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Preface for the Draft
Progressions
The Common Core State Standards in mathematics began with pro-
gressions: narrative documents describing the progression of a topic
across a number of grade levels, informed both by educational re-
search and the structure of mathematics. These documents were
then sliced into grade level standards. From that point on the work
focused on refining and revising the grade level standards, thus, the
early drafts of the progressions documents do not correspond to the
2010 Standards.

The Progressions for the Common Core State Standards are up-
dated versions of those early progressions drafts, revised and edited
to correspond with the Standards by members of the original Pro-
gressions work team, together with other mathematicians and edu-
cation researchers not involved in the initial writing. They note key
connections among standards, point out cognitive difficulties and
pedagogical solutions, and give more detail on particularly knotty
areas of the mathematics.
Audience The Progressions are intended to inform teacher prepa-
ration and professional development, curriculum organization, and
textbook content. Thus, their audience includes teachers and anyone
involved with schools, teacher education, test development, or cur-
riculum development. Members of this audience may require some
guidance in working their way through parts of the mathematics in
the draft Progressions (and perhaps also in the final version of the
Progressions). As with any written mathematics, understanding the
Progressions may take time and discussion with others.

Revision of the draft Progressions will be informed by comments
and discussion at http://commoncoretools.me, The Tools for the
Common Core blog. This blog is a venue for discussion of the Stan-
dards as well as the draft Progressions and is maintained by lead
Standards writer Bill McCallum.
Scope Because they note key connections among standards and
topics, the Progressions offer some guidance but not complete guid-
ance about how topics might be sequenced and approached across
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and within grades. In this respect, the Progressions are an inter-
mediate step between the Standards and a teachers manual for a
grade-level textbook—a type of document that is uncommon in the
United States.
Other sources of information Another important source of infor-
mation about the Standards and their implications for curriculum is
the Publishers’ Criteria for the Common Core State Standards for
Mathematics, available at www.corestandards.org. In addition to
giving criteria for evaluating K–12 curriculum materials, this docu-
ment gives a brief and very useful orientation to the Standards in
its short essay “The structure is the Standards.”

Illustrative Mathematics illustrates the range and types of math-
ematical work that students experience in a faithful implementa-
tion of the Common Core State Standards. This and other ongoing
projects that involve the Standards writers and support the Common
Core are listed at http://ime.math.arizona.edu/commoncore.

Understanding Language aims to heighten awareness of the crit-
ical role that language plays in the new Common Core State Stan-
dards and Next Generation Science Standards, to synthesize knowl-
edge, and to develop resources that help ensure teachers can meet
their students’ evolving linguistic needs as the new Standards are
implemented. See http://ell.stanford.edu.

Teachers’ needs for mathematical preparation and professional
development in the context of the Common Core are often sub-
stantial. The Conference Board of the Mathematical Sciences re-
port The Mathematical Education of Teachers II gives recommenda-
tions for preparation and professional development, and for math-
ematicians’ involvement in teachers’ mathematical education. See
www.cbmsweb.org/MET2/index.htm.
Acknowledgements Funding from the Brookhill Foundation for the
Progressions Project is gratefully acknowledged. In addition to ben-
efiting from the comments of the reviewers who are members of the
writing team, the Progressions have benefited from other comments,
many of them contributed via the Tools for the Common Core blog.
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Introduction
The college- and career-readiness goals of the Common Core State
Standards of the Standards were informed by surveys of college fac-
ulty, studies of college readiness, studies of workplace needs, and
reports and recommendations that summarize such studies.• Created

• These include the reports from Achieve, ACT, College Board,
and American Diploma Project listed in the references for the
Common Core State Standards as well as sections of reports
such as the American Statistical Association’s Guidelines for As-
sessment and Instruction in Statistics Education (GAISE) Report:
A PreK–12 Curriculum Framework and the National Council on
Education and the Disciplines’ Mathematics and Democracy, The
Case for Quantitative Literacy.

to achieve these goals, the Standards are informed by the struc-
ture of mathematics as well as three areas of educational research:
large-scale comparative studies, research on children’s learning tra-
jectories, and other research on cognition and learning.

References to work in these four areas are included in the “works
consulted” section of the Standards document. This introduction out-
lines how the Standards have been shaped by each of these influ-
ences, describes the organization of the Standards, discusses how
traditional topics have been reconceptualized to fit that organiza-
tion, and mentions aspects of terms and usage in the Standards and
the Progressions.
The structure of mathematics One aspect of the structure of math-
ematics is reliance on a small collection of general properties rather
than a large collection of specialized properties. For example, addi-
tion of fractions in the Standards extends the meanings and proper-
ties of addition of whole numbers, applying and extending key ideas
used in addition of whole numbers to addition of unit fractions, then
to addition of all fractions.• As number systems expand from whole • In elementary grades, “whole number” is used with the meaning

“non-negative integer” and “fraction” is used with the meaning
“non-negative rational number.”numbers to fractions in Grades 3–5, to rational numbers in Grades

6–8, to real numbers in high school, the same key ideas are used to
define operations within each system.

Another aspect of mathematics is the practice of defining con-
cepts in terms of a small collection of fundamental concepts rather
than treating concepts as unrelated. A small collection of funda-
mental concepts underlies the organization of the Standards. Defi-
nitions made in terms of these concepts become more explicit over
the grades.• For example, subtraction can mean “take from,” “find

• Note Standard for Mathematical Practice 6: “Mathematically
proficient students try to communicate precisely to others. They
try to use clear definitions in discussion with others and in their
own reasoning. . . . By the time they reach high school they have
learned to examine claims and make explicit use of definitions.”

the unknown addend,” or “find how much more (or less),” depend-
ing on context. However, as a mathematical operation subtraction
can be defined in terms of the fundamental relation of addends and
sum. Students acquire an informal understanding of this definition
in Grade 1• and use it in solving problems throughout their mathe- • Note 1.OA.4: “Understand subtraction as an unknown-addend

problem.” Similarly, 3.OA.6: “Understand division as an unknown-
factor problem.”matical work. The number line is another fundamental concept. In
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elementary grades, students represent whole numbers (2.MD.6), then
fractions (3.NF.2) on number line diagrams. Later, they understand
integers and rational numbers (6.NS.6), then real numbers (8.NS.2),
as points on the number line.•

• For further discussion, see “Overview of School Algebra” in U.S.
Department of Education, 2008, “Report of the Task Group on
Conceptual Knowledge and Skills” in Foundations for Success:
The Final Report of the National Mathematics Advisory Panel.

Large-scale comparative studies One area of research compares
aspects of educational systems in different countries. Compared to
those of high-achieving countries, U.S. standards and curricula of
recent decades were “a mile wide and an inch deep.”• • See Schmidt, Houang, & Cogan, 2002, “A Coher-

ent Curriculum,” American Educator, http://aft.org/pdfs/
americaneducator/summer2002/curriculum.pdf.In contrast, the organization of topics in high-achieving countries

is more focused and more coherent. Focus refers to the number of
topics taught at each grade and coherence is related to the way
in which topics are organized. Curricula and standards that are
focused have few topics in each grade. They are coherent if they
are:

articulated over time as a sequence of topics and
performances that are logical and reflect, where appro-
priate, the sequential and hierarchical nature of the dis-
ciplinary content from which the subject matter derives.•

• Schmidt & Houang, 2012, “Curricular Coherence and the
Common Core State Standards for Mathematics,” Educational
Researcher, http://edr.sagepub.com/content/41/8/294, p.
295.Textbooks and curriculum documents from high-achieving coun-

tries give examples of such sequences of topics and performances.• • For examples of “course of study” documents from other coun-
tries, see http://bit.ly/eb6OlT. Some textbooks from other
countries are readily available. The University of Chicago School
Mathematics Project (http://bit.ly/18tEN7R) has transla-
tions of Japanese textbooks for grades 7–9 and Russian grades
1–3. Singapore Math (www.singaporemath.com) has textbooks
from Singapore. Global Education Resources (GER, http:
//www.globaledresources.com) has translations of Japanese
textbooks for grades 1–6 and translations of the teaching guides
for grades 1–6 and 7–9. Portions of the teachers manuals for
the Japanese textbooks have been translated and can be down-
loaded at Lesson Study Group at Mills College (http://bit.
ly/12bZ1KQ). The first page of a two-page diagram showing
connections of topics for Grades 1–6 in Japan can be seen at
http://bit.ly/12EOjfN.

Research on children’s learning trajectories Within the United
States, researchers who study children’s learning have identified de-
velopmental sequences associated with constructs such as “teaching–
learning paths,” “learning progressions,” or “learning trajectories.”
For example,

A learning trajectory has three parts: a specific math-
ematical goal, a developmental path along which chil-
dren develop to reach that goal, and a set of instructional
activities that help children move along that path.• • Clements & Sarama, 2009, Learning and Teaching Early Math:

The Learning Trajectories Approach, Routledge, p. viii.Findings from this line of research illuminate those of the large-
scale comparative studies by giving details about how particular
instructional activities help children develop specific mathematical
abilities, identifying behavioral milestones along these paths.

The Progressions for the Common Core State Standards are
not “learning progressions” in the sense described above. Well-
documented learning progressions for all of K–12 mathematics do
not exist. However, the Progressions for Counting and Cardinality,
Operations and Algebraic Thinking, Number and Operations in Base
Ten, Geometry, and Geometric Measurement are informed by such
learning progressions and are thus able to outline central instruc-
tional sequences and activities which have informed the Standards.•

• For more about research in this area, see the National Re-
search Council’s reports Adding It Up: Helping Children Learn
Mathematics, 2001, and Mathematics Learning in Early Child-
hood: Paths Toward Excellence and Equity, 2009 (online at
www.nap.edu); Sarama & Clements, 2009, Early Childhood
Mathematics Education Research: Learning Trajectories for
Young Children, Routledge.
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Other research on cognition and learning Other research on cog-
nition, learning, and learning mathematics has informed the devel-
opment of the Standards and Progressions in several ways. Fine-
grained studies have identified cognitive features of learning and in-
struction for topics such as the equal sign in elementary and middle
grades, proportional relationships, or connections among different
representations of a linear function. Such studies have informed the
development of standards in areas where learning progressions do
not exist.• For example, it is possible for students in early grades to

• For reports which summarize some research in these areas,
see National Research Council, 2001, Adding It Up: Helping Chil-
dren Learn Mathematics; National Council of Teachers of Math-
ematics, 2003, A Research Companion to Principles and Stan-
dards for School Mathematics; U.S. Department of Education,
2008, “Report of the Task Group on Learning Processes” in Foun-
dations for Success: The Final Report of the National Mathemat-
ics Advisory Panel. For recommendations that reflect research in
these areas, see the National Council of Teachers of Mathemat-
ics reports Curriculum Focal Points for Prekindergarten through
Grade 8 Mathematics: A Quest for Coherence, 2006 and Focus in
High School Mathematics: Reasoning and Sense Making, 2009.

have a “relational” meaning for the equal sign, e.g., understanding
6 � 6 and 7 � 8 � 1 as correct equations (1.OA.7), rather than an
“operational” meaning in which the right side of the equal sign is
restricted to indicating the outcome of a computation. A relational
understanding of the equal sign is associated with fewer obstacles
in middle grades, and is consistent with its standard meaning in
mathematics. Another example: Studies of students’ interpretations
of functions and graphs indicate specific features of desirable knowl-
edge, e.g., that part of understanding is being able to identify and use
the same properties of the same object in different representations.
For instance, students identify the constant of proportionality (also
known as the unit rate) in a graph, table, diagram, or equation of a
proportional relationship (7.RP.2b) and can explain correspondences
between its different representations (MP.1).

Studies in cognitive science have examined experts’ knowledge,
showing what the results of successful learning look like. Rather
than being a collection of isolated facts, experts’ knowledge is con-
nected and organized according to underlying disciplinary principles.•

• See the chapter on how experts differ from novices in the Na-
tional Research Council’s How People Learn: Brain, Mind, Expe-
rience, and School (online at http://www.nap.edu/catalog.
php?record_id=9853).So, for example, an expert’s knowledge of multiplying whole num-

bers and mixed numbers, expanding binomials, and multiplying com-
plex numbers is connected by common underlying principles rather
than four separately memorized and unrelated special-purpose pro-
cedures. These findings from studies of experts are consistent with
those of comparative research on curriculum. Both suggest that
standards and curricula should attend to “key ideas that determine
how knowledge is organized and generated within that discipline.”•

• Schmidt & Houang, 2007, “Lack of Focus in the Intended Math-
ematics Curriculum: Symptom or Cause?” in Lessons Learned:
What International Assessments Tell Us About Math Achieve-
ment, Brookings Institution Press.The ways in which content knowledge is deployed (or not) are

intertwined with mathematical dispositions and attitudes.• For ex- • See the discussions of self-monitoring, metacognition, and
heuristics in How People Learn and the Problem Solving Stan-
dard of Principles and Standards for School Mathematics.

ample, in calculating 30 � 9, a third grade might use the simpler
form of the original problem (MP.1): calculating 3 � 9 � 27, then
multiplying the result by 10 to get 270 (3.NBT.3). Formulation of the
Standards for Mathematical Practice drew on the process standards
of the National Council of Teachers of Mathematics Principles and
Standards for School Mathematics, the strands of mathematical pro-
ficiency in the National Research Council’s Adding It Up, and other
distillations.•

• See Harel, 2008, “What is Mathematics? A Pedagogical
Answer to a Philosophical Question” in Gold & Simons (eds.),
Proof and Other Dilemmas, Mathematical Association of Amer-
ica; Cuoco, Goldenberg, & Mark, 1996, “Habits of Mind: An
Organizing Principle for a Mathematics Curriculum,” Journal of
Mathematical Behavior or Cuoco, 1998, “Mathematics as a Way
of Thinking about Things,” in High School Mathematics at Work,
National Academies Press, which can be read online at http:
//bit.ly/12Fa27m. Adding It Up can be read online at http:
//bit.ly/mbeQs1.
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Organization of the Common Core State Standards for
Mathematics
An important feature of the Standards for Mathematical Content is
their organization in groups of related standards. In K–8, these
groups are called domains and in high school, they are called con-
ceptual categories. The diagram below shows K–8 domains which
are important precursors of the conceptual category of algebra.• • For a more detailed diagram of relationships among the

standards, see http://commoncoretools.me/2012/06/09/
jason-zimbas-wiring-diagram.In contrast, many standards and frameworks in the United States

are presented as parallel K–12 “strands.” Unlike the diagram in
the margin, a strands type of presentation has the disadvantage of
deemphasizing relationships of topics in different strands. Opera&ons*and*Algebraic*

Thinking*

Expressions*
and*
Equa&ons*

Algebra*

→* →*

Number*and*Opera&ons—
Base*Ten*

→*

The*Number*
System*

→*

Number*and*
Opera&ons—
Frac&ons*

→*

K" 1" 2" 3" 4" 5" 6" 7" 8" High"School"

Other aspects of the structure of the Standards are less obvi-
ous. The Progressions elaborate some features of this structure•, in

• Because the Progressions focus on key ideas and the Stan-
dards have different levels of grain-size, not every standard is
included in some Progression.

particular:
• Grade-level coordination of standards across domains.
• Connections between standards for content and for mathemat-

ical practice.
• Key ideas that develop within one domain over the grades.
• Key ideas that change domains as they develop over the grades.
• Key ideas that recur in different domains and conceptual cat-

egories.
Grade-level coordination of standards across domains or concep-
tual categories One example of how standards are coordinated is
the following. In Grade 4 measurement and data, students solve
problems involving conversion of measurements from a larger unit
to a smaller unit.4.MD.1 In Grade 5, this extends to conversion from

4.MD.1Know relative sizes of measurement units within one sys-
tem of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec.
Within a single system of measurement, express measurements
in a larger unit in terms of a smaller unit. Record measurement
equivalents in a two-column table.

smaller units to larger ones.5.MD.1

5.MD.1Convert among different-sized standard measurement
units within a given measurement system (e.g., convert 5 cm to
0.05 m), and use these conversions in solving multi-step, real
world problems.

These standards are coordinated with the standards for oper-
ations on fractions. In Grade 4, expectations for multiplication are
limited to multiplication of a fraction by a whole number (e.g., 3�2{5)
and its representation by number line diagrams, other visual mod-
els, and equations. In Grade 5, fraction multiplication extends to
multiplication of two non-whole number fractions.5.NF.6 , 5.MD.1 5.NF.6Solve real world problems involving multiplication of frac-

tions and mixed numbers, e.g., by using visual fraction models or
equations to represent the problem.

5.MD.1Convert among different-sized standard measurement
units within a given measurement system (e.g., convert 5 cm to
0.05 m), and use these conversions in solving multi-step, real
world problems.

Connections between content and practice standards The Pro-
gressions provide examples of “points of intersection” between con-
tent and practice standards. For instance, standard algorithms for
operations with multi-digit numbers can be viewed as expressions
of regularity in repeated reasoning (MP.8). Such examples can be
found by searching the Progressions electronically for “MP.”
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Key ideas within domains Within the domain of Number and Op-
erations Base Ten, place value begins with the concept of ten ones
in Kindergarten and extends through Grade 6, developing further
in the context of whole number and decimal representations and
computations.
Key ideas that change domains Some key concepts develop across
domains and grades. For example, understanding number line di-
agrams begins in geometric measurement, then develops further in
the context of fractions in Grade 3 and beyond.

