high school stan-
dards indicated by a star symbol ( ). About one in four of the stan-
dards in Number and Quantity, Algebra, Functions, and Geometry
have a star, but the entire conceptual category of Statistics and
Probability has a star. In statistics, students use statistical and
probability models—whose data and variables are often embodied
in graphs, tables, and diagrams—to understand reality. Statistical
problem solving is an investigative process designed to understand
variability and uncertainty in real life situations. Students formu-
late a question (anticipating variability), collect data (acknowledging
variability), analyze data (accounting for variability), and interpret
results (allowing for variability).7 The final step is a report.

Much of the study of statistics and probability in Grades 6–8
concerns describing variability, building on experiences with cat-
egorical and measurement data in early grades (see the progres-
sions for these domains). In high school the focus shifts to drawing
inferences—that is, conclusions—from data in the face of statistical
uncertainty. In this process, analyzing data may have two steps:
representing data and fitting a function (often called the model)
which is intended to capture a relationship of the variables. For ex-
ample, bivariate quantitative data might be represented by a scatter
plot and then the scatter plot is modeled as a linear, quadratic, or
logarithmic function. A probability distribution might be represented
as a bar graph and then the bar graph is modeled by an exponential
function. See the high school Statistics and Probability Progression
for examples.

Because the Statistics and Probability Progression for high school
is also a modeling progression, the discussion here will only note
statistics and probability standards when they are related to mod-
eling standards in one of the other conceptual categories.

Developing High School Modeling

In early grades, students use models to represent addition and sub-
traction relationships among quantities such as 2 apples and 3 ap-
ples, and to understand numbers and arithmetic. Concrete models,
drawings, numerical equations, and diagrams help to explain arith-
metic as well as represent addition, subtraction, multiplication, and
division situations described in the Operations and Algebraic Think-
ing Progression. Later, students use graphs and symbolic equations

7See the American Statistical Association’s 2007 Guidelines for Assessment and
Instruction in Statistics Education, Alexandria, VA: American Statistical Association,
2007, pp. 11–15, http://www.amstat.org/education/gaise.
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to represent relationships among quantities such as the price of n
apples where p is the price per apple. In Grade 8, calculating and
interpreting the concept of slope may, in various contexts, draw on
interpreting subtraction as measuring change or as comparison, and
division as equal partition or as comparison (see Tables 2 and 3
of the Operations and Algebraic Thinking Progression). Creation of
exponential models builds on initial understanding of positive inte-
ger exponents as a representation of repeated multiplication, while
identifying the base of the exponential expression from a table re-
quires the unknown factor interpretation of division. Extension of an
exponential model from a geometric sequence to a function defined
on the real numbers builds on the understanding of rational and ir-
rational numbers developed in Grades 6–8 (see The Number System
Progression).

By the beginning of high school, variables and algebraic expres-
sions are available for representing quantities in a context. Modeling
in high school can proceed in two ways. First, problems can focus
directly on the concepts being studied, i.e., situations such as the
path of a projectile which are modeled by quadratic equations can
be a part of the study of quadratic equations. This is the traditional
path followed by having a section of word problems at the end of
a lesson. A second, more realistic, way to develop modeling is to
utilize situations that can become more complex as more mathe-
matics and statistics are learned.8 It is unlikely that one situation
can be used throughout high school modeling, but some situations
can be increased in complexity (examples are given in this progres-
sion). Modeling with mathematics in high school begins with linear
and exponential models and proceeds to representing more com-
plex situations with quadratics and other polynomials, geometric
and trigonometric models, logic models such as flow charts, dia-
grams with graphs and networks, composite functional models such
as logistic ones, and combinations and systems of these. Modeling
with statistics and probability (that is, as noted earlier, essentially
all of statistics and probability) is detailed in the progression for
that conceptual category.