Coordinated with the development of multiplication of fractions,
measuring area begins in Grade 3 geometric measurement for rect-
angles with whole-number side lengths, extending to rectangles with
fractional side lengths in Grade 5. Measuring volume begins in
Grade 5 geometric measurement with right rectangular prisms with
whole-number side lengths, extending to such prisms with fractional
edge lengths in Grade 6 geometry.
Key recurrent ideas Among key ideas that occur in more than one
domain or conceptual category are those of:

• composing and decomposing
• unit (including derived and subordinate unit).
These begin in elementary grades and continue through high

school. Students develop tacit knowledge of these ideas by using
them, which later becomes more explicit, particularly in algebra.

A group of objects can be decomposed without changing its car-
dinality, and this can be represented in equations. For example,
a group of 4 objects can be decomposed into a group of 1 and a
group of 3, and represented with various equations, e.g., 4 � 1�3 or
1 � 3 � 4. Properties of operations allow numerical expressions to
be decomposed and rearranged without changing their value. For
example, the 3 in 1 � 3 can be decomposed as 1 � 2 and, using
the associative property, the expression can be rearranged as 2� 2.
Variants of this idea (often expressed as “transforming” or “rewrit-
ing” an expression) occur throughout K–8, extending to algebra and
other categories in high school.

One-, two-, and three-dimensional geometric figures can be de-
composed and rearranged without changing—respectively—their length,
area, or volume. For example, two copies of a square can be put
edge-to-edge and be seen as composing a rectangle. A rectangle
can be decomposed to form two triangles of the same shape. Vari-
ants of this idea (often expressed as “dissecting” and “rearranging”)
occur throughout K–8, extending to geometry and other categories
in high school.

In K–8, an important occurrence of units is in the base-ten system
for numbers. A whole number can be viewed as a collection of
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ones, or organized in terms of its base-ten units. Ten ones compose
a unit called a ten. That unit can be decomposed as ten ones.
Understanding place value involves understanding that each place
of a base-ten numeral represents an amount of a base-ten unit:
ones, tens, hundreds, . . . and tenths, hundredths, etc. The regularity
in composing and decomposing of base-ten units is a major feature
used and highlighted by algorithms for computing operations on
whole numbers and decimals.

Representing amounts in terms of units3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

two units notation one unit notation
Base-ten units 1 ten, 3 ones 13 13 ones –
Fractional units 1 one, 3 fifths 1 3

5 8 fifths 8
5

Measurement units 1 foot, 3 inches 1 ft, 3 in 15 inches 15 in
Base-ten units 1 one, 3 tenths 1.3 13 tenths –

An amount may be represented in terms of one unit or in terms of two units, where
one unit is a composition of the other.

Units occur as units of measurement for length, area,
and volume in geometric measurement and geometry.
Students iterate these units in measurement, first phys-
ically and later mentally, e.g., placing copies of a length
unit side-by-side to measure length, tiling a region with
copies of an area unit to measure area, or packing a con-
tainer with copies of a volume unit to measure volume.
They understand that a length unit determines derived
units for area and volume, e.g., a meter gives rise to a
square meter and cubic meter.

Students learn to decompose a one (“a whole”) into subordinate
units: unit fractions of equal size. The whole is a length (possibly
represented by an endpoint) on the number line or is a single shape
or object. When possible, students are able to write a number in
terms of those units in different ways, as a fraction, decimal, or mixed
number. They expand their conception of unit by learning to view a
group of objects as a unit and partition that unit into unit fractions
of equal size.

Students learn early that groups of objects or numbers can be
decomposed and reassembled without changing their cardinality.
Later, students learn that specific length, area, or volume units can
be decomposed into subordinate units of equal size, e.g., a meter can
be decomposed into decimeters, centimeters, or millimeters.

These ideas are extended in high school. For example, derived
units may be created from two or more different units, e.g., miles per
hour or vehicle-mile traveled. Shapes are decomposed and reassem-
bled in order to determine certain attributes. For example, areas can
be decomposed and reassembled as in the proof of the Pythagorean
Theorem or angles can be decomposed and reassembled to yield
trigonometric formulas.

Reconceptualized topics; changed notation and
terminology
This section mentions some topics, terms, and notation that have
been frequent in U.S. school mathematics, but do not occur in the
Standards or Progressions.
“Number sentence” in elementary grades “Equation” is used in-
stead of “number sentence,” allowing the same term to be used
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throughout K–12.
Notation for remainders in division of whole numbers One aspect
of attending to logical structure is attending to consistency. This has
sometimes been neglected in U.S. school mathematics as illustrated
by a common practice. The result of division within the system of
whole numbers is frequently written like this:

84� 10 � 8 R 4 and 44� 5 � 8 R 4.
Because the two expressions on the right are the same, students

should conclude that 84 � 10 is equal to 44 � 5, but this is not
the case. (Because the equal sign is not used appropriately, this
usage is a non-example of Standard for Mathematical Practice 6.)
Moreover, the notation 8 R 4 does not indicate a number.

Rather than writing the result of division in terms of a whole-
number quotient and remainder, the relationship of whole-number
quotient and remainder can be written like this:

84 � 8� 10� 4 and 44 � 8� 5� 4.
Conversion and simplification To achieve the expectations of the
Standards, students need to be able to transform and use numerical
and symbolic expressions. The skills traditionally labeled “conver-
sion” and “simplification” are a part of these expectations. As noted
in the statement of Standard for Mathematical Practice 1, students
transform a numerical or symbolic expression in order to get the in-
formation they need, using conversion, simplification, or other types
of transformations. To understand correspondences between differ-
ent approaches to the same problem or different representations for
the same situation, students draw on their understanding of differ-
ent representations for a given numerical or symbolic expression as
well as their understanding of correspondences between equations,
tables, graphs, diagrams, and verbal descriptions.
Fraction simplification, fraction-decimal-percent conversion In Grade
3, students recognize and generate equivalences between fractions
in simple cases (3.NF.3). Two important building blocks for under-
standing relationships between fraction and decimal notation occur
in Grades 4 and 5. In Grade 4, students’ understanding of decimal
notation for fractions includes using decimal notation for fractions
with denominators 10 and 100 (4.NF.5; 4.NF.6). In Grade 5, students’
understanding of fraction notation for decimals includes using frac-
tion notation for decimals to thousandths (5.NBT.3a).

Students identify correspondences between different approaches
to the same problem (MP.1). In Grade 4, when solving word problems
that involve computations with simple fractions or decimals (e.g.,
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4.MD.2), one student might compute
1

5
�

12

10

as
.2� 1.2 � 1.4,

another as
1

5
�

6

5
�

7

5
;

and yet another as
2

10
�

12

10
�

14

10
.

Explanations of correspondences between
1

5
�

12

10
, .2� 1.2, 1

5
�

6

5
, and 2

10
�

12

10

draw on understanding of equivalent fractions (3.NF.3 is one build-
ing block) and conversion from fractions to decimals (4.NF.5; 4.NF.6).
This is revisited and augmented in Grade 7 when students use nu-
merical and algebraic expressions to solve problems posed with
rational numbers expressed in different forms, converting between
forms as appropriate (7.EE.3).

In Grade 6, percents occur as rates per 100 in the context of
finding parts of quantities (6.PR.3c). In Grade 7, students unify their
understanding of numbers, viewing percents together with fractions
and decimals as representations of rational numbers. Solving a wide
variety of percent problems (7.RP.3) provides one source of opportu-
nities to build this understanding.
Simplification of algebraic expressions In Grade 6, students apply
properties of operations to generate equivalent expressions (6.EE.3).
For example, they apply the distributive property to 3p2 � xq to
generate 6�3x . Traditionally, 6�3x is called the “simplification” of
3p2�xq, however, students are not required to learn this terminology.
Although the term “simplification” may suggest that the simplified
form of an expression is always the most useful or always leads to
a simpler form of a problem, this is not always the case. Thus, the
use of this term may be misleading for students.

In Grade 7, students again apply properties of operations to gen-
erate equivalent expressions, this time to linear expressions with ra-
tional number coefficients (7.EE.1). Together with their understand-
ing of fractions and decimals, students draw on their understanding
of equivalent forms of an expression to identify and explain corre-
spondences between different approaches to the same problem. For
example, in Grade 7, this can occur in solving multi-step problems
posed in terms of a mixture of fractions, decimals, and whole numbers
(7.EE.4).
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In high school, students apply properties of operations to solve
problems, e.g., by choosing and producing an equivalent form of an
expression for a quadratic or exponential function (A-SSE.3). As
in earlier grades, the simplified form of an expression is one of its
equivalent forms.

Terms and usage in the Standards and Progressions
In some cases, the Standards give choices or suggest a range of
options. For example, standards like K.NBT.1, 4.NF.3c, and G-CO.12
give lists such as: “using objects or drawings”; “replacing each mixed
number with an equivalent fraction, and/or by using properties of
operations and the relationship between addition and subtraction”;
“dynamic geometric software, compass and straightedge, reflective
devices, and paper folding.” Such lists are intended to suggest var-
ious possibilities rather than being comprehensive lists of require-
ments. The abbreviation “e.g.” in a standard is frequently used as
an indication that what follows is an example, not a specific require-
ment.

On the other hand, the Standards do impose some very impor-
tant constraints. The structure of the Standards uses a particular
definition of “fraction” for definitions and development of operations
on fractions (see the Number and Operations—Fractions Progres-
sion). Likewise, the standards that concern ratio and rate rely on
particular definitions of those terms. These are described in the
Ratios and Proportional Relationships Progression.

Terms used in the Standards and Progressions are not intended
as prescriptions for terms that teachers must use in the classroom.
For example, students do not need to know the names of different
types of addition situations, such as “put-together” or “compare,”
although these can be useful for classroom discourse. Likewise,
Grade 2 students might use the term “line plot,” its synonym “dot
plot,” or describe this type of diagram in some other way.

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .

commoncoretools.wordpress.com


Progressions for the Common Core
State Standards in Mathematics (draft)

c©The Common Core Standards Writing Team

29 May 2011

Draft, 5/29/2011, comment at commoncoretools.wordpress.com . 1



K, Counting and
Cardinality; K–5,
Operations and Algebraic
Thinking

Counting and Cardinality and Operations and Algebraic Thinking are
about understanding and using numbers. Counting and Cardinality
underlies Operations and Algebraic Thinking as well as Number
and Operations in Base Ten. It begins with early counting and
telling how many in one group of objects. Addition, subtraction,
multiplication, and division grow from these early roots. From its
very beginnings, this Progression involves important ideas that are
neither trivial nor obvious; these ideas need to be taught, in ways
that are interesting and engaging to young students.

The Progression in Operations and Algebraic Thinking deals with
the basic operations—the kinds of quantitative relationships they
model and consequently the kinds of problems they can be used
to solve as well as their mathematical properties and relationships.
Although most of the standards organized under the OA heading
involve whole numbers, the importance of the Progression is much
more general because it describes concepts, properties, and repre-
sentations that extend to other number systems, to measures, and to
algebra. For example, if the mass of the sun is x kilograms, and the
mass of the rest of the solar system is y kilograms, then the mass
of the solar system as a whole is the sum x � y kilograms. In this
example of additive reasoning, it doesn’t matter whether x and y
are whole numbers, fractions, decimals, or even variables. Likewise,
a property such as distributivity holds for all the number systems
that students will study in K–12, including complex numbers.

The generality of the concepts involved in Operations and Al-
gebraic Thinking means that students’ work in this area should be
designed to help them extend arithmetic beyond whole numbers (see
the NF and NBT Progressions) and understand and apply expres-
sions and equations in later grades (see the EE Progression).

Addition and subtraction are the first operations studied. Ini-
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tially, the meaning of addition is separate from the meaning of sub-
traction, and students build relationships between addition and sub-
traction over time. Subtraction comes to be understood as reversing
the actions involved in addition and as finding an unknown ad-
dend. Likewise, the meaning of multiplication is initially separate
from the meaning of division, and students gradually perceive re-
lationships between division and multiplication analogous to those
between addition and subtraction, understanding division as revers-
ing the actions involved in multiplication and finding an unknown
product.

Over time, students build their understanding of the properties
of arithmetic: commutativity and associativity of addition and multi-
plication, and distributivity of multiplication over addition. Initially,
they build intuitive understandings of these properties, and they use
these intuitive understandings in strategies to solve real-world and
mathematical problems. Later, these understandings become more
explicit and allow students to extend operations into the system of
rational numbers.

As the meanings and properties of operations develop, students
develop computational methods in tandem. The OA Progression in
Kindergarten and Grade 1 describes this development for single-
digit addition and subtraction, culminating in methods that rely on
properties of operations. The NBT Progression describes how these
methods combine with place value reasoning to extend computa-
tion to multi-digit numbers. The NF Progression describes how the
meanings of operations combine with fraction concepts to extend
computation to fractions.

Students engage in the Standards for Mathematical Practice in
grade-appropriate ways from Kindergarten to Grade 5. Pervasive
classroom use of these mathematical practices in each grade affords
students opportunities to develop understanding of operations and
algebraic thinking.
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Counting and Cardinality
Several progressions originate in knowing number names and the
count sequence:K.CC.1 K.CC.1Count to 100 by ones and by tens.

From saying the counting words to counting out objects Students
usually know or can learn to say the counting words up to a given
number before they can use these numbers to count objects or to tell
the number of objects. Students become fluent in saying the count
sequence so that they have enough attention to focus on the pairings
involved in counting objects. To count a group of objects, they pair
each word said with one object.K.CC.4a This is usually facilitated by

K.CC.4a Understand the relationship between numbers and
quantities; connect counting to cardinality.

a When counting objects, say the number names in the
standard order, pairing each object with one and only one
number name and each number name with one and only
one object.

an indicating act (such as pointing to objects or moving them) that
keeps each word said in time paired to one and only one object
located in space. Counting objects arranged in a line is easiest;
with more practice, students learn to count objects in more difficult
arrangements, such as rectangular arrays (they need to ensure they
reach every row or column and do not repeat rows or columns); cir-
cles (they need to stop just before the object they started with); and
scattered configurations (they need to make a single path through
all of the objects).K.CC.5 Later, students can count out a given number

K.CC.5Count to answer “how many?” questions about as many
as 20 things arranged in a line, a rectangular array, or a circle, or
as many as 10 things in a scattered configuration; given a number
from 1–20, count out that many objects.of objects,K.CC.5 which is more difficult than just counting that many

objects, because counting must be fluent enough for the student to
have enough attention to remember the number of objects that is
being counted out.

From subitizing to single-digit arithmetic fluency Students come
to quickly recognize the cardinalities of small groups without having
to count the objects; this is called perceptual subitizing. Perceptual
subitizing develops into conceptual subitizing—recognizing that a
collection of objects is composed of two subcollections and quickly
combining their cardinalities to find the cardinality of the collec-
tion (e.g., seeing a set as two subsets of cardinality 2 and saying
“four”). Use of conceptual subitizing in adding and subtracting small
numbers progresses to supporting steps of more advanced methods
for adding, subtracting, multiplying, and dividing single-digit num-
bers (in several OA standards from Grade 1 to 3 that culminate in
single-digit fluency).

From counting to counting on Students understand that the last
number name said in counting tells the number of objects counted.K.CC.4b

K.CC.4b Understand the relationship between numbers and
quantities; connect counting to cardinality.

b Understand that the last number name said tells the num-
ber of objects counted. The number of objects is the same
regardless of their arrangement or the order in which they
were counted.

Prior to reaching this understanding, a student who is asked “How
many kittens?” may regard the counting performance itself as the
answer, instead of answering with the cardinality of the set. Ex-
perience with counting allows students to discuss and come to un-
derstand the second part of K.CC.4b—that the number of objects is
the same regardless of their arrangement or the order in which they
were counted. This connection will continue in Grade 1 with the
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more advanced counting-on methods in which a counting word rep-
resents a group of objects that are added or subtracted and addends
become embedded within the total1.OA.6 (see page 14). Being able

1.OA.6Add and subtract within 20, demonstrating fluency for ad-
dition and subtraction within 10. Use strategies such as counting
on; making ten (e.g., 8� 6 � 8� 2� 4 � 10� 4 � 14); decom-
posing a number leading to a ten (e.g., 13� 4 � 13� 3� 1 �
10�1 � 9); using the relationship between addition and subtrac-
tion (e.g., knowing that 8� 4 � 12, one knows 12� 8 � 4); and
creating equivalent but easier or known sums (e.g., adding 6� 7
by creating the known equivalent 6� 6� 1 � 12� 1 � 13).

to count forward, beginning from a given number within the known
sequence,K.CC.2 is a prerequisite for such counting on. Finally, un-

K.CC.2Count forward beginning from a given number within the
known sequence (instead of having to begin at 1).

derstanding that each successive number name refers to a quantity
that is one largerK.CC.4c is the conceptual start for Grade 1 counting

K.CC.4c Understand the relationship between numbers and
quantities; connect counting to cardinality.

c Understand that each successive number name refers to
a quantity that is one larger.

on. Prior to reaching this understanding, a student might have to
recount entirely a collection of known cardinality to which a single
object has been added.