Linear and Exponential Models
In high school, the most commonly occurring relationships are those
modeled by linear and exponential functions. Examples abound. The
number of miles traveled in � hours by an automobile at a speed of 30
miles per hour is 30� and the amount of money in an account earning
4% interest compounded annually after 3 years is P 1�04

3 where
P is the initial deposit. Students learn to identify the referents of

8For examples, see Schoen & Hirsch, “The Core-Plus Mathematics Project: Per-
spectives and Student Achievement,” and Senk, “Effects of the UCSMP Secondary
School Curriculum on Students’ Achievement” in Senk & Thompson (Eds.), 2003,
Standards-Based School Mathematics Curricula: What Are They? What Do Stu-
dents, Learn?, Lawrence Erlbaum Associates.
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symbols within expressions (MP2), e.g., 30 is the speed (or, later,
velocity), � is the time in hours, and to abstract distance traveled as
the product of velocity and time.

In Grade 8, students learned that functions are relationships
where one quantity (output or dependent variable) is determined
by another (input or independent variable).8.F.1 In high school, they

8.F.1Understand that a function is a rule that assigns to each
input exactly one output. The graph of a function is the set of or-
dered pairs consisting of an input and the corresponding output.9deepen their understanding of functions, learning that the set of

inputs is the domain of the function and the set of outputs is the
range.F-IF.1 For example, the car traveling 30 miles per hour travels

F-IF.1 Understand that a function from one set (called the do-
main) to another set (called the range) assigns to each element
of the domain exactly one element of the range. If � is a function
and � is an element of its domain, then � � denotes the output
of � corresponding to the input �. The graph of � is the graph of
the equation � � � .

a distance � in � hours is expressed as a function

� � 30��

Students learn that when a function arises in a real world context
a reasonable domain for the function is often determined by that
context. F-LE.5 Interpret the parameters in a linear or exponential func-

tion in terms of a context.Students learn that functions provide ways of comparing quan-
tities and making decisions. For example, a more fuel-efficient au- Comparing Functions

Year � S � A � Year � S � A �
0 -3000 3000 10 2000 4441
1 -2500 3120 11 2500 4618
2 -2000 3245 12 3000 4803
3 -1500 3375 13 3500 4995
4 -1000 3510 14 4000 5195
5 -500 3650 15 4500 5403
6 0 3796 16 5000 5619
7 500 3948 17 5500 5844
8 1000 4106 18 6000 6077
9 1500 4270 19 6500 6321

Outcomes for two scenarios at year �. If the hybrid is purchased,
its savings on gasoline costs plus the difference in price between
hybrid and gasoline models is shown as S � . If the gasoline
model is purchased and the price difference is invested, the
amount of the investment is A � .

Comparing Functions
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Comparing outcomes for two scenarios: Buying and operating a
hybrid automobile vs buying and operating a gasoline
automobile and investing the difference in their prices.

tomobile costs $3000 more than a less fuel efficient one, and $500
per year will be saved on gasoline with the more efficient car. (This
can be made precisely realistic by using data, say, from comparing
a hybrid version to a gasoline version of an automotive model.) A
graph of the net savings function

S � 500� 3000

(see margin) will have a vertical intercept at S 3000 and a
horizontal intercept at � 6. Students learn that the horizontal
intercept, or the zero of the function, is the break-even point, that
is, by year 6 the $3000 extra cost has been recovered in savings on
gasoline costs.F-LE.5

As students learn more about comparing functions that have do-
mains other than the nonnegative integers, this example can be in-
creased in complexity.10 The buyer has the option of paying the
extra $3000 and saving money on gasoline or placing the $3000 in
a savings account earning 4% per year compounded yearly. One
option yields the net savings

S � 500� 3000

while the other yields amount

A � 3000 1�04

� �

Students compare S � and A � by graphs or tables over some num-
ber of years, the domain of the functions.F-IF.9 The expected time the

F-IF.9 Compare properties of two functions each represented in
a different way (algebraically, graphically, numerically in tables, or
by verbal descriptions).

buyer will drive the car determines a reasonable domain. A table
of values for A and S (shown in the margin) over years 1 to 20 is
likely to be sufficient for comparing the functions,F-IF.6 or, later when

F-IF.6 Calculate and interpret the average rate of change of a
function (presented symbolically or as a table) over a specified
interval. Estimate the rate of change from a graph.