From spoken number words to written base-ten numerals to base-
ten system understanding The NBT Progression discusses the
special role of 10 and the difficulties that English speakers face be-
cause the base-ten structure is not evident in all the English number
words.

From comparison by matching to comparison by numbers to com-
parison involving adding and subtracting The standards about
comparing numbersK.CC.6 ,K.CC.7 focus on students identifying which

K.CC.6Identify whether the number of objects in one group is
greater than, less than, or equal to the number of objects in an-
other group, e.g., by using matching and counting strategies.

K.CC.7Compare two numbers between 1 and 10 presented as
written numerals.

of two groups has more than (or fewer than, or the same amount
as) the other. Students first learn to match the objects in the two
groups to see if there are any extra and then to count the objects
in each group and use their knowledge of the count sequence to
decide which number is greater than the other (the number farther
along in the count sequence). Students learn that even if one group
looks as if it has more objects (e.g., has some extra sticking out),
matching or counting may reveal a different result. Comparing num-
bers progresses in Grade 1 to adding and subtracting in comparing
situations (finding out “how many more” or “how many less”1.OA.1

1.OA.1Use addition and subtraction within 20 to solve word prob-
lems involving situations of adding to, taking from, putting to-
gether, taking apart, and comparing, with unknowns in all posi-
tions, e.g., by using objects, drawings, and equations with a sym-
bol for the unknown number to represent the problem.

and not just “which is more” or “which is less”).
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Operations and Algebraic Thinking
Overview of Grades K–2
Students develop meanings for addition and subtraction as they en-
counter problem situations in Kindergarten, and they extend these
meanings as they encounter increasingly difficult problem situations
in Grade 1. They represent these problems in increasingly sophis-
ticated ways. And they learn and use increasingly sophisticated
computation methods to find answers. In each grade, the situations,
representations, and methods are calibrated to be coherent and to
foster growth from one grade to the next.

Methods used for solving single-digit addition and
subtraction problems

Level 1. Direct Modeling by Counting All or Taking Away.
Represent situation or numerical problem with groups of objects,
a drawing, or fingers. Model the situation by composing two
addend groups or decomposing a total group. Count the
resulting total or addend.

Level 2. Counting On. Embed an addend within the total (the
addend is perceived simultaneously as an addend and as part of
the total). Count this total but abbreviate the counting by omitting
the count of this addend; instead, begin with the number word of
this addend. Some method of keeping track (fingers, objects,
mentally imaged objects, body motions, other count words) is
used to monitor the count.

For addition, the count is stopped when the amount of the
remaining addend has been counted. The last number word is
the total. For subtraction, the count is stopped when the total
occurs in the count. The tracking method indicates the
difference (seen as an unknown addend).

Level 3. Convert to an Easier Problem. Decompose an addend
and compose a part with another addend.

See Appendix for examples and further details.

The main addition and subtraction situations students work with
are listed in Table 1. The computation methods they learn to use
are summarized in the margin and described in more detail in the
Appendix.
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Table 1: Addition and subtraction situations

Result Unknown Change Unknown Start Unknown

Add To

A bunnies sat on the grass. B more
bunnies hopped there. How many
bunnies are on the grass now?

A� B � l

A bunnies were sitting on the grass.
Some more bunnies hopped there.
Then there were C bunnies. How
many bunnies hopped over to the
first A bunnies?

A�l � C

Some bunnies were sitting on the
grass. B more bunnies hopped
there. Then there were C bun-
nies. How many bunnies were on the
grass before?

l� B � C

Take
From

C apples were on the table. I ate B
apples. How many apples are on the
table now?

C � B � l

C apples were on the table. I ate
some apples. Then there were A ap-
ples. How many apples did I eat?

C �l � A

Some apples were on the table. I ate
B apples. Then there were A apples.
How many apples were on the table
before?

l� B � A

Total Unknown Both Addends Unknown1 Addend Unknown2

Put
Together
/Take
Apart

A red apples and B green apples are
on the table. How many apples are
on the table?

A� B � l

Grandma has C flowers. How many
can she put in her red vase and how
many in her blue vase?

C � l�l

C apples are on the table. A are red
and the rest are green. How many
apples are green?

A�l � C
C � A � l

Difference Unknown Bigger Unknown Smaller Unknown

“How many more?” version. Lucy
has A apples. Julie has C apples.
How many more apples does Julie
have than Lucy?

“More” version suggests operation.
Julie has B more apples than Lucy.
Lucy has A apples. How many ap-
ples does Julie have?

“Fewer” version suggests operation.
Lucy has B fewer apples than Julie.
Julie has C apples. How many ap-
ples does Lucy have?

Compare
“How many fewer?” version. Lucy
has A apples. Julie has C apples.
How many fewer apples does Lucy
have than Julie?

A�l � C
C � A � l

“Fewer” version suggests wrong op-
eration. Lucy has B fewer apples
than Julie. Lucy has A apples. How
many apples does Julie have?

A� B � l

“More” suggests wrong operation.
Julie has B more apples than Lucy.
Julie has C apples. How many ap-
ples does Lucy have?

C � B � l

l� B � C

In each type (shown as a row), any one of the three quantities in the situation can be unknown, leading to the subtypes shown in each
cell of the table. The table also shows some important language variants which, while mathematically the same, require separate
attention. Other descriptions of the situations may use somewhat different names. Adapted from CCSS, p. 88, which is based on
Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity, National Research Council, 2009, pp. 32–33.
1 This can be used to show all decompositions of a given number, especially important for numbers within 10. Equations with totals

on the left help children understand that = does not always mean “makes” or “results in” but always means “is the same number as.”
Such problems are not a problem subtype with one unknown, as is the Addend Unknown subtype to the right. These problems are a
productive variation with two unknowns that give experience with finding all of the decompositions of a number and reflecting on the
patterns involved.

2 Either addend can be unknown; both variations should be included.
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Kindergarten
Students act out adding and subtracting situations by representing
quantities in the situation with objects, their fingers, and math draw-
ings (MP5).K.OA.1 To do this, students must mathematize a real-world

K.OA.1Represent addition and subtraction with objects, fingers,
mental images, drawings, sounds (e.g., claps), acting out situa-
tions, verbal explanations, expressions, or equations.situation (MP4), focusing on the quantities and their relationships

rather than non-mathematical aspects of the situation. Situations
can be acted out and/or presented with pictures or words. Math
drawings facilitate reflection and discussion because they remain
after the problem is solved. These concrete methods that show all
of the objects are called Level 1 methods.

Students learn and use mathematical and non-mathematical lan-
guage, especially when they make up problems and explain their
representation and solution. The teacher can write expressions (e.g.,
3�1) to represent operations, as well as writing equations that rep-
resent the whole situation before the solution (e.g., 3 � 1 � l) or
after (e.g., 3� 1 � 2). Expressions like 3� 1 or 2� 1 show the oper-
ation, and it is helpful for students to have experience just with the
expression so they can conceptually chunk this part of an equation.

Working within 5 Students work with small numbers first, though
many kindergarteners will enter school having learned parts of the
Kindergarten standards at home or at a preschool program. Focus-
ing attention on small groups in adding and subtracting situations
can help students move from perceptual subitizing to conceptual
subitizing in which they see and say the addends and the total,•

• Note on vocabulary: The term “total” is used here instead of the
term “sum.” “Sum” sounds the same as “some,” but has the oppo-
site meaning. “Some” is used to describe problem situations with
one or both addends unknown, so it is better in the earlier grades
to use “total” rather than “sum.” Formal vocabulary for subtrac-
tion (“minuend” and “subtrahend”) is not needed for Kindergarten,
Grade 1, and Grade 2, and may inhibit students seeing and dis-
cussing relationships between addition and subtraction. At these
grades, the terms “total” and “addend” are sufficient for classroom
discussion.

e.g., “Two and one make three.”
Students will generally use fingers for keeping track of addends

and parts of addends for the Level 2 and 3 methods used in later
grades, so it is important that students in Kindergarten develop rapid
visual and kinesthetic recognition of numbers to 5 on their fingers.
Students may bring from home different ways to show numbers with
their fingers and to raise (or lower) them when counting. The three
major ways used around the world are starting with the thumb, the
little finger, or the pointing finger (ending with the thumb in the
latter two cases). Each way has advantages physically or math-
ematically, so students can use whatever is familiar to them. The
teacher can use the range of methods present in the classroom, and
these methods can be compared by students to expand their un-
derstanding of numbers. Using fingers is not a concern unless it
remains at the first level of direct modeling in later grades.

Students in Kindergarten work with the following types of addi-
tion and subtraction situations: Add To with Result Unknown; Take
From with Result Unknown; and Put Together/Take Apart with Total
Unknown and Both Addends Unknown (see the dark shaded types
in Table 2). Add To/Take From situations are action-oriented; they
show changes from an initial state to a final state. These situations
are readily modeled by equations because each aspect of the situ-
ation has a representation as number, operation (� or �), or equal
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sign (�, here with the meaning of “becomes,” rather than the more
general “equals”).

Table 2: Addition and subtraction situations by grade level.

Result Unknown Change Unknown Start Unknown

Add To

A bunnies sat on the grass. B more
bunnies hopped there. How many
bunnies are on the grass now?

A� B � l

A bunnies were sitting on the grass.
Some more bunnies hopped there.
Then there were C bunnies. How
many bunnies hopped over to the
first A bunnies?

A�l � C

Some bunnies were sitting on the
grass. B more bunnies hopped
there. Then there were C bun-
nies. How many bunnies were on the
grass before?

l� B � C

Take
From

C apples were on the table. I ate B
apples. How many apples are on the
table now?

C � B � l

C apples were on the table. I ate
some apples. Then there were A ap-
ples. How many apples did I eat?

C �l � A

Some apples were on the table. I ate
B apples. Then there were A apples.
How many apples were on the table
before?

l� B � A

Total Unknown Both Addends Unknown1 Addend Unknown2

Put
Together
/Take
Apart

A red apples and B green apples are
on the table. How many apples are
on the table?

A� B � l

Grandma has C flowers. How many
can she put in her red vase and how
many in her blue vase?

C � l�l

C apples are on the table. A are red
and the rest are green. How many
apples are green?

A�l � C
C � A � l

Difference Unknown Bigger Unknown Smaller Unknown

“How many more?” version. Lucy
has A apples. Julie has C apples.
How many more apples does Julie
have than Lucy?

“More” version suggests operation.
Julie has B more apples than Lucy.
Lucy has A apples. How many ap-
ples does Julie have?

“Fewer” version suggests operation.
Lucy has B fewer apples than Julie.
Julie has C apples. How many ap-
ples does Lucy have?

Compare
“How many fewer?” version. Lucy
has A apples. Julie has C apples.
How many fewer apples does Lucy
have than Julie?

A�l � C
C � A � l

“Fewer” version suggests wrong
operation. Lucy has B fewer ap-
ples than Julie. Lucy has A ap-
ples. How many apples does Julie
have?

A� B � l

“More” version suggests wrong op-
eration. Julie has B more ap-
ples than Lucy. Julie has C ap-
ples. How many apples does Lucy
have?

C � B � l

l� B � C

Darker shading indicates the four Kindergarten problem subtypes. Grade 1 and 2 students work with all subtypes and variants.
Unshaded (white) problems are the four difficult subtypes or variants that students should work with in Grade 1 but need not master
until Grade 2. Adapted from CCSS, p. 88, which is based on Mathematics Learning in Early Childhood: Paths Toward Excellence and
Equity, National Research Council, 2009, pp. 32–33.
1 This can be used to show all decompositions of a given number, especially important for numbers within 10. Equations with totals

on the left help children understand that = does not always mean “makes” or “results in” but always means “is the same number as.”
Such problems are not a problem subtype with one unknown, as is the Addend Unknown subtype to the right. These problems are a
productive variation with two unknowns that give experience with finding all of the decompositions of a number and reflecting on the
patterns involved.

2 Either addend can be unknown; both variations should be included.
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In Put Together/Take Apart situations, two quantities jointly com-
pose a third quantity (the total), or a quantity can be decomposed
into two quantities (the addends). This composition/decomposition
may be physical or conceptual. These situations are acted out with
objects initially and later children begin to move to conceptual men-
tal actions of shifting between seeing the addends and seeing the
total (e.g., seeing children or seeing boys and girls, or seeing red
and green apples or all the apples).

The relationship between addition and subtraction in the Add
To/Take From and the Put Together/Take Apart action situations
is that of reversibility of actions: an Add To situation undoes a
Take From situation and vice versa and a composition (Put Together)
undoes a decomposition (Take Apart) and vice versa.

Put Together/Take Apart situations with Both Addends Unknown
play an important role in Kindergarten because they allow students
to explore various compositions that make each number.K.OA.3 This

K.OA.3Decompose numbers less than or equal to 10 into pairs in
more than one way, e.g., by using objects or drawings, and record
each decomposition by a drawing or equation (e.g., 5 � 2�3 and
5 � 4� 1).will help students to build the Level 2 embedded number represen-

tations used to solve more advanced problem subtypes. As students
decompose a given number to find all of the partners• that com- • The two addends that make a total can also be called partners

in Kindergarten and Grade 1 to help children understand that they
are the two numbers that go together to make the total.pose the number, the teacher can record each decomposition with

an equation such as 5 � 4� 1, showing the total on the left and the
two addends on the right.• Students can find patterns in all of the

• For each total, two equations involving 0 can be written, e.g.,
5 � 5 � 0 and 5 � 0 � 5. Once students are aware that such
equations can be written, practice in decomposing is best done
without such 0 cases.

decompositions of a given number and eventually summarize these
patterns for several numbers.

Equations with one number on the left and an operation on the
right (e.g., 5 � 2 � 3 to record a group of 5 things decomposed
as a group of 2 things and a group of 3 things) allow students to
understand equations as showing in various ways that the quantities
on both sides have the same value.MP6 MP6 Working toward “using the equal sign consistently and ap-

propriately.”

Working within 10 Students expand their work in addition and
subtraction from within 5 to within 10. They use the Level 1 methods
developed for smaller totals as they represent and solve problems
with objects, their fingers, and math drawings. Patterns such as
“adding one is just the next counting word”K.CC.4c and “adding zero

K.CC.4c Understand the relationship between numbers and
quantities; connect counting to cardinality.

c Understand that each successive number name refers to
a quantity that is one larger.gives the same number” become more visible and useful for all of

the numbers from 1 to 9. Patterns such as the 5 � n pattern used
widely around the world play an important role in learning partic-
ular additions and subtractions, and later as patterns in steps in
the Level 2 and 3 methods. Fingers can be used to show the same

5� n pattern

5-patterns, but students should be asked to explain these relation-
ships explicitly because they may not be obvious to all students.MP3

As the school year progresses, students internalize their external MP3 Students explain their conclusions to others.representations and solution actions, and mental images become
important in problem representation and solution.

Student drawings show the relationships in addition and sub-
traction situations for larger numbers (6 to 9) in various ways, such
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as groupings, things crossed out, numbers labeling parts or totals,
and letters or words labeling aspects of the situation. The symbols
�, �, or � may be in the drawing. Students should be encouraged
to explain their drawings and discuss how different drawings are
the same and different.MP1 MP1 Understand the approaches of others and identify corre-

spondencesLater in the year, students solve addition and subtraction equa-
tions for numbers within 5, for example, 2 � 1 � l or 3 � 1 � l,
while still connecting these equations to situations verbally or with
drawings. Experience with decompositions of numbers and with Add
To and Take From situations enables students to begin to fluently
add and subtract within 5.K.OA.5 K.OA.5Fluently add and subtract within 5.

Finally, composing and decomposing numbers from 11 to 19 into
ten ones and some further ones builds from all this work.K.NBT.1 This

K.NBT.1Compose and decompose numbers from 11 to 19 into
ten ones and some further ones, e.g., by using objects or draw-
ings, and record each composition or decomposition by a drawing
or equation (e.g., 18 = 10 + 8); understand that these numbers
are composed of ten ones and one, two, three, four, five, six,
seven, eight, or nine ones.

is a vital first step kindergarteners must take toward understand-
ing base-ten notation for numbers greater than 9. (See the NBT
Progression.)

The Kindergarten standards can be stated succinctly, but they
represent a great deal of focused and rich interactions in the class-
room. This is necessary in order to enable all students to under-
stand all of the numbers and concepts involved. Students who enter
Kindergarten without knowledge of small numbers or of counting
to ten will require extra teaching time in Kindergarten to meet the
standards. Such time and support are vital for enabling all students
to master the Grade 1 standards in Grade 1.
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Grade 1
Students extend their work in three major and interrelated ways,
by:

• Representing and solving a new type of problem situation
(Compare);

• Representing and solving the subtypes for all unknowns in all
three types;

• Using Level 2 and Level 3 methods to extend addition and
subtraction problem solving beyond 10, to problems within 20.
In particular, the OA progression in Grade 1 deals with adding
two single-digit addends, and related subtractions.•

• Other Grade 1 problems within 20, such as 14 � 5, are best
viewed in the context of place value, i.e., associated with 1.NBT.4.
See the NBT Progression.