10Example from Madison, Boersma, Diefenderfer, & Dingman, 2009, Case Studies
for Quantitative Reasoning, Pearson Custom Publishing.
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non-integer domains are understood, the graphs of S and A over the
interval [0,20] will give considerable information (see the margin).
The vertical intercepts of the two graphs and their two points of
intersection are interpreted in the context of the problem. Analysis
of the key features of the two graphsF-IF.4 provides opportunities for

F-IF.4 For a function that models a relationship between two
quantities, interpret key features of graphs and tables in terms
of the quantities, and sketch graphs showing key features given
a verbal description of the relationship.students to compare the behaviors of linear and exponential func-

tions. Students observe the average rates of change of the two
functions over various intervalsF-IF.6 and see why the exponential
function values will eventually overtake the linear function values
and remain greater beyond some point. Students can now report on
the information that will influence an economic decision by relating
the behavior of the graphs to the comparative savings.

F-IF.6 Calculate and interpret the average rate of change of a
function (presented symbolically or as a table) over a specified
interval. Estimate the rate of change from a graph.Students can again question the assumptions underlying the

models of the two savings functions. What is the effect if the cost of
gasoline changes? What is the effect if the number of miles driven
changes? What will be the results of periodically (say, annually)
placing the savings on gasoline costs in the savings account earn-
ing 4% per year compounded yearly? This latter option changes
the linear model to a second exponential model, starts with a sum
of a geometric series, which can be expressed either recursively
or with an explicit formula,F-BF.2 and points to the advantages of

F-BF.2 Write arithmetic and geometric sequences both recur-
sively and with an explicit formula, use them to model situations,
and translate between the two forms.rewriting the sum of exponential expressions as a single exponen-

tial expression.A-SSE.3c This reinforces that algebraic re-writing of A-SSE.3c Choose and produce an equivalent form of an expres-
sion to reveal and explain properties of the quantity represented
by the expression.

c Use the properties of exponents to transform expressions
for exponential functions.

expressions is helpful, sometimes essential, to achieve comprehen-
sible and usable models.

In the above example, students learn to question why the two
scenarios have a $6000 difference at year 0. Students might argue
that the $3000 is being invested two ways—one way is investing
in the automobile and one way is placing in a savings account.
The question then becomes: Which investment produces the most
returns? That would make both functions be 0 at time 0. Is it more

Comparing Functions
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reasonable to note that the difference is $3000 and not $6000? In
that case the graphs look like the ones here, and the table above is
altered by reducing each entry for A � by 3000.

Students learn that some initial representations and calculations
can be done by hand,F-IF.7 say, the graph of S � 500� 3000 and

F-IF.7 Graph functions expressed symbolically and show key fea-
tures of the graph, by hand in simple cases and using technology
for more complicated cases.

its key features. With iterations of the modeling cycle, the model
becomes more complicated. Specific outputs of the functions can be
calculated by hand, but technology is essential to understand the
overall situation.

Students learn to distinguish between scenarios like the one
above where two (or more) equations or functions give different re-
sults based on different assumptions about the situation and sce-
narios where the two (or more) equations (possibly, inequalities) or
functions express relationships among the quantities of interest un-
der the same assumptions. The latter scenarios are modeled by a
system of equations or inequalities. A system of equations imposes
multiple conditions on a situation, one for each of the equations. So-
lutions to systems must satisfy each of the equations. For example,
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a system of two linear equationsA-CED.3 will model the speed that A-CED.3 Represent constraints by equations or inequalities, and
by systems of equations and/or inequalities, and interpret solu-
tions as viable or nonviable options in a modeling context.

you can row a boat with no current and the speed of the current
provided you know the speed of the boat as you row with the cur-
rent and the speed you can row against the current. Students learn
how to describe situations by systems of two or three equations
or inequalities and to solve the systems using graphs, substitution,
or matrices. Students learn to detect if a system of equations is
consistent, inconsistent, or independent.

Later, as students are challenged to develop more complex mod-
els, the processes of solving systems of equations are used to synthe-
size and develop new relationships from systems of equations that
model a situation. Thus, students are challenged to use substitution
to combine parametric equations and giving the spatial coordinates
of a projectile as a function of time into a single relation modeling
the path of the projectile, or to incorporate a constraint on the vol-
ume into a formula giving the cost of a cylindrical can as a function
of the radius.

Counting, Probability, Odds and Modeling
In Grades 7 and 8, students learned about probability and analysis
of bivariate data. In high school, students learn the meanings of
correlation and causation. Correlation, along with standard devia-
tion, is interpreted in terms of a linear model of a data set. Students
distinguish in models of real data the difference between correlation
and causation.S-ID.7 ,S-ID.8 ,S-ID.9 S-ID.7 Interpret the slope (rate of change) and the intercept

(constant term) of a linear model in the context of the data.

S-ID.8 Compute (using technology) and interpret the correlation
coefficient of a linear fit.

S-ID.9 Distinguish between correlation and causation.

Students’ intuitions, affected by media reports and the surround-
ing culture (cf. Nobel Laureate Daniel Kahnemann’s Thinking Fast
and Slow), sometimes conflict with their study of probability. Un-
usual events do occur and unconditional theoretical probabilities are
based on what will happen over the long term and are not affected
by the past—the probability of a head on a coin flip is 1

2 even though
each of the seven previous flips resulted in a head. Students learn
how to reconcile accounts of probability from public and social me-
dia with their study of probability in school. For example, they learn
the intriguing difference between conspiracy and coincidence.

Relating the study of probability to everyday language and feel-
ings is important. Students learn about interpreting probabilities as
“how surprised should we be?" Students learn to understand mean-
ings of ordinary probabilistic words such as “unusual" by examples
such as: “The really unusual day would be one where nothing un-
usual happens" and “280 times a day, a one-in-a-million shot is going
to occur," given that there were approximately 280 million people in
the US at the time. Coincidence is described as “unexpected con-
nections that are both riveting and rattling."•

• “How surprised should we be?" is attributed to statistician
Bradley Efron. “The really unusual day" and other examples are
attributed to mathematician Persi Diaconis. See Belkin, 2002,
“The Odds of That," New York Times Magazine, http://www.
nytimes.com/2002/08/11/magazine/11COINCIDENCE.html.

Because probabilities are often stated in news media in terms
of odds against an event occurring, students learn to move from
probabilities to odds and back. For example, if the odds against
a horse winning a race are 4 to 1, the probability that the horse
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will win is estimated to be 1
1 4 . If the probability that another

horse will win is 0.4 then the odds against that horse winning is
the probability of not winning, 0.6, to the probability of winning, 0.4,
written as 0.6–0.4 or, equivalently, 3–2 or 3:2 and read as “3 to 2."
The equivalence of 0.6–0.4 and 3–2 highlights the fact that odds are
ratios of numbers, where the numerator and denominators convey
meaning. Students learn that the sum of the probabilities of mutually
exclusive events occurring cannot exceed 1, but that they sometimes
do in media reports where odds and probabilities are approximated
for simplicity.

Counting to determine probabilities continues into high school,
and student learning is reinforced with models. For example, the
birthday problem provides rich learning experiences and shows stu-
dents some outcomes that are not intuitively obvious. Counting the
number of possibilities for � birthdays yields an exponential expres-
sion 366

�, and counting of the number of possibilities for n birthdays
all to be different yields a permutation P366

� . The quotient is the
probability that � randomly chosen people will all have different
birthdays, yielding the probability of at least one birthday match
among � people. The often surprising result that when � 23 there
is approximately a 50-50 chance (probability of 0.5 or 50–50 odds)
of having a match. Students learn that the function

P � P366
�

366

�

models the probability of having no birthday match for � randomly
chosen people, and 1 P � is the probability of at least one birth-
day match. The results can be modeled by a spreadsheet revealing
the probabilities for � 2 to � 367. Students learn that it re-
quires at least 367 people to have a probability of 1 of a birthday
match and also learn about the behavior of technology in that the
spreadsheet values for the probability of at least one match become
1 (or at least report as 1) for values of � less than 367. Students
calculating P � using hand held calculators learn that for values of
� of approximately 40, many hand-held calculators cannot compute
the numerators and denominators because of their size. This pro-
vides an opportunity to learn that rewriting the quotient of the two,
too large numbers as the product of a sequence of simpler quotients
allows the calculator to compute the sequence of quotients and then
take their product. On TI calculators this takes the form