Representing and solving a new type of problem situation (Com-
pare) In a Compare situation, two quantities are compared to find
“How many more” or “How many less.”•K.CC.6 ,K.CC.7 One reason Com-

• Compare problems build upon Kindergarten comparisons, in
which students identified ”Which is more?” or “Which is less?”
without ascertaining the difference between the numbers.

K.CC.6Identify whether the number of objects in one group is
greater than, less than, or equal to the number of objects in an-
other group, e.g., by using matching and counting strategies.

K.CC.7Compare two numbers between 1 and 10 presented as
written numerals.

pare problems are more advanced than the other two major types
is that in Compare problems, one of the quantities (the difference)
is not present in the situation physically, and must be conceptu-
alized and constructed in a representation, by showing the “extra”

Representing the difference in a Compare problem

that when added to the smaller unknown makes the total equal to
the bigger unknown or by finding this quantity embedded within the
bigger unknown.

The language of comparisons is also difficult. For example, “Julie
has three more apples than Lucy” tells both that Julie has more ap-
ples and that the difference is three. Many students “hear” the
part of the sentence about who has more, but do not initially hear
the part about how many more; they need experience hearing and
saying a separate sentence for each of the two parts in order to
comprehend and say the one-sentence form. Another language is-
sue is that the comparing sentence might be stated in either of two
related ways, using “more” or “less.” Students need considerable
experience with “less” to differentiate it from “more”; some children
think that “less” means “more.” Finally, as well as the basic “How
many more/less” question form, the comparing sentence might take
an active, equalizing and counterfactual form (e.g., “How many more
apples does Lucy need to have as many as Julie?”) or might be
stated in a static and factual way as a question about how many
things are unmatched (e.g., “If there are 8 trucks and 5 drivers, how

Compare problem solved by matching

Compare problem represented in tape diagram

many trucks do not have a driver?”). Extensive experience with a
variety of contexts is needed to master these linguistic and situa-
tional complexities. Matching with objects and with drawings, and
labeling each quantity (e.g., J or Julie and L or Lucy) is helpful. Later
in Grade 1, a tape diagram can be used. These comparing diagrams
can continue to be used for multi-digit numbers, fractions, decimals,
and variables, thus connecting understandings of these numbers in
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comparing situations with such situations for single-digit numbers.
The labels can get more detailed in later grades.

Some textbooks represent all Compare problems with a sub-
traction equation, but that is not how many students think of the
subtypes. Students represent Compare situations in different ways,
often as an unknown addend problem (see Table 1). If textbooks and
teachers model representations of or solution methods for Compare
problems, these should reflect the variability students show. In all
mathematical problem solving, what matters is the explanation a
student gives to relate a representation to a context, and not the
representation separated from its context.

Representing and solving the subtypes for all unknowns in all
three types In Grade 1, students solve problems of all twelve sub-
types (see Table 2) including both language variants of Compare
problems. Initially, the numbers in such problems are small enough
that students can make math drawings showing all the objects in
order to solve the problem. Students then represent problems with
equations, called situation equations. For example, a situation equa-
tion for a Take From problem with Result Unknown might read
14� 8 � l.

Put Together/Take Apart problems with Addend Unknown afford
students the opportunity to see subtraction as the opposite of ad-
dition in a different way than as reversing the action, namely as
finding an unknown addend.1.OA.4 The meaning of subtraction as an 1.OA.4Understand subtraction as an unknown-addend problem.
unknown-addend addition problem is one of the essential under-
standings students will need in middle school in order to extend
arithmetic to negative rational numbers.

Students next gain experience with the more difficult and more
“algebraic” problem subtypes in which a situation equation does not
immediately lead to the answer. For example, a student analyzing a
Take From problem with Change Unknown might write the situation
equation 14 � l � 8. This equation does not immediately lead
to the answer. To make progress, the student can write a related
equation called a solution equation—in this case, either 8�l � 14
or 14� 8 � l. These equations both lead to the answer by Level 2
or Level 3 strategies (see discussion in the next section).

Students thus begin developing an algebraic perspective many
years before they will use formal algebraic symbols and methods.
They read to understand the problem situation, represent the situ-
ation and its quantitative relationships with expressions and equa-
tions, and then manipulate that representation if necessary, using
properties of operations and/or relationships between operations.
Linking equations to concrete materials, drawings, and other rep-
resentations of problem situations affords deep and flexible under-
standings of these building blocks of algebra. Learning where the
total is in addition equations (alone on one side of the equal sign)
and in subtraction equations (to the left of the minus sign) helps stu-
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dents move from a situation equation to a related solution equation.
Because the language and conceptual demands are high, some

students in Grade 1 may not master the most difficult subtypes
of word problems, such as Compare problems that use language
opposite to the operation required for solving (see the unshaded
subtypes and variants in Table 2). Some students may also still have
difficulty with the conceptual demands of Start Unknown problems.
Grade 1 children should have an opportunity to solve and discuss
such problems, but proficiency on grade level tests with these most
difficult subtypes should wait until Grade 2 along with the other
extensions of problem solving.

Using Level 2 and Level 3 strategies to extend addition and sub-
traction problem solving beyond 10, to problems within 20 As
Grade 1 students are extending the range of problem types and
subtypes they can solve, they are also extending the range of num-
bers they deal with1.OA.6 and the sophistication of the methods they

1.OA.6Add and subtract within 20, demonstrating fluency for ad-
dition and subtraction within 10. Use strategies such as counting
on; making ten (e.g., 8� 6 � 8� 2� 4 � 10� 4 � 14); decom-
posing a number leading to a ten (e.g., 13� 4 � 13� 3� 1 �
10�1 � 9); using the relationship between addition and subtrac-
tion (e.g., knowing that 8� 4 � 12, one knows 12� 8 � 4); and
creating equivalent but easier or known sums (e.g., adding 6� 7
by creating the known equivalent 6� 6� 1 � 12� 1 � 13).

use to add and subtract within this larger range.1.OA.1 ,1.OA.8

1.OA.1Use addition and subtraction within 20 to solve word prob-
lems involving situations of adding to, taking from, putting to-
gether, taking apart, and comparing, with unknowns in all posi-
tions, e.g., by using objects, drawings, and equations with a sym-
bol for the unknown number to represent the problem.

1.OA.8Determine the unknown whole number in an addition or
subtraction equation relating three whole numbers.

The advance from Level 1 methods to Level 2 methods can be
clearly seen in the context of situations with unknown addends.1
These are the situations that can be represented by an addition
equation with one unknown addend, e.g., 9�l � 13. Students can
solve some unknown addend problems by trial and error or by know-
ing the relevant decomposition of the total. But a Level 2 counting
on solution involves seeing the 9 as part of 13, and understanding
that counting the 9 things can be “taken as done” if we begin the
count from 9: thus the student may say,

“Niiiiine, ten, eleven, twelve, thirteen.”
1 2 3 4

Students keep track of how many they counted on (here, 4) with
fingers, mental images, or physical actions such as head bobs. Elon-
gating the first counting word (“Niiiiine...”) is natural and indicates
that the student differentiates between the first addend and the
counts for the second addend. Counting on enables students to add
and subtract easily within 20 because they do not have to use fin-
gers to show totals of more than 10 which is difficult. Students might
also use the commutative property to shorten tasks, by counting on
from the larger addend even if it is second (e.g., for 4 � 9, counting
on from 9 instead of from 4).

Counting on should be seen as a thinking strategy, not a rote
method. It involves seeing the first addend as embedded in the total,
and it involves a conceptual interplay between counting and the
cardinality in the first addend (shifting from the cardinal meaning of
the first addend to the counting meaning). Finally, there is a level of
abstraction involved in counting on, because students are counting

1Grade 1 students also solve the easy Kindergarten problem subtypes by counting
on.
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the words rather than objects. Number words have become objects
to students.

Counting on can be used to add (find a total) or subtract (find an
unknown addend). To an observer watching the student, adding and
subtracting look the same. Whether the problem is 9� 4 or 13� 9,
we will hear the student say the same thing: “Niiiiine, ten, eleven,
twelve, thirteen” with four head bobs or four fingers unfolding. The
differences are in what is being monitored to know when to stop,
and what gives the answer.

Counting on to add and subtract

9� 4
“Niiiiine, ten, eleven, twelve, thirteen.”

1 2 3 4

13� 9
“Niiiiine, ten, eleven, twelve, thirteen.”

1 2 3 4

When counting on to add 9� 4, the student is counting the
fingers or head bobs to know when to stop counting aloud, and
the last counting word said gives the answer. For counting on to
subtract 13� 9, the opposite is true: the student is listening to
counting words to know when to stop, and the accumulated
fingers or head bobs give the answer.

Students in many countries learn counting forward methods of
subtracting, including counting on. Counting on for subtraction is
easier than counting down. Also, unlike counting down, counting on
reinforces that subtraction is an unknown-addend problem. Learn-
ing to think of and solve subtractions as unknown addend problems
makes subtraction as easy as addition (or even easier), and it empha-
sizes the relationship between addition and subtraction. The taking
away meaning of subtraction can be emphasized within counting on
by showing the total and then taking away the objects that are at
the beginning. In a drawing this taking away can be shown with a
horizontal line segment suggesting a minus sign. So one can think

“Taking away” indicated with horizontal line segment and
solving by counting on to 13

of the 9 � l � 13 situation as “I took away 9. I now have 10, 11,
12, 13 [stop when I hear 13], so 4 are left because I counted on
4 from 9 to get to 13.” Taking away objects at the end suggests
counting down, which is more difficult than counting on. Showing
13 decomposed in groups of five as in the illustration to the right
also supports students seeing how to use the Level 3 make-a-ten
method; 9 needs 1 more to make 10 and there are 3 more in 13, so
4 from 9 to 13.

Level 3 methods involve decomposing an addend and composing
it with the other addend to form an equivalent but easier problem.
This relies on properties of operations.1.OA.3 Students do not neces- 1.OA.3Apply properties of operations as strategies to add and

subtract.sarily have to justify their representations or solution using prop-
erties, but they can begin to learn to recognize these properties in
action and discuss their use after solving.

There are a variety of methods to change to an easier prob-
lem. These draw on addition of three whole numbers.1.OA.2 A known

1.OA.2Solve word problems that call for addition of three whole
numbers whose sum is less than or equal to 20, e.g., by using
objects, drawings, and equations with a symbol for the unknown
number to represent the problem.addition or subtraction can be used to solve a related addition or

subtraction by decomposing one addend and composing it with the
other addend. For example, a student can change 8�6 to the easier
10 � 4 by decomposing 6 � 2 � 4 and composing the 2 with the 8
to make 10: 8� 6 � 8� 2� 4 � 10� 4 � 14.

This method can also be used to subtract by finding an unknown
addend: 14�8 � l, so 8�l � 14, so 14 � 8�2�4 � 8�6, that is
14� 8 � 6. Students can think as for adding above (stopping when
they reach 14), or they can think of taking 8 from 10, leaving 2 with
the 4, which makes 6. One can also decompose with respect to ten:
13� 4 � 13� 3� 1 � 10� 1 � 9, but this can be more difficult than
the forward methods.

These make-a-ten methods• have three prerequisites reaching

• Computing 8 + 6 by making a ten
a. 8’s partner to 10 is 2, so decompose 6 as 2 and its partner.

b. 2’s partner to 6 is 4.

c. 10 + 4 is 14.
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back to Kindergarten: K.OA.4For any number from 1 to 9, find the number that makes
10 when added to the given number, e.g., by using objects or
drawings, and record the answer with a drawing or equation.

K.OA.3Decompose numbers less than or equal to 10 into pairs in
more than one way, e.g., by using objects or drawings, and record
each decomposition by a drawing or equation (e.g., 5 � 2�3 and
5 � 4� 1).

K.NBT.1Compose and decompose numbers from 11 to 19 into
ten ones and some further ones, e.g., by using objects or draw-
ings, and record each composition or decomposition by a drawing
or equation (e.g., 18 = 10 + 8); understand that these numbers
are composed of ten ones and one, two, three, four, five, six,
seven, eight, or nine ones.

1.NBT.2b Understand that the two digits of a two-digit number
represent amounts of tens and ones. Understand the following
as special cases:

b The numbers from 11 to 19 are composed of a ten and
one, two, three, four, five, six, seven, eight, or nine ones.

a. knowing the partner that makes 10 for any number (K.OA.4
sets the stage for this),

b. knowing all decompositions for any number below 10 (K.OA.3
sets the stage for this), and

c. knowing all teen numbers as 10 � n (e.g., 12 � 10 � 2, 15 �
10� 5, see K.NBT.1 and 1.NBT.2b).

The make-a-ten methods are more difficult in English than in East
Asian languages in which teen numbers are spoken as ten, ten one,
ten two, ten three, etc. In particular, prerequisite c is harder in En-
glish because of the irregularities and reversals in the teen number
words.•

• For example, “four” is spoken first in “fourteen,” but this order is
reversed in the numeral 14.

Another Level 3 method that works for certain numbers is a dou-
bles �1 or �2 method: 6�7 � 6�p6�1q � p6�6q�1 � 12�1 � 13.
These methods do not connect with place value the way make-a-ten
methods do.

The Add To and Take From Start Unknown situations are par-
ticularly challenging with the larger numbers students encounter in
Grade 1. The situation equation l � 6 � 15 or l � 6 � 9 can be

• Bigger Unknown: “Fewer” version suggests wrong operation.
Lucy has B fewer apples than Julie. Lucy has A apples. How
many apples does Julie have?

Smaller Unknown. “More” version suggests wrong opera-
tion. Julie has B more apples than Lucy. Julie has C apples.
How many apples does Lucy have?

Additive relationship shown in tape, part-whole, and
number-bond figures

The tape diagram shows the addends as the tapes and the total
(indicated by a bracket) as a composition of those tapes. The
part-whole diagram and number-bond diagram capture the
composing-decomposing action to allow the representation of
the total at the top and the addends at the bottom either as
drawn quantities or as numbers.

Additive relationships shown in static diagrams

Students sometimes have trouble with static part-whole
diagrams because these display a double representation of the
total and the addends (the total 7 above and the addends 4 and
3 below), but at a given time in the addition or subtraction
situation not all three quantities are present. The action of
moving from the total to the addends (or from the addends to the
total) in the number-bond diagram reduces this conceptual
difficulty.

rewritten to provide a solution. Students might use the commutative
property of addition to change l � 6 � 15 to 6 � l � 15, then
count on or use Level 3 methods to compose 4 (to make ten) plus 5
(ones in the 15) to find 9. Students might reverse the action in the
situation represented by l�6 � 9 so that it becomes 9�6 � l. Or
they might use their knowledge that the total is the first number in
a subtraction equation and the last number in an addition equation
to rewrite the situation equation as a solution equation: l� 6 � 9
becomes 9� 6 � l or 6� 9 � l.

The difficulty levels in Compare problems differ from those in Put
Together/Take Apart and Add To and Take From problems. Difficul-
ties arise from the language issues mentioned before and especially
from the opposite language variants where the comparing sentence
suggests an operation opposite to that needed for the solution.•

As students progress to Level 2 and Level 3 methods, they no
longer need representations that show each quantity as a group of
objects. Students now move on to diagrams that use numbers and
show relationships between these numbers. These can be extensions
of drawings made earlier that did show each quantity as a group
of objects. Add To/Take From situations at this point can continue
to be represented by equations. Put Together/Take Apart situations
can be represented by the example drawings shown in the margin.
Compare situations can be represented with tape diagrams showing
the compared quantities (one smaller and one larger) and the differ-
ence. Other diagrams showing two numbers and the unknown can
also be used. Such diagrams are a major step forward because the
same diagrams can represent the adding and subtracting situations
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for all of the kinds of numbers students encounter in later grades
(multi-digit whole numbers, fractions, decimals, variables). Students
can also continue to represent any situation with a situation equa-
tion and connect such equations to diagrams.MP1 Such connections

MP1 By relating equations and diagrams, students work toward
this aspect of MP1: Mathematically proficient students can ex-
plain correspondences between equations, verbal descriptions,
tables, and graphs.can help students to solve the more difficult problem situation sub-

types by understanding where the totals and addends are in the
equation and rewriting the equation as needed.
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Grade 2
Grade 2 students build upon their work in Grade 1 in two ma-
jor ways.2.OA.1 They represent and solve situational problems of all

2.OA.1Use addition and subtraction within 100 to solve one- and
two-step word problems involving situations of adding to, tak-
ing from, putting together, taking apart, and comparing, with un-
knowns in all positions, e.g., by using drawings and equations
with a symbol for the unknown number to represent the problem.

three types which involve addition and subtraction within 100 rather
than within 20, and they represent and solve two-step situational
problems of all three types.

Diagrams used in Grade 1 to show how quantities in the situation
are related continue to be useful in Grade 2, and students continue
to relate the diagrams to situation equations. Such relating helps
students rewrite a situation equation like l � 38 � 49 as 49 �
38 � l because they see that the first number in the subtraction
equation is the total. Each addition and subtraction equation has
seven related equations. Students can write all of these equations,

Related addition and subtraction equations

87� 38 � 49 87� 49 � 38 38� 49 � 87 49� 38 � 87

49 � 87� 38 38 � 87� 49 87 � 38� 49 87 � 49� 38continuing to connect addition and subtraction, and their experience
with equations of various forms.

Because there are so many problem situation subtypes, there
are many possible ways to combine such subtypes to devise two-
step problems. Because some Grade 2 students are still develop-
ing proficiency with the most difficult subtypes, two-step problems
should not involve these subtypes. Most work with two-step prob-
lems should involve single-digit addends.

Most two-step problems made from two easy subtypes are easy
to represent with an equation, as shown in the first two examples
to the right. But problems involving a comparison or two middle
difficulty subtypes may be difficult to represent with a single equa-
tion and may be better represented by successive drawings or some
combination of a diagram for one step and an equation for the other
(see the last three examples). Students can make up any kinds of
two-step problems and share them for solving.

Examples of two-step Grade 2 word problems

Two easy subtypes with the same operation, resulting in
problems represented as, for example, 9� 5� 7 � l or
16� 8� 5 � l and perhaps by drawings showing these steps:

Example for 9� 5� 7: There were 9 blue balls and 5 red
balls in the bag. Aki put in 7 more balls. How many balls
are in the bag altogether?

Two easy subtypes with opposite operations, resulting in
problems represented as, for example, 9� 5� 7 � l or
16� 8� 5 � l and perhaps by drawings showing these steps:

Example for 9� 5� 7: There were 9 carrots on the
plate. The girls ate 5 carrots. Mother put 7 more carrots
on the plate. How many carrots are there now?

One easy and one middle difficulty subtype:

For example: Maria has 9 apples. Corey has 4 fewer
apples than Maria. How many apples do they have in all?

For example: The zoo had 7 cows and some horses in
the big pen. There were 15 animals in the big pen. Then
4 more horses ran into the big pen. How many horses
are there now?

Two middle difficulty subtypes:

For example: There were 9 boys and some girls in the
park. In all, 15 children were in the park. Then some
more girls came. Now there are 14 girls in the park. How
many more girls came to the park?

The deep extended experiences students have with addition and
subtraction in Kindergarten and Grade 1 culminate in Grade 2 with
students becoming fluent in single-digit additions and the related
subtractions using the mental Level 2 and 3 strategies as needed.2.OA.2

2.OA.2Fluently add and subtract within 20 using mental strate-
gies. By end of Grade 2, know from memory all sums of two
one-digit numbers.

So fluency in adding and subtracting single-digit numbers has pro-
gressed from numbers within 5 in Kindergarten to within 10 in Grade
1 to within 20 in Grade 2. The methods have also become more ad-
vanced.

The word fluent is used in the Standards to mean “fast and ac-
curate.” Fluency in each grade involves a mixture of just knowing
some answers, knowing some answers from patterns (e.g., “adding
0 yields the same number”), and knowing some answers from the
use of strategies. It is important to push sensitively and encourag-
ingly toward fluency of the designated numbers at each grade level,
recognizing that fluency will be a mixture of these kinds of thinking
which may differ across students. The extensive work relating addi-
tion and subtraction means that subtraction can frequently be solved
by thinking of the related addition, especially for smaller numbers.
It is also important that these patterns, strategies and decomposi-
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tions still be available in Grade 3 for use in multiplying and dividing
and in distinguishing adding and subtracting from multiplying and
dividing. So the important press toward fluency should also allow
students to fall back on earlier strategies when needed. By the end
of the K–2 grade span, students have sufficient experience with ad-
dition and subtraction to know single-digit sums from memory;2.OA.2

2.OA.2Fluently add and subtract within 20 using mental strate-
gies. By end of Grade 2, know from memory all sums of two
one-digit numbers.as should be clear from the foregoing, this is not a matter of instill-

ing facts divorced from their meanings, but rather as an outcome of
a multi-year process that heavily involves the interplay of practice
and reasoning.

Extensions to other standard domains and to higher grades In
Grades 2 and 3, students continue and extend their work with adding
and subtracting situations to length situations2.MD.5 ,2.MD.6 (addition

2.MD.5Use addition and subtraction within 100 to solve word
problems involving lengths that are given in the same units, e.g.,
by using drawings (such as drawings of rulers) and equations with
a symbol for the unknown number to represent the problem.

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to the
numbers 0, 1, 2, . . . , and represent whole-number sums and dif-
ferences within 100 on a number line diagram.

and subtraction of lengths is part of the transition from whole num-
ber addition and subtraction to fraction addition and subtraction)
and to bar graphs.2.MD.10 ,3.MD.3 Students solve two-step3.OA.8 and

2.MD.10Draw a picture graph and a bar graph (with single-unit
scale) to represent a data set with up to four categories. Solve
simple put-together, take-apart, and compare problems using in-
formation presented in a bar graph.

3.MD.3Draw a scaled picture graph and a scaled bar graph to
represent a data set with several categories. Solve one- and two-
step “how many more” and “how many less” problems using in-
formation presented in scaled bar graphs.

3.OA.8Solve two-step word problems using the four operations.
Represent these problems using equations with a letter stand-
ing for the unknown quantity. Assess the reasonableness of an-
swers using mental computation and estimation strategies includ-
ing rounding.

multistep4.OA.3 problems involving all four operations. In Grades 3,

4.OA.3Solve multistep word problems posed with whole numbers
and having whole-number answers using the four operations, in-
cluding problems in which remainders must be interpreted. Rep-
resent these problems using equations with a letter standing for
the unknown quantity. Assess the reasonableness of answers
using mental computation and estimation strategies including
rounding.

4, and 5, students extend their understandings of addition and sub-
traction problem types in Table 1 to situations that involve fractions
and decimals. Importantly, the situational meanings for addition and
subtraction remain the same for fractions and decimals as for whole
numbers.
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Summary of K–2 Operations and Algebraic Thinking
Kindergarten Students in Kindergarten work with three kinds of
problem situations: Add To with Result Unknown; Take From with
Result Unknown; and Put Together/Take Apart with Total Unknown
and Both Addends Unknown. The numbers in these problems involve
addition and subtraction within 10. Students represent these prob-
lems with concrete objects and drawings, and they find the answers
by counting (Level 1 method). More specifically,

• For Add To with Result Unknown, they make or draw the start-
ing set of objects and the change set of objects, and then they
count the total set of objects to give the answer.

• For Take From with Result Unknown, they make or draw the
starting set and “take away” the change set; then they count
the remaining objects to give the answer.

• For Put Together/Take Apart with Total Unknown, they make
or draw the two addend sets, and then they count the total
number of objects to give the answer.

Grade 1 Students in Grade 1 work with all of the problem situ-
ations, including all subtypes and language variants. The numbers
in these problems involve additions involving single-digit addends,
and the related subtractions. Students represent these problems
with math drawings and with equations.

Students master the majority of the problem types. They might
sometimes use trial and error to find the answer, or they might just
know the answer based on previous experience with the given num-
bers. But as a general method they learn how to find answers to
these problems by counting on (a Level 2 method), and they un-
derstand and use this method.1.OA.5 ,1.OA.6 Students also work with

1.OA.5Relate counting to addition and subtraction (e.g., by count-
ing on 2 to add 2).

1.OA.6Add and subtract within 20, demonstrating fluency for ad-
dition and subtraction within 10. Use strategies such as counting
on; making ten (e.g., 8� 6 � 8� 2� 4 � 10� 4 � 14); decom-
posing a number leading to a ten (e.g., 13� 4 � 13� 3� 1 �
10�1 � 9); using the relationship between addition and subtrac-
tion (e.g., knowing that 8� 4 � 12, one knows 12� 8 � 4); and
creating equivalent but easier or known sums (e.g., adding 6� 7
by creating the known equivalent 6� 6� 1 � 12� 1 � 13).

Level 3 methods that change a problem to an easier equivalent
problem.1.OA.3,1.OA.6 The most important of these Level 3 methods

1.OA.3Apply properties of operations as strategies to add and
subtract.

1.OA.6Add and subtract within 20, demonstrating fluency for ad-
dition and subtraction within 10. Use strategies such as counting
on; making ten (e.g., 8� 6 � 8� 2� 4 � 10� 4 � 14); decom-
posing a number leading to a ten (e.g., 13� 4 � 13� 3� 1 �
10�1 � 9); using the relationship between addition and subtrac-
tion (e.g., knowing that 8� 4 � 12, one knows 12� 8 � 4); and
creating equivalent but easier or known sums (e.g., adding 6� 7
by creating the known equivalent 6� 6� 1 � 12� 1 � 13).

involve making a ten, because these methods connect with the place
value concepts students are learning in this grade (see the NBT
Progression) and work for any numbers. Students also solve the
easier problem subtypes with these Level 3 methods.

The four problem subtypes that Grade 1 students should work
with, but need not master, are:

• Add To with Start Unknown

• Take From with Start Unknown

• Compare with Bigger Unknown using “fewer” language (mis-
leading language suggesting the wrong operation)

• Compare with Smaller Unknown using “more” language (mis-
leading language suggesting the wrong operation)
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Grade 2 Students in Grade 2 master all of the problem situations
and all of their subtypes and language variants. The numbers in
these problems involve addition and subtraction within 100. They
represent these problems with diagrams and/or equations. For prob-
lems involving addition and subtraction within 20, more students
master Level 3 methods; increasingly for addition problems, stu-
dents might just know the answer (by end of Grade 2, students
know all sums of two-digit numbers from memory2.OA.2). For other

2.OA.2Fluently add and subtract within 20 using mental strate-
gies. By end of Grade 2, know from memory all sums of two
one-digit numbers.problems involving numbers to 100, Grade 2 students use their de-

veloping place value skills and understandings to find the answer
(see the NBT Progression). Students work with two-step problems,
especially with single-digit addends, but do not work with two-step
problems in which both steps involve the most difficult problem sub-
types and variants.
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Grade 3
Students focus on understanding the meaning and properties of mul-
tiplication and division and on finding products of single-digit multi-
plying and related quotients.3.OA.1–7 These skills and understand-

3.OA.1Interpret products of whole numbers, e.g., interpret 5� 7
as the total number of objects in 5 groups of 7 objects each.

3.OA.2Interpret whole-number quotients of whole numbers, e.g.,
interpret 56 � 8 as the number of objects in each share when
56 objects are partitioned equally into 8 shares, or as a number
of shares when 56 objects are partitioned into equal shares of 8
objects each.

3.OA.3Use multiplication and division within 100 to solve word
problems in situations involving equal groups, arrays, and mea-
surement quantities, e.g., by using drawings and equations with
a symbol for the unknown number to represent the problem.

3.OA.4Determine the unknown whole number in a multiplication
or division equation relating three whole numbers.

3.OA.5Apply properties of operations as strategies to multiply
and divide.

3.OA.6Understand division as an unknown-factor problem.

3.OA.7Fluently multiply and divide within 100, using strategies
such as the relationship between multiplication and division (e.g.,
knowing that 8 � 5 � 40, one knows 40 � 5 � 8) or properties
of operations. By the end of Grade 3, know from memory all
products of two one-digit numbers.

ings are crucial; students will rely on them for years to come as they
learn to multiply and divide with multi-digit whole number and to
add, subtract, multiply and divide with fractions and with decimals.
Note that mastering this material, and reaching fluency in single-
digit multiplications and related divisions with understanding,3.OA.7

may be quite time consuming because there are no general strate-
gies for multiplying or dividing all single-digit numbers as there are
for addition and subtraction. Instead, there are many patterns and
strategies dependent upon specific numbers. So it is imperative that
extra time and support be provided if needed.

Common types of multiplication and division situations. Common
multiplication and division situations are shown in Table 3. There
are three major types, shown as rows of Table 3. The Grade 3
standards focus on Equal Groups and on Arrays.• As with addi-

• Multiplicative Compare situations are more complex than Equal
Groups and Arrays, and must be carefully distinguished from ad-
ditive Compare problems. Multiplicative comparison first enters
the Standards at Grade 4.4.OA.1 For more information on multi-
plicative Compare problems, see the Grade 4 section of this pro-
gression.

4.OA.1Interpret a multiplication equation as a comparison, e.g.,
interpret 35 � 5 � 7 as a statement that 35 is 5 times as many
as 7 and 7 times as many as 5. Represent verbal statements of
multiplicative comparisons as multiplication equations.

tion and subtraction, each multiplication or division situation in-
volves three quantities, each of which can be the unknown. Because
there are two factors and one product in each situation (product �
factor � factor), each type has one subtype solved by multiplica-
tion (Unknown Product) and two unknown factor subtypes solved
by division.
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Table 3: Multiplication and division situations

A � B � l A �l � C and C� A � l l� B � C and C� B � l

Equal
Groups of
Objects

Unknown Product

There are A bags with B plums in
each bag. How many plums are
there in all?

Group Size Unknown

If C plums are shared equally into A
bags, then how many plums will be
in each bag?

Number of Groups Unknown

If C plums are to be packed B to
a bag, then how many bags are
needed?

Equal groups language

Unknown Product

There are A rows of apples with B
apples in each row. How many ap-
ples are there?

Unknown Factor

If C apples are arranged into A equal
rows, how many apples will be in
each row?

Unknown Factor

If C apples are arranged into equal
rows of B apples, how many rows will
there be?

Arrays of
Objects

Row and column language

Unknown Product

The apples in the grocery window
are in A rows and B columns. How
many apples are there?

Unknown Factor

If C apples are arranged into an array
with A rows, how many columns of
apples are there?

Unknown Factor

If C apples are arranged into an array
with B columns, how many rows are
there?

A ¡ 1

Larger Unknown

A blue hat costs $B. A red hat costs
A times as much as the blue hat.
How much does the red hat cost?

Smaller Unknown

A red hat costs $C and that is A times
as much as a blue hat costs. How
much does a blue hat cost?

Multiplier Unknown

A red hat costs $C and a blue hat
costs $B. How many times as much
does the red hat cost as the blue
hat?

Compare A   1

Smaller Unknown

A blue hat costs $B. A red hat costs
A as much as the blue hat. How
much does the red hat cost?

Larger Unknown

A red hat costs $C and that is A of
the cost of a blue hat. How much
does a blue hat cost?

Multiplier Unknown

A red hat costs $C and a blue hat
costs $B. What fraction of the cost
of the blue hat is the cost of the red
hat?

Adapted from box 2–4 of Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity, National Research Council,
2009, pp. 32–33.

Notes
Equal groups problems can also be stated in terms of columns, exchanging the order of A and B, so that the same array is described.
For example: There are B columns of apples with A apples in each column. How many apples are there?

In the row and column situations (as with their area analogues), number of groups and group size are not distinguished.

Multiplicative Compare problems appear first in Grade 4, with whole-number values for A, B, and C, and with the “times as much”
language in the table. In Grade 5, unit fractions language such as “one third as much” may be used. Multiplying and unit fraction
language change the subject of the comparing sentence, e.g., “A red hat costs A times as much as the blue hat” results in the same
comparison as “A blue hat costs 1{A times as much as the red hat,” but has a different subject.
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In Equal Groups, the roles of the factors differ. One factor is
the number of objects in a group (like any quantity in addition and
subtraction situations), and the other is a multiplier that indicates
the number of groups. So, for example, 4 groups of 3 objects is
arranged differently than 3 groups of 4 objects. Thus there are
two kinds of division situations depending on which factor is the
unknown (the number of objects in each group or the number of
groups). In the Array situations, the roles of the factors do not differ.
One factor tells the number of rows in the array, and the other factor
tells the number of columns in the situation. But rows and columns
depend on the orientation of the array. If an array is rotated 900,
the rows become columns and the columns become rows. This is
useful for seeing the commutative property for multiplication3.OA.5 in 3.OA.5Apply properties of operations as strategies to multiply

and divide.rectangular arrays and areas. This property can be seen to extend
to Equal Group situations when Equal Group situations are related
to arrays by arranging each group in a row and putting the groups
under each other to form an array. Array situations can be seen
as Equal Group situations if each row or column is considered as
a group. Relating Equal Group situations to Arrays, and indicating
rows or columns within arrays, can help students see that a corner
object in an array (or a corner square in an area model) is not double
counted: at a given time, it is counted as part of a row or as a part
of a column but not both.

As noted in Table 3, row and column language can be difficult.
The Array problems given in the table are of the simplest form in
which a row is a group and Equal Groups language is used (“with 6
apples in each row”). Such problems are a good transition between
the Equal Groups and array situations and can support the gen-
eralization of the commutative property discussed above. Problems
in terms of “rows” and “columns,” e.g., “The apples in the grocery
window are in 3 rows and 6 columns,” are difficult because of the
distinction between the number of things in a row and the number
of rows. There are 3 rows but the number of columns (6) tells

2.MD.1Measure the length of an object by selecting and using
appropriate tools such as rulers, yardsticks, meter sticks, and
measuring tapes.