Prod Seq

�
366

� �� 366� 366 � 1� 1 �

that is, the product of the sequence

366

366

� 365

366

� � � � � 366 � 1

366

�

which students learn is a product of probabilities. Students learn
that more complex questions can be asked about birthday matches.
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For example, what is the probability of having exactly one, or exactly
two matches of birthdays among � people?

Key Features to Model
Students learn key features of the graphs of polynomials, rational
functions, exponential and logarithmic functions, and modifications
such as logistic functions to help in choosing a function that models
a real life situation. For example, logistic functions are used in mod-
eling how many students get a certain problem on a test right, and
thereby are used in evaluating the difficulty of a problem on a stan-
dardized test. A quadratic function might be considered as model of
profit from a business if the profit has one maximum (or minimum)
over the domain of interest. An exponential function may model a
population over some portion of the domain, but circumstances may
constrain the growth over other portions. Piecewise functions are
considered in situations where the behavior is different over different
portions of the domain of interest.

A common model for population growth

0 2 4 6 8 10 12 14 16 18 20
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The function shown in the graph is P � 800 300� ��

where � is a positive constant, the solution to
�P �

�� � 800 P � .

Students learn that real life circumstances such as changes in
populations are constrained by various conditions such as available
food supply and diseases. They learn that these conditions prevent
populations from growing exponentially over long periods of time. A
common model for growth of a population P results from a rate of
change of P being proportional to the difference between a limiting
constant and P , as in Newton’s law of cooling. This constrained ex-
ponential growth results in P being given by the difference between
the limiting constant and an exponentially decaying function. For
example, the margin shows the graph of a population that is initially
500 and approaches a limiting value of 800. Another common pop-
ulation growth model results from logistic functions where the rate
of growth of P is proportional to the product of P � P for some
constant �.

Students learn to look at key features of the graphs of models
of constrained exponential growth (or decay) and logistic functions
(intercepts, limiting values, and inflection points) and interpret these
key features into the circumstances being modeled.F-IF.4

F-IF.4 For a function that models a relationship between two
quantities, interpret key features of graphs and tables in terms
of the quantities, and sketch graphs showing key features given
a verbal description of the relationship.

Formulas as Models
Formulas are mathematical models of relationships among quan-
tities. Some are statements of laws of nature—e.g., Ohm’s Law,
V IR , or Newton’s law of cooling—and some are measurements
of one quantity in terms of others—e.g., V π�2�, the volume of
a right circular cylinder in terms of its radius and height.G-MG.2

G-MG.2 Apply concepts of density based on area and volume
in modeling situations (e.g., persons per square mile, BTUs per
cubic foot).Students learn how to manipulate formulas to isolate a quantity of

interest. For example, if the question is to what depth will 50 cu-
bic feet of a garden mulch cover a bed of area 20 square feet, then
the formula � V

A where � is the depth, V is the volume, and A
is the area, is an appropriate form.A-CED.4 If one wants a depth of 6

A-CED.4 Rearrange formulas to highlight a quantity of interest,
using the same reasoning as in solving equations.
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inches, then the form would be the appropriate for finding how much
mulch to buy. Students learn that the shape of the bed (modeled
as the base of a cylinder) does not matter, an application of Cav-
alieri’s principle;G-GMD.1 volume is the product of the area and the

G-GMD.1 Give an informal argument for the formulas for the cir-
cumference of a circle, area of a circle, volume of a cylinder, pyra-
mid, and cone.height.G-GMD.3

G-GMD.3 Use volume formulas for cylinders, pyramids, cones,
and spheres to solve problems.