2.MD.2Measure the length of an object twice, using length units
of different lengths for the two measurements; describe how the
two measurements relate to the size of the unit chosen.

2.MD.3Estimate lengths using units of inches, feet, centimeters,
and meters.

2.MD.4Measure to determine how much longer one object is
than another, expressing the length difference in terms of a stan-
dard length unit.

how many are in each row. There are 6 columns but the number of
rows (3) tells how many are in each column. Students do need to
be able to use and understand these words, but this understanding
can grow over time while students also learn and use the language
in the other multiplication and division situations.

Variations of each type that use measurements instead of dis-
crete objects are given in the Measurement and Data Progression.
Grade 2 standards focus on length measurement2.MD.1–4 and Grade
3 standards focus on area measurement.3.MD.5–7 The measurement

3.MD.5Recognize area as an attribute of plane figures and un-
derstand concepts of area measurement.

3.MD.6Measure areas by counting unit squares (square cm,
square m, square in, square ft, and improvised units).

3.MD.7Relate area to the operations of multiplication and addi-
tion.

examples are more difficult than are the examples about discrete ob-
jects, so these should follow problems about discrete objects. Area
problems where regions are partitioned by unit squares are foun-
dational for Grade 3 standards because area is used as a model for
single-digit multiplication and division strategies,3.MD.7 in Grade 4
as a model for multi-digit multiplication and division and in Grade 5
and Grade 6 as a model for multiplication and division of decimals
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and of fractions.5.NBT.6 The distributive property is central to all of 5.NBT.6Find whole-number quotients of whole numbers with up
to four-digit dividends and two-digit divisors, using strategies
based on place value, the properties of operations, and/or the
relationship between multiplication and division. Illustrate and
explain the calculation by using equations, rectangular arrays,
and/or area models.

these uses and will be discussed later.
The top row of Table 3 shows the usual order of writing multipli-

cations of Equal Groups in the United States. The equation 3�6 � l
means how many are in 3 groups of 6 things each: three sixes. But
in many other countries the equation 3 � 6 � l means how many
are 3 things taken 6 times (6 groups of 3 things each): six threes.
Some students bring this interpretation of multiplication equations
into the classroom. So it is useful to discuss the different interpre-
tations and allow students to use whichever is used in their home.
This is a kind of linguistic commutativity that precedes the reasoning
discussed above arising from rotating an array. These two sources
of commutativity can be related when the rotation discussion occurs.

Levels in problem representation and solution Multiplication and
division problem representations and solution methods can be con-
sidered as falling within three levels related to the levels for addition
and subtraction (see Appendix). Level 1 is making and counting all
of the quantities involved in a multiplication or division. As before,
the quantities can be represented by objects or with a diagram, but
a diagram affords reflection and sharing when it is drawn on the
board and explained by a student. The Grade 2 standards 2.OA.3
and 2.OA.4 are at this level but set the stage for Level 2. Standard

2.OA.3Determine whether a group of objects (up to 20) has an
odd or even number of members, e.g., by pairing objects or count-
ing them by 2s; write an equation to express an even number as
a sum of two equal addends.

2.OA.4Use addition to find the total number of objects arranged
in rectangular arrays with up to 5 rows and up to 5 columns; write
an equation to express the total as a sum of equal addends.

2.OA.3 relates doubles additions up to 20 to the concept of odd and
even numbers and to counting by 2s (the easiest count-by in Level 2)
by pairing and counting by 2s the things in each addend. 2.OA.4 fo-
cuses on using addition to find the total number of objects arranged
in rectangular arrays (up to 5 by 5).

Supporting Level 2 methods with arrays

Small arrays (up to 5� 5) support seeing and beginning to learn
the Level 2 count-bys for the first five equal groups of the small
numbers 2 through 5 if the running total is written to the right of
each row (e.g., 3, 6, 9, 12, 15). Students may write repeated
additions and then count by ones without the objects, often
emphasizing each last number said for each group. Grade 3
students can be encouraged to move as early as possible from
equal grouping or array models that show all of the quantities to
similar representations using diagrams that show relationships
of numbers because diagrams are faster and less error-prone
and support methods at Level 2 and Level 3. Some
demonstrations of methods or of properties may need to fall
back to initially showing all quantities along with a diagram.

Level 2 is repeated counting on by a given number, such as for 3:
3, 6, 9, 12, 15, 18, 21, 24, 27, 30. The count-bys give the running total.
The number of 3s said is tracked with fingers or a visual or physical
(e.g., head bobs) pattern. For 8� 3, you know the number of 3s and
count by 3 until you reach 8 of them. For 24�3, you count by 3 until
you hear 24, then look at your tracking method to see how many
3s you have. Because listening for 24 is easier than monitoring the
tracking method for 8 3s to stop at 8, dividing can be easier than
multiplying.

The difficulty of saying and remembering the count-by for a given
number depends on how closely related it is to 10, the base for our
written and spoken numbers. For example, the count-by sequence
for 5 is easy, but the count-by sequence for 7 is difficult. Decompos-
ing with respect to a ten can be useful in going over a decade within
a count-by. For example in the count-by for 7, students might use
the following mental decompositions of 7 to compose up to and then
go over the next decade, e.g., 14�7 � 14�6�1 � 20�1 � 21. The

Composing up to, then over the next decade

7 14 21 28 35 42 49 56 63 70

6� 1 2� 5 5� 2 1� 6 4� 3

There is an initial 3� 4 for 7� 7 that completes the reversing
pattern of the partners of 7 involved in these mental
decompositions with respect to the decades.

count-by sequence can also be said with the factors, such as “one
times three is three, two times three is six, three times three is nine,
etc.” Seeing as well as hearing the count-bys and the equations for
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the multiplications or divisions can be helpful.
Level 3 methods use the associative property or the distributive

property to compose and decompose. These compositions and de-
compositions may be additive (as for addition and subtraction) or
multiplicative. For example, students multiplicatively compose or
decompose:

4� 6 is easier to count by 3 eight times:

4� 6 � 4� p2� 3q � p4� 2q � 3 � 8� 3.

Students may know a product 1 or 2 ahead of or behind a given
product and say:

I know 6� 5 is 30, so 7� 5 is 30� 5 more which is 35.
This implicitly uses the distributive property:

7� 5 � p6� 1q � 5 � 6� 5� 1� 3 � 30� 5 � 35.
Decomposing 4� 7

4� 7 � 4� p5� 2q

� p4� 5q � p4� 2q

� 20� 8

� 28

Students may decompose a product that they do not know in terms
of two products they know (for example, 4� 7 shown in the margin).

Students may not use the properties explicitly (for example, they
might omit the second two steps), but classroom discussion can iden-
tify and record properties in student reasoning. An area diagram can
support such reasoning.

Supporting reasoning with area diagram

7 � 5� 2

4

20� 8 � 28
4� 5� 4� 2 � 4� 7

The 5 � n pattern students used earlier for additions can now
be extended to show how 6, 7, 8, and 9 times a number are 5 � 1,
5 � 2, 5 � 3, and 5 � 4 times that number. These patterns are
particularly easy to do mentally for the numbers 4, 6, and 8. The

The 5� n pattern for multiplying the numbers 4, 6, and 8

n 4� n 6� n 8� n
1 5� 1 4 24 6 36 8 48
2 5� 2 8 28 12 42 16 56
3 5� 3 12 32 18 48 24 64
4 5� 4 16 36 24 54 32 72
5 5� 5 20 40 30 60 40 80

9s have particularly rich patterns based on 9 � 10� 1. The pattern
of the tens digit in the product being 1 less than the multiplier, the
ones digit in the product being 10 minus the multiplier, and that the
digits in nines products sum to 9 all come from this pattern.

Patterns in multiples of 9

1� 9 � 9

2� 9 � 2� p10� 1q � p2� 10q � p2� 1q � 20� 2 � 18

3� 9 � 3� p10� 1q � p3� 10q � p3� 1q � 30� 3 � 27, etc

There are many opportunities to describe and reason about the
many patterns involved in the Level 2 count-bys and in the Level 3
composing and decomposing methods. There are also patterns in
multiplying by 0 and by 1. These need to be differentiated from the
patterns for adding 0 and adding 1 because students often confuse
these three patterns: n � 0 � n but n � 0 � 0, and n � 1 is the
pattern that does not change n (because n� 1 � n). Patterns make
multiplication by some numbers easier to learn than multiplication
by others, so approaches may teach multiplications and divisions
in various orders depending on what numbers are seen as or are
supported to be easiest.

Multiplications and divisions can be learned at the same time
and can reinforce each other. Level 2 methods can be particularly
easy for division, as discussed above. Level 3 methods may be more
difficult for division than for multiplication.

Throughout multiplication and division learning, students gain
fluency and begin to know certain products and unknown factors.
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All of the understandings of multiplication and division situations,
of the levels of representation and solving, and of patterns need to
culminate by the end of Grade 3 in fluent multiplying and divid-
ing of all single-digit numbers and 10.3.OA.7 Such fluency may be

3.OA.7Fluently multiply and divide within 100, using strategies
such as the relationship between multiplication and division (e.g.,
knowing that 8 � 5 � 40, one knows 40 � 5 � 8) or properties
of operations. By the end of Grade 3, know from memory all
products of two one-digit numbers.

reached by becoming fluent for each number (e.g., the 2s, the 5s,
etc.) and then extending the fluency to several, then all numbers
mixed together. Organizing practice so that it focuses most heavily
on understood but not yet fluent products and unknown factors can
speed learning. To achieve this by the end of Grade 3, students
must begin working toward fluency for the easy numbers as early
as possible. Because an unknown factor (a division) can be found
from the related multiplication, the emphasis at the end of the year
is on knowing from memory all products of two one-digit numbers.
As should be clear from the foregoing, this isn’t a matter of instilling
facts divorced from their meanings, but rather the outcome of a care-
fully designed learning process that heavily involves the interplay
of practice and reasoning. All of the work on how different numbers
fit with the base-ten numbers culminates in these “just know” prod-
ucts and is necessary for learning products. Fluent dividing for all
single-digit numbers, which will combine just knows, knowing from
a multiplication, patterns, and best strategy, is also part of this vital
standard.

Using a letter for the unknown quantity, the order of operations,
and two-step word problems with all four operations Students
in Grade 3 begin the step to formal algebraic language by using a
letter for the unknown quantity in expressions or equations for one-
and two-step problems.3.OA.8 But the symbols of arithmetic, � or �

3.OA.8Solve two-step word problems using the four operations.
Represent these problems using equations with a letter stand-
ing for the unknown quantity. Assess the reasonableness of an-
swers using mental computation and estimation strategies includ-
ing rounding.

or � for multiplication and � or { for division, continue to be used
in Grades 3, 4, and 5.

Understanding and using the associative and distributive proper-
ties (as discussed above) requires students to know two conventions
for reading an expression that has more than one operation:

1. Do the operation inside the parentheses before an operation
outside the parentheses (the parentheses can be thought of as
hands curved around the symbols and grouping them).

2. If a multiplication or division is written next to an addition
or subtraction, imagine parentheses around the multiplication
or division (it is done before these operations). At Grades 3
through 5, parentheses can usually be used for such cases so
that fluency with this rule can wait until Grade 6. MP7 Making use of structure to make computation easier:

13� 29� 77� 11 � p13� 77q � p29� 11q
These conventions are often called the Order of Operations and
can seem to be a central aspect of algebra. But actually they
are just simple “rules of the road” that allow expressions involv-
ing more than one operation to be interpreted unambiguously and
thus are connected with the mathematical practice of communicating
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precisely.MP6 Use of parentheses is important in displaying struc-
ture and thus is connected with the mathematical practice of making
use of structure.MP7 Parentheses are important in expressing the as-
sociative and especially the distributive properties. These properties
are at the heart of Grades 3 to 5 because they are used in the Level
3 multiplication and division strategies, in multi-digit and decimal
multiplication and division, and in all operations with fractions.

A two-step problem with diagram showing problem
situation and equations showing the two parts

Carla has 4 packages of silly bands. Each package has 8 silly
bands in it. Agustin is supposed to get 15 fewer silly bands than

Carla. How many silly bands should Agustin get?

Carla: 8 8 8 8

Agustin: 15

C � number of Carla’s silly bands
A � number of Agustin’s silly bands

C � 4� 8 � 32

A� 15 � C
A� 15 � 32

A � 17

Students may be able to solve this problem without writing such
equations.

As with two-step problems at Grade 2,2.OA.1, 2.MD.5 which involve
only addition and subtraction, the Grade 3 two-step word problems
vary greatly in difficulty and ease of representation. More diffi-
cult problems may require two steps of representation and solution
rather than one. Use of two-step problems involving easy or middle
difficulty adding and subtracting within 1,000 or one such adding
or subtracting with one step of multiplication or division can help
to maintain fluency with addition and subtraction while giving the
needed time to the major Grade 3 multiplication and division stan-
dards.
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Grade 4
Multiplication Compare Consider two diving boards, one 40 feet
high, the other 8 feet high. Students in earlier grades learned to
compare these heights in an additive sense—“This one is 32 feet
higher than that one”—by solving additive Compare problems2.OA.1

2.OA.1Use addition and subtraction within 100 to solve one- and
two-step word problems involving situations of adding to, tak-
ing from, putting together, taking apart, and comparing, with un-
knowns in all positions, e.g., by using drawings and equations
with a symbol for the unknown number to represent the problem.

and using addition and subtraction to solve word problems involving
length.2.MD.5 Students in Grade 4 learn to compare these quanti-

2.MD.5Use addition and subtraction within 100 to solve word
problems involving lengths that are given in the same units, e.g.,
by using drawings (such as drawings of rulers) and equations with
a symbol for the unknown number to represent the problem.

ties multiplicatively as well: “This one is 5 times as high as that
one.”4.OA.1,4.OA.2,4.MD.1,4.MD.2 In an additive comparison, the underly-

4.OA.1Interpret a multiplication equation as a comparison, e.g.,
interpret 35 � 5 � 7 as a statement that 35 is 5 times as many
as 7 and 7 times as many as 5. Represent verbal statements of
multiplicative comparisons as multiplication equations.

4.OA.2Multiply or divide to solve word problems involving multi-
plicative comparison, e.g., by using drawings and equations with
a symbol for the unknown number to represent the problem, dis-
tinguishing multiplicative comparison from additive comparison.

4.MD.1Know relative sizes of measurement units within one sys-
tem of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec.
Within a single system of measurement, express measurements
in a larger unit in terms of a smaller unit. Record measurement
equivalents in a two-column table.

4.MD.2Use the four operations to solve word problems involving
distances, intervals of time, liquid volumes, masses of objects,
and money, including problems involving simple fractions or deci-
mals, and problems that require expressing measurements given
in a larger unit in terms of a smaller unit. Represent measure-
ment quantities using diagrams such as number line diagrams
that feature a measurement scale.

ing question is what amount would be added to one quantity in order
to result in the other. In a multiplicative comparison, the underly-
ing question is what factor would multiply one quantity in order to
result in the other. Multiplication Compare situations are shown in
Table 3.

Language can be difficult in Multiplication Compare problems.
The language used in the three examples in Table 3 is fairly simple,
e.g., “A red hat costs 3 times as much as the blue hat.” Saying the
comparing sentence in the opposite way is more difficult. It could
be said using division, e.g., “The cost of a red hat divided by 3 is
the cost of a blue hat.” It could also be said using a unit fraction,
e.g., “A blue hat costs one-third as much as a red hat”; note however
that multiplying by a fraction in not an expectation of the Stan-
dards in Grade 4. In any case, many languages do not use either
of these options for saying the opposite comparison. They use the
terms three times more than and three times less than to describe
opposite multiplicative comparisons. These did not used to be ac-
ceptable usages in English because they mix the multiplicative and
additive comparisons and are ambiguous. If the cost of a red hat is
three times more than a blue hat that costs $5, does a red hat cost
$15 (three times as much) or $20 (three times more than: a differ-
ence that is three times as much)? However, the terms three times
more than and three times less than are now appearing frequently

Tape diagram used to solve the Compare problem in Table 3

B is the cost of a blue hat in dollars
R is the cost of a red hat in dollars

$6 3� B � R

$6 $6 $6 3� $6 � $18

in newspapers and other written materials. It is recommended to
discuss these complexities with Grade 4 students while confining
problems that appear on tests or in multi-step problems to the well-
defined multiplication language in Table 3. The tape diagram for the
additive Compare situation that shows a smaller and a larger tape
can be extended to the multiplication Compare situation.

A tape diagram used to solve a Compare problem

A big penguin will eat 3 times as much fish as a small penguin.
The big penguin will eat 420 grams of fish. All together, how

much will the two penguins eat?

420g

Big penguin:

hkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkj

Small penguin:

B � number of grams the big penguin eats
S � number of grams the small penguin eats

3 � S � B
3 � S � 420

S � 140

S � B � 140� 420

� 560

Fourth graders extend problem solving to multi-step word prob-
lems using the four operations posed with whole numbers. The same
limitations discussed for two-step problems concerning representing
such problems using equations apply here. Some problems might
easily be represented with a single equation, and others will be
more sensibly represented by more than one equation or a diagram
and one or more equations. Numbers can be those in the Grade 4
standards, but the number of steps should be no more than three
and involve only easy and medium difficulty addition and subtraction
problems.
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Remainders In problem situations, students must interpret and use
remainders with respect to context.4.OA.3 For example, what is the

4.OA.3Solve multistep word problems posed with whole numbers
and having whole-number answers using the four operations, in-
cluding problems in which remainders must be interpreted. Rep-
resent these problems using equations with a letter standing for
the unknown quantity. Assess the reasonableness of answers
using mental computation and estimation strategies including
rounding.

smallest number of busses that can carry 250 students, if each bus
holds 36 students? The whole number quotient in this case is 6
and the remainder is 34; the equation 250 � 6� 36� 34 expresses
this result and corresponds to a picture in which 6 busses are com-
pletely filled while a seventh bus carries 34 students. Notice that
the answer to the stated question (7) differs from the whole number
quotient.

On the other hand, suppose 250 pencils were distributed among
36 students, with each student receiving the same number of pen-
cils. What is the largest number of pencils each student could have
received? In this case, the answer to the stated question (6) is the
same as the whole number quotient. If the problem had said that
the teacher got the remaining pencils and asked how many pencils
the teacher got, then the remainder would have been the answer to
the problem.

Factors, multiples, and prime and composite numbers Students
extend the idea of decomposition to multiplication and learn to use
the term multiple.4.OA.4 Any whole number is a multiple of each of

4.OA.4Find all factor pairs for a whole number in the range 1–
100. Recognize that a whole number is a multiple of each of its
factors. Determine whether a given whole number in the range 1–
100 is a multiple of a given one-digit number. Determine whether
a given whole number in the range 1–100 is prime or composite.

its factors, so for example, 21 is a multiple of 3 and a multiple of 7
because 21 � 3 � 7. A number can be multiplicatively decomposed
into equal groups and expressed as a product of these two factors
(called factor pairs). A prime number has only one and itself as
factors. A composite number has two or more factor pairs. Students
examine various patterns in factor pairs by finding factor pairs for
all numbers 1 to 100 (e.g., no even number other than 2 will be prime
because it always will have a factor pair including 2). To find all
factor pairs for a given number, students can search systematically,
by checking if 2 is a factor, then 3, then 4, and so on, until they
start to see a “reversal” in the pairs (for example, after finding the
pair 6 and 9 for 54, students will next find the reverse pair, 9 and
6; all subsequent pairs will be reverses of previously found pairs).
Students understand and use of the concepts and language in this
area, but need not be fluent in finding all factor pairs. Determining
whether a given whole number in the range 1 to 100 is a multiple of
a given one-digit number is a matter of interpreting prior knowledge
of division in terms of the language of multiples and factors.

Generating and analyzing patterns This standard4.OA.5 begins a
4.OA.5Generate a number or shape pattern that follows a given
rule. Identify apparent features of the pattern that were not ex-
plicit in the rule itself.small focus on reasoning about number or shape patterns, connect-

ing a rule for a given pattern with its sequence of numbers or shapes.
Patterns that consist of repeated sequences of shapes or growing
sequences of designs can be appropriate for the grade. For example,
students could examine a sequence of dot designs in which each de-
sign has 4 more dots than the previous one and they could reason
about how the dots are organized in the design to determine the
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total number of dots in the 100th design. In examining numerical se-
quences, fourth graders can explore rules of repeatedly adding the
same whole number or repeatedly multiplying by the same whole
number. Properties of repeating patterns of shapes can be explored
with division. For example, to determine the 100th shape in a pattern
that consists of repetitions of the sequence “square, circle, triangle,”
the fact that when we divide 100 by 3 the whole number quotient
is 33 with remainder 1 tells us that after 33 full repeats, the 99th

shape will be a triangle (the last shape in the repeating pattern), so
the 100th shape is the first shape in the pattern, which is a square.
Notice that the Standards do not require students to infer or guess
the underlying rule for a pattern, but rather ask them to generate a
pattern from a given rule and identify features of the given pattern.
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Grade 5
As preparation for the Expressions and Equations Progression in the
middle grades, students in Grade 5 begin working more formally with
expressions.5.OA.1, 5.OA.2 They write expressions to express a calcu-

5.OA.1Use parentheses, brackets, or braces in numerical expres-
sions, and evaluate expressions with these symbols.

5.OA.2Write simple expressions that record calculations with
numbers, and interpret numerical expressions without evaluating
them.

lation, e.g., writing 2� p8� 7q to express the calculation “add 8 and
7, then multiply by 2.” They also evaluate and interpret expressions,
e.g., using their conceptual understanding of multiplication to inter-
pret 3�p18932�921q as being three times as large as 18932�921,
without having to calculate the indicated sum or product. Thus, stu-
dents in Grade 5 begin to think about numerical expressions in ways
that prefigure their later work with variable expressions (e.g., three
times an unknown length is 3 � L). In Grade 5, this work should be
viewed as exploratory rather than for attaining mastery; for example,
expressions should not contain nested grouping symbols, and they
should be no more complex than the expressions one finds in an ap-
plication of the associative or distributive property, e.g., p8� 27q� 2
or p6� 30q� p6� 7q. Note however that the numbers in expressions
need not always be whole numbers.

Students extend their Grade 4 pattern work by working briefly
with two numerical patterns that can be related and examining these
relationships within sequences of ordered pairs and in the graphs
in the first quadrant of the coordinate plane.5.OA.3 This work pre-

5.OA.3Generate two numerical patterns using two given rules.
Identify apparent relationships between corresponding terms.
Form ordered pairs consisting of corresponding terms from the
two patterns, and graph the ordered pairs on a coordinate plane.pares students for studying proportional relationships and functions

in middle school.
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Connections to NF and NBT in Grades 3 through 5
Students extend their whole number work with adding and sub-
tracting and multiplying and dividing situations to decimal numbers
and fractions. Each of these extensions can begin with problems
that include all of the subtypes of the situations in Tables 1 and 2.
The operations of addition, subtraction, multiplication, and division
continue to be used in the same way in these problem situations
when they are extended to fractions and decimals (although making
these extensions is not automatic or easy for all students). The con-
nections described for Kindergarten through Grade 3 among word
problem situations, representations for these problems, and use of
properties in solution methods are equally relevant for these new
kinds of numbers. Students use the new kinds of numbers, frac-
tions and decimals, in geometric measurement and data problems
and extend to some two-step and multi-step problems involving all
four operations. In order to keep the difficulty level from becom-
ing extreme, there should be a tradeoff between the algebraic or
situational complexity of any given problem and its computational
difficulty taking into account the kinds of numbers involved.

As students’ notions of quantity evolve and generalize from dis-
crete to continuous during Grades 3–5, their notions of multiplication
evolves and generalizes. This evolution deserves special attention
because it begins in OA but ends in NF. Thus, the concept of multipli-
cation begins in Grade 3 with an entirely discrete notion of “equal
groups.”3.OA.1 By Grade 4, students can also interpret a multipli-

3.OA.1Interpret products of whole numbers, e.g., interpret 5� 7
as the total number of objects in 5 groups of 7 objects each.cation equation as a statement of comparison involving the notion

“times as much.”4.OA.1 This notion has more affinity to continuous 4.OA.1Interpret a multiplication equation as a comparison, e.g.,
interpret 35 � 5 � 7 as a statement that 35 is 5 times as many
as 7 and 7 times as many as 5. Represent verbal statements of
multiplicative comparisons as multiplication equations.

quantities, e.g., 3 � 4 � 3
4 might describe how 3 cups of flour are

4 times as much as 3
4 cup of flour.4.NF.4,4.MD.2 By Grade 5, when

4.NF.4Apply and extend previous understandings of multiplica-
tion to multiply a fraction by a whole number.

4.MD.2Use the four operations to solve word problems involving
distances, intervals of time, liquid volumes, masses of objects,
and money, including problems involving simple fractions or deci-
mals, and problems that require expressing measurements given
in a larger unit in terms of a smaller unit. Represent measure-
ment quantities using diagrams such as number line diagrams
that feature a measurement scale.

students multiply fractions in general,5.NF.4 products can be larger

5.NF.4Apply and extend previous understandings of multiplica-
tion to multiply a fraction or whole number by a fraction.

or smaller than either factor, and multiplication can be seen as an
operation that “stretches or shrinks” by a scale factor.5.NF.5 This view

5.NF.5Interpret multiplication as scaling (resizing), by:

of multiplication as scaling is the appropriate notion for reasoning
multiplicatively with continuous quantities.
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Where the Operations and Algebraic Thinking
Progression is heading
Connection to the Number System The properties of and rela-
tionships between operations that students worked with in Grades
K–5 will become even more prominent in extending arithmetic to
systems that include negative numbers; meanwhile the meanings of
the operations will continue to evolve, e.g., subtraction will become
“adding the opposite.”

Connection to Expressions and Equations In Grade 6, students
will begin to view expressions not just as calculation recipes but
as entities in their own right, which can be described in terms of
their parts. For example, students see 8 � p5� 2q as the product of 8
with the sum 5� 2. In particular, students must use the conventions
for order of operations to interpret expressions, not just to evaluate
them. Viewing expressions as entities created from component parts
is essential for seeing the structure of expressions in later grades
and using structure to reason about expressions and functions.

As noted above, the foundation for these later competencies is
laid in Grade 5 when students write expressions to record a “calcu-
lation recipe” without actually evaluating the expression, use paren-
theses to formulate expressions, and examine patterns and relation-
ships numerically and visually on a coordinate plane graph.5.OA.1 ,5.OA.2 5.OA.1Use parentheses, brackets, or braces in numerical expres-

sions, and evaluate expressions with these symbols.

5.OA.2Write simple expressions that record calculations with
numbers, and interpret numerical expressions without evaluating
them.

Before Grade 5, student thinking that also builds toward the Grade
6 EE work is focusing on the expressions on each side of an equa-
tion, relating each expression to the situation, and discussing the
situational and mathematical vocabulary involved to deepen the un-
derstandings of expressions and equations.

In Grades 6 and 7, students begin to explore the systematic al-
gebraic methods used for solving algebraic equations. Central to
these methods are the relationships between addition and subtrac-
tion and between multiplication and division, emphasized in several
parts of this Progression and prominent also in the 6–8 Progression
for the Number System. Students’ varied work throughout elemen-
tary school with equations with unknowns in all locations and in
writing equations to decompose a given number into many pairs of
addends or many pairs of factors are also important foundations for
understanding equations and for solving equations with algebraic
methods. Of course, any method of solving, whether systematic or
not, relies on an understanding of what solving itself is—namely, a
process of answering a question: which values from a specified set,
if any, make the equation true?6.EE.5

6.EE.5Understand solving an equation or inequality as a process
of answering a question: which values from a specified set, if
any, make the equation or inequality true? Use substitution to
determine whether a given number in a specified set makes an
equation or inequality true.

Students represent and solve word problems with equations in-
volving one unknown quantity in K through 5. The quantity was
expressed by a l or other symbol in K–2 and by a letter in Grades
3 to 5. Grade 6 students continue the K–5 focus on representing a
problem situation using an equation (a situation equation) and then
(for the more difficult situations) writing an equivalent equation that
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is easier to solve (a solution equation). Grade 6 students discuss
their reasoning more explicitly by focusing on the structures of ex-
pressions and using the properties of operations explicitly. Some of
the math drawings that students have used in K through 5 to rep-
resent problem situations continue to be used in the middle grades.
These can help students throughout the grades deepen the connec-
tions they make among the situation and problem representations
by a drawing and/or by an equation, and support the informal K–5
and increasingly formal 6–8 solution methods arising from under-
standing the structure of expressions and equations.
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Appendix. Methods used for solving
single-digit addition and subtraction
problems
Level 1. Direct Modeling by Counting All or Taking
Away.
Represent situation or numerical problem with groups of objects, a
drawing, or fingers. Model the situation by composing two addend
groups or decomposing a total group. Count the resulting total or
addend.

Adding (8 � 6 � l): Represent each addend by a
group of objects. Put the two groups together. Count
the total. Use this strategy for Add To/Result Unknown
and Put Together/Total Unknown.

Subtracting (14 � 8 � l): Represent the total by
a group of objects. Take the known addend number
of objects away. Count the resulting group of objects
to find the unknown added. Use this strategy for Take
From/Result Unknown.

Levels 8 + 6 = 14 14 – 8 = 6 

Level 1: 
Count all 

Count All 
 

   
 
 

Take Away 
 
 
 
 

Level 2: 
Count on 

Count On 
 
 
 
 

To solve 14 – 8 I count on 8 + ? = 14 
 
 
 
 
 

8 to 14 is 6 so 14 – 8 = 6 
 

Level 3:   
Recompose 
   Make a ten (general): 

one addend breaks 
apart to make 10 
with the other 
addend 

 
   Make a ten (from 5’s 
   within each addend) 
 

Recompose: Make a Ten 
 
 
 
 
 
 
 
 

14 – 8: I make a ten for 8 + ? = 14 

Doubles ± n    6 + 8   
 
 

 

 
Note: Many children attempt to count down for subtraction, but counting down is difficult and error-prone.   
          Children are much more successful with counting on; it makes subtraction as easy as addition. 
 

8 

8 

10 + 4 

2 4 1 3 5 

2 4 1 3 5 

8 6 7 

8 6 7 

10 + 4 

= 6 + 6 + 2  
=   12   + 2 = 14 

2 4 1 3 5 

2 4 3 1 5 

7 9 6 8 10 

7 1 6 8 2 

11 13 12 14 

3 5 4 6 

I took away 8 
9 

10 11 12 
13 

14 

8 + 2 + 4 

6 

8     +              6     =     14 

14 

6 

14 

10 12 9 13 11 

2 4 1 3 5 

10 12 9 13 11 

c b 

a 

c 

b a 
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Level 2. Counting On.
Embed an addend within the total (the addend is perceived simul-
taneously as an addend and as part of the total). Count this total
but abbreviate the counting by omitting the count of this addend;
instead, begin with the number word of this addend. Some method
of keeping track (fingers, objects, mentally imaged objects, body mo-
tions, other count words) is used to monitor the count.

For addition, the count is stopped when the amount of the re-
maining addend has been counted. The last number word is the
total. For subtraction, the count is stopped when the total occurs in
the count. The tracking method indicates the difference (seen as an
unknown addend).

Counting on can be used to find the total or to find an addend.
These look the same to an observer. The difference is what is mon-
itored: the total or the known addend. Some students count down
to solve subtraction problems, but this method is less accurate and
more difficult than counting on. Counting on is not a rote method. It
requires several connections between cardinal and counting mean-
ings of the number words and extended experience with Level 1
methods in Kindergarten.

Adding (e. g., 8 � 6 � l) uses counting on to find a
total: One counts on from the first addend (or the larger
number is taken as the first addend). Counting on is
monitored so that it stops when the second addend has
been counted on. The last number word is the total.

Finding an unknown addend (e.g., 8�l � 14): One
counts on from the known addend. The keeping track
method is monitored so that counting on stops when
the known total has been reached. The keeping track
method tells the unknown addend.

Subtracting (14� 8 � l): One thinks of subtracting
as finding the unknown addend, as 8�l � 14 and uses
counting on to find an unknown addend (as above).

The problems in Table 2 which are solved by Level 1 methods in
Kindergarten can also be solved using Level 2 methods: counting on
to find the total (adding) or counting on to find the unknown addend
(subtracting).

The middle difficulty (lightly shaded) problem types in Table 2
for Grade 1 are directly accessible with the embedded thinking of
Level 2 methods and can be solved by counting on.

Finding an unknown addend (e.g., 8 � l � 14) is
used for Add To/Change Unknown, Put Together/Take
Apart/Addend Unknown, and Compare/Difference Unknown.
It is also used for Take From/Change Unknown (14�l �
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8) after a student has decomposed the total into two ad-
dends, which means they can represent the situation as
14� 8 � l.

Adding or subtracting by counting on is used by some
students for each of the kinds of Compare problems (see
the equations in Table 2). Grade 1 students do not neces-
sarily master the Compare Bigger Unknown or Smaller
Unknown problems with the misleading language in the
bottom row of Table 2.

Solving an equation such as 6 � 8 � l by counting on from
8 relies on the understanding that 8 � 6 gives the same total, an
implicit use of the commutative property without the accompanying
written representation 6� 8 � 8� 6.

Level 3. Convert to an Easier Equivalent Problem.
Decompose an addend and compose a part with another addend.

These methods can be used to add or to find an unknown addend
(and thus to subtract). These methods implicitly use the associative
property.

Adding

Make a ten. E.g, for 8� 6 � l,

8� 6 � 8� 2� 4 � 10� 4 � 14,

so 8� 6 becomes 10� 4.
Doubles plus or minus 1. E.g., for 6� 7 � l,

6� 7 � 6� 6� 1 � 12� 1 � 13,

so 6� 7 becomes 12� 1.