Formulas that are models may sometimes be readily transformed
into functions that are models. For example, the formula for the vol-
ume of a cylinder can be viewed as giving volume as a function of
area of the base and the height, or, rearranging, giving the area of
the base as a function of the volume and height. Similarly, Ohm’s
law can be viewed as giving voltage as a function of current and
resistance. Newton’s law of cooling states that the rate of change
of the temperature of a cooling body is directionally proportional to
the difference between the temperature of the body and the temper-
ature of the environment, i.e., the ambient temperature.F-BF.1b This is

F-BF.1b Write a function that describes a relationship between
two quantities.

b Combine standard function types using arithmetic opera-
tions.another example of constrained exponential growth (or decay). The

solution of this change equation (a differential equation) gives the
temperature of the cooling body as a function of time.

In Grade 7 students learned about proportional relationships and
constants of proportionality.7.RP.2 These surface often in high school 7.RP.2Recognize and represent proportional relationships be-

tween quantities.modeling. Students learn that many modeling situations begin with
a statement like Ohm’s law or Newton’s law of cooling, that is, that
a quantity of interest, I , is directly proportional to a quantity, V ,
and inversely proportional to a quantity, R , i. e. I is given by the
product of a constant and V

I . Newton’s law of cooling is stated as
a proportionality giving the rate of change of the temperature at a
given moment as a product of a constant and the difference in the
temperatures—this can be used in forensic science to estimate the
time of death of a murder victim based on the temperature of the
body when it is found.

Right Triangle and Trigonometric Models Students learn that
many real world situations can be modeled by right triangles. These
include areas of regions that are made up of polygons, indirect mea-
surement problems, and approximations of areas of non-polygonal
regions such as circles. Examples are areas of regular polygons,
height of a flag pole, and approximation of the area of a circle by
regular polygons. Prior to extending the domains of the trigonomet-
ric functions by defining them in terms of arc length on the unit circle,
students understand the trigonometric functions as ratios of sides of
right triangles. These functions, paired with the Pythagorean The-
orem, provide powerful tools for modeling many situations.G-SRT.8 G-SRT.8 Use trigonometric ratios and the Pythagorean Theorem

to solve right triangles in applied problems.When the domains of the trigonometric functions are extended
beyond acute angles,F-TF.2 the reasons that these functions are called F-TF.2 Explain how the unit circle in the coordinate plane enables

the extension of trigonometric functions to all real numbers, inter-
preted as radian measures of angles traversed counterclockwise
around the unit circle.

“circular functions" become clearer. Many situations involving circu-
lar motion can be modeled by trigonometric functions. The example
below uses trigonometric functions and vector-valued functions. For
example, prior to GPSs, this is how sailors determined their latitude.
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Where the Modeling Progression might lead

As mentioned earlier, modeling in high school becomes more com-
plex and powerful as more mathematics and statistics are used to

!

r(t)%

O!

P=(g(t),!h(t))!

Adapted from Usiskin, Peressini, Marchisotto, & Stanley, 2003,
Mathematics for High School Teachers: An Advanced
Perspective, Pearson Prentice Hall, pp. 469–474.

describe real life circumstances. As students learn more, they learn
to use new concepts to extend simpler models previously studied.
Although a high school modeling problem is not likely to incorporate
all of high school mathematics, there are models that incorporate
many concepts and extend beyond the high school mathematics de-
scribed in the Standards. The motion of communication satellites
around the earth or the motion of an object spinning rapidly in a
circle by holding one end of a string with the other attached to the
object can be modeled as a point traversing a circle. The object (at
point P) is accelerated toward the center (O) of the circular path
and the magnitude of the acceleration is constant.

The position vector �� � joining O and P at time � is given by
�� � � � �� � � �� where �� 1� 0 and �� 0� 1 are unit vectors.
By considering the geometry and the physics of the situation, one
can show that there are functions � � and � � (twice differentiable,
giving the velocity and acceleration vectors of the motion) satisfying
the conditions of the model. Noting the similarities of the conditions
on � and � to the behavior of the trigonometric functions sin �
and cos � one can show that indeed the vector function describes
uniform circular motion for an object P on a circle of radius R and
a constant magnitude of acceleration.F-TF.5 F-TF.5 Choose trigonometric functions to model periodic phe-

nomena with specified amplitude, frequency, and midline.
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