Finding an unknown addend

Make a ten. E. g., for 8�l � 14,

8� 2 � 10 and 4 more makes 14. 2� 4 � 6.

So 8�l � 14 is done as two steps: how many up to ten and how
many over ten (which can be seen in the ones place of 14).
Doubles plus or minus 1. E.g., for 6�l � 13,

6� 6� 1 � 12� 1. 6� 1 � 7.

So 6�l � 13 is done as two steps: how many up to 12 (6� 6) and
how many from 12 to 13.
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Subtracting

Thinking of subtracting as finding an unknown addend. E.g., solve
14�8 � l or 13�6 � l as 8�l � 14 or 6�l � 13 by the above
methods (make a ten or doubles plus or minus 1).
Make a ten by going down over ten. E.g., 14 � 8 � l can be done
in two steps by going down over ten: 14� 4 (to get to 10) � 4 � 6.

The Level 1 and Level 2 problem types can be solved using these
Level 3 methods.

Level 3 problem types can be solved by representing the situ-
ation with an equation or drawing, then re-representing to create
a situation solved by adding, subtracting, or finding an unknown
addend as shown above by methods at any level, but usually at
Level 2 or 3. Many students only show in their writing part of this
multi-step process of re-representing the situation.

Students re-represent Add To/Start Unknownl�6 �
14 situations as 6 � l � 14 by using the commutative
property (formally or informally).

Students re-represent Take From/Start Unknownl�
8 � 6 situations by reversing as 6 � 8 � l, which may
then be solved by counting on from 8 or using a Level 3
method.

At Level 3, the Compare misleading language situations can be
solved by representing the known quantities in a diagram that shows
the bigger quantity in relation to the smaller quantity. The diagram
allows the student to find a correct solution by representing the
difference between quantities and seeing the relationship among
the three quantities. Such diagrams are the same diagrams used for
the other versions of compare situations; focusing on which quantity
is bigger and which is smaller helps to overcome the misleading
language.

Some students may solve Level 3 problem types by doing the
above re-representing but use Level 2 counting on.

As students move through levels of solution methods, they in-
creasingly use equations to represent problem situations as situa-
tion equations and then to re-represent the situation with a solution
equation or a solution computation. They relate equations to dia-
grams, facilitating such re-representing. Labels on diagrams can
help connect the parts of the diagram to the corresponding parts of
the situation. But students may know and understand things that
they may not use for a given solution of a problem as they increas-
ingly do various representing and re-representing steps mentally.
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Number and Operations in
Base Ten, K–5

Overview
Students’ work in the base-ten system is intertwined with their work
on counting and cardinality, and with the meanings and properties
of addition, subtraction, multiplication, and division. Work in the
base-ten system relies on these meanings and properties, but also
contributes to deepening students’ understanding of them.

Position The base-ten system is a remarkably efficient and uni-
form system for systematically representing all numbers. Using only
the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, every number can be repre-
sented as a string of digits, where each digit represents a value that
depends on its place in the string. The relationship between values
represented by the places in the base-ten system is the same for
whole numbers and decimals: the value represented by each place
is always 10 times the value represented by the place to its imme-
diate right. In other words, moving one place to the left, the value
of the place is multiplied by 10. In moving one place to the right,
the value of the place is divided by 10. Because of this uniformity,
standard algorithms for computations within the base-ten system for
whole numbers extend to decimals.

Base-ten units Each place of a base-ten numeral represents a
base-ten unit: ones, tens, tenths, hundreds, hundredths, etc. The
digit in the place represents 0 to 9 of those units. Because ten
like units make a unit of the next highest value, only ten digits are
needed to represent any quantity in base ten. The basic unit is
a one (represented by the rightmost place for whole numbers). In
learning about whole numbers, children learn that ten ones com-
pose a new kind of unit called a ten. They understand two-digit
numbers as composed of tens and ones, and use this understanding
in computations, decomposing 1 ten into 10 ones and composing a
ten from 10 ones.

The power of the base-ten system is in repeated bundling by
ten: 10 tens make a unit called a hundred. Repeating this process of
creating new units by bundling in groups of ten creates units called
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thousand, ten thousand, hundred thousand . . . In learning about
decimals, children partition a one into 10 equal-sized smaller units,
each of which is a tenth. Each base-ten unit can be understood in
terms of any other base-ten unit. For example, one hundred can be
viewed as a tenth of a thousand, 10 tens, 100 ones, or 1,000 tenths.
Algorithms• for operations in base ten draw on such relationships

• From the Standards glossary:
Computation algorithm. A set of predefined
steps applicable to a class of problems that gives
the correct result in every case when the steps are
carried out correctly. See also: computation strat-
egy.

In mathematics, an algorithm is defined by its steps and not by the
way those steps are recorded in writing. This progression gives
examples of different recording methods and discusses their ad-
vantages and disadvantages.

among the base-ten units.

Computations Standard algorithms• for base-ten computations with

• The Standards do not specify a particular standard algorithm for
each operation. This progression gives examples of algorithms
that could serve as the standard algorithm and discusses their
advantages and disadvantages.

the four operations rely on decomposing numbers written in base-
ten notation into base-ten units. The properties of operations then
allow any multi-digit computation to be reduced to a collection of
single-digit computations. These single-digit computations some-
times require the composition or decomposition of a base-ten unit.

Beginning in Kindergarten, the requisite abilities develop grad-
ually over the grades. Experience with addition and subtraction
within 20 is a Grade 1 standard1.OA.6 and fluency is a Grade 2

1.OA.6Add and subtract within 20, demonstrating fluency for addi-
tion and subtraction within 10. Use strategies such as counting
on; making ten (e.g., 8` 6 “ 8` 2` 4 “ 10` 4 “ 14); decom-
posing a number leading to a ten (e.g., 13 ´ 4 “ 13 ´ 3 ´ 1 “
10´1 “ 9); using the relationship between addition and subtrac-
tion (e.g., knowing that 8` 4 “ 12, one knows 12´ 8 “ 4); and
creating equivalent but easier or known sums (e.g., adding 6` 7
by creating the known equivalent 6` 6` 1 “ 12` 1 “ 13).

standard.2.OA.2 Computations within 20 that “cross 10,” such as 9` 8

2.OA.2Fluently add and subtract within 20 using mental strate-
gies.1 By end of Grade 2, know from memory all sums of two
one-digit numbers.

or 13 ´ 6, are especially relevant to NBT because they afford the
development of the Level 3 make-a-ten strategies for addition and
subtraction described in the OA Progression. From the NBT per-
spective, make-a-ten strategies are (implicitly) the first instances of
composing or decomposing a base-ten unit. Such strategies are a
foundation for understanding in Grade 1 that addition may require
composing a ten1.NBT.4 and in Grade 2 that subtraction may involve

1.NBT.4Add within 100, including adding a two-digit number and a
one-digit number, and adding a two-digit number and a multiple
of 10, using concrete models or drawings and strategies based
on place value, properties of operations, and/or the relationship
between addition and subtraction; relate the strategy to a writ-
ten method and explain the reasoning used. Understand that
in adding two-digit numbers, one adds tens and tens, ones and
ones; and sometimes it is necessary to compose a ten.

decomposing a ten.2.NBT.7

2.NBT.7Add and subtract within 1000, using concrete models or
drawings and strategies based on place value, properties of op-
erations, and/or the relationship between addition and subtrac-
tion; relate the strategy to a written method. Understand that
in adding or subtracting three-digit numbers, one adds or sub-
tracts hundreds and hundreds, tens and tens, ones and ones;
and sometimes it is necessary to compose or decompose tens or
hundreds.

Strategies and algorithms The Standards distinguish strategies•

• From the Standards glossary:
Computation strategy. Purposeful manipula-
tions that may be chosen for specific problems,
may not have a fixed order, and may be aimed
at converting one problem into another. See also:
computation algorithm.

Examples of computation strategies are given in this progression
and in the Operations and Algebraic Thinking Progression.

from algorithms. Work with computation begins with use of strate-
gies and “efficient, accurate, and generalizable methods.” (See Grade
1 critical areas 1 and 2, Grade 2 critical area 2; Grade 4 critical area
1.) For each operation, the culmination of this work is signaled in
the Standards by use of the term “standard algorithm.”

Initially, students compute using concrete models or drawings
and strategies based on place value, properties of operations, and/or
the relationship between addition and subtraction (or multiplication
and division). They relate their strategies to written methods and
explain the reasoning used (for addition within 100 in Grade 1; for
addition and subtraction within 1000 in Grade 2) or illustrate and
explain their calculations with equations, rectangular arrays, and/or
area models (for multiplication and division in Grade 4).

Students’ initial experiences with computation also include de-
velopment, discussion, and use of “efficient, accurate, and general-
izable methods.” So from the beginning, students see, discuss, and
explain methods that can be generalized to all numbers represented
in the base-ten system. Initially, they may use written methods
that include extra helping steps to record the underlying reasoning.
These helping step variations can be important initially for under-
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standing. Over time, these methods can and should be abbreviated
into shorter written methods compatible with fluent use of standard
algorithms.

Students may also develop and discuss mental or written cal-
culation methods that cannot be generalized to all numbers or are
less efficient than other methods.

Mathematical practices The Standards for Mathematical Practice
are central in supporting students’ progression from understanding
and use of strategies to fluency with standard algorithms. The ini-
tial focus in the Standards on understanding and explaining such
calculations, with the support of visual models, affords opportunities
for students to see mathematical structure as accessible, important,
interesting, and useful.

Students learn to see a number as composed of its base-ten units
(MP.7). They learn to use this structure and the properties of op-
erations to reduce computing a multi-digit sum, difference, product,
or quotient to a collection of single-digit computations in different
base-ten units. (In some cases, the Standards refer to “multi-digit”
operations rather than specifying numbers of digits. The intent is
that sufficiently many digits should be used to reveal the standard
algorithm for each operation in all its generality.) Repeated reason-
ing (MP.8) that draws on the uniformity of the base-ten system is a
part of this process. For example, in addition computations students
generalize the strategy of making a ten to composing 1 base-ten
unit of next-highest value from 10 like base-ten units.

Uniformity of the base-ten system

˜10

ˆ10

tens

˜10

ˆ10

ones

˜10

ˆ10

tenths hundredths

For any base-ten unit, 10 copies compose 1 base-ten unit of
next-highest value, e.g., 10 ones are 1 ten, 10 tens are 1
hundred, etc.

Students abstract quantities in a situation (MP.2) and use con-
crete models, drawings, and diagrams (MP.4) to help conceptual-
ize (MP.1), solve (MP.1, MP.3), and explain (MP.3) computational
problems. They explain correspondences between different meth-
ods (MP.1) and construct and critique arguments about why those
methods work (MP.3). Drawings, diagrams, and numerical record-
ings may raise questions related to precision (MP.6), e.g., does that
1 represent 1 one or 1 ten?, and to probe into the referents for sym-
bols used (MP.2), e.g., does that 1 represent the number of apples in
the problem?

Some methods may be advantageous in situations that require
quick computation, but less so when uniformity is useful. Thus, com-
paring methods offers opportunities to raise the topic of using ap-
propriate tools strategically (MP.5). Comparing methods can help
to illustrate the advantages of standard algorithms: standard al-
gorithms are general methods that minimize the number of steps
needed and, once, fluency is achieved, do not require new reason-
ing.
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Kindergarten
In Kindergarten, teachers help children lay the foundation for un-
derstanding the base-ten system by drawing special attention to 10.
Children learn to view the whole numbers 11 through 19 as ten ones
and some more ones. They decompose 10 into pairs such as 1` 9,
2`8, 3`7 and find the number that makes 10 when added to a given
number such as 3 (see the OA Progression for further discussion).

K.NBT.1Compose and decompose numbers from 11 to 19 into ten
ones and some further ones, e.g., by using objects or drawings,
and record each composition or decomposition by a drawing or
equation (e.g., 18 = 10 + 8); understand that these numbers are
composed of ten ones and one, two, three, four, five, six, seven,
eight, or nine ones.

Work with numbers from 11 to 19 to gain foundations for place
valueK.NBT.1 Children use objects, math drawings,• and equations to

• Math drawings are simple drawings that make essential math-
ematical features and relationships salient while suppressing de-
tails that are not relevant to the mathematical ideas.

describe, explore, and explain how the “teen numbers,” the counting
numbers from 11 through 19, are ten ones and some more ones.
Children can count out a given teen number of objects, e.g., 12, and
group the objects to see the ten ones and the two ones. It is also

Number-bond diagram and equation

1  0
10 7

71  0
10 7

7

17 = 10 + 7
17

10 7

10 strip

5 strip

Number Bond
Drawing

layered place value cards

layered separated

front:

back:

Figure 1:

Decomposing 17 as 10 and 7

Equation

Decompositions of teen numbers can be recorded with diagrams
or equations.

helpful to structure the ten ones into patterns that can be seen as
ten objects, such as two fives (see the OA Progression).
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Children can place small objects into 10-frames to show the ten
as two rows of five and the extra ones within the next 10-frame,
or work with strips that show ten ones in a column.

A difficulty in the English-speaking world is that the words for
teen numbers do not make their base-ten meanings evident. For
example, “eleven” and “twelve” do not sound like “ten and one” and
“ten and two.” The numbers “thirteen, fourteen, fifteen, . . . , nineteen”
reverse the order of the ones and tens digits by saying the ones
digit first. Also, “teen” must be interpreted as meaning “ten” and
the prefixes “thir” and “fif” do not clearly say “three” and “five.” In
contrast, the corresponding East Asian number words are “ten one,
ten two, ten three,” and so on, fitting directly with the base-ten
structure and drawing attention to the role of ten. Children could
learn to say numbers in this East Asian way in addition to learning
the standard English number names. Difficulties with number words
beyond nineteen are discussed in the Grade 1 section.

The numerals 11, 12, 13, . . . , 19 need special attention for chil-
dren to understand them. The first nine numerals 1, 2, 3, . . . , 9, and
0 are essentially arbitrary marks. These same marks are used again
to represent larger numbers. Children need to learn the differences
in the ways these marks are used. For example, initially, a numeral
such as 16 looks like “one, six,” not “1 ten and 6 ones.” Layered
place value cards can help children see the 0 “hiding” under the

Place value cards

1  0
10 7

71  0
10 7

7

17 = 10 + 7
17

10 7

10 strip

5 strip

Number Bond
Drawing

layered place value cards

layered separated

front:

back:

Figure 1:

Decomposing 17 as 10 and 7

Equation

Children can use layered place value cards to see the 10 “hiding”
inside any teen number. Such decompositions can be connected
to numbers represented with objects and math drawings. When
any of the number arrangements is turned over, the one card is
hidden under the tens card. Children can see this and that they
need to move the ones dots above and on the right side of the
tens card.

ones place and that the 1 in the tens place really is 10 (ten ones).
By working with teen numbers in this way in Kindergarten, stu-

dents gain a foundation for viewing 10 ones as a new unit called a
ten in Grade 1.
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Grade 1
In first grade, students learn to view ten ones as a unit called a ten.
The ability to compose and decompose this unit flexibly and to view
the numbers 11 to 19 as composed of one ten and some ones allows
development of efficient, general base-ten methods for addition and
subtraction. Students see a two-digit numeral as representing some
tens and they add and subtract using this understanding.

Extend the counting sequence and understand place value Through
structured learning time, discussion, and practice students learn pat-
terns in spoken number words and in written numerals, and how the
two are related.

Part of a numeral list
91 101 111
92 102 112
93 103 113
94 104 114
95 105 115
96 106 116
97 107 117
98 108 118
99 109 119

100 110 120

In the classroom, a list of the numerals from 1 to 120 can be
shown in columns of 10 to help highlight the base-ten structure,
e.g., in the leftmost column, the 9s (indicating 9 tens) are lined
up and the ones increase by 1 from 91 to 99. The numbers
101, . . . , 120 may be especially difficult for children to write.

Grade 1 students take the important step of viewing ten ones
as a unit called a “ten.”1.NBT.2a They learn to view the numbers 11

1.NBT.2Understand that the two digits of a two-digit number rep-
resent amounts of tens and ones. Understand the following as
special cases:

a 10 can be thought of as a bundle of ten ones—called a
“ten.”

through 19 as composed of 1 ten and some ones.1.NBT.2b They learn to

b The numbers from 11 to 19 are composed of a ten and
one, two, three, four, five, six, seven, eight, or nine ones.

view the decade numbers 10, . . . , 90, in written and in spoken form,
as 1 ten, . . . , 9 tens.1.NBT.2c More generally, first graders learn that

c The numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 refer to
one, two, three, four, five, six, seven, eight, or nine tens
(and 0 ones).

the two digits of a two-digit number represent amounts of tens and
ones, e.g., 67 represents 6 tens and 7 ones. Saying 67 as “6 tens, 7
ones” as well as “sixty-seven” can help students focus on the tens
and ones structure of written numerals.

The number words continue to require attention at first grade
because of their irregularities. The decade words, “twenty,” “thirty,”
“forty,” etc., must be understood as indicating 2 tens, 3 tens, 4 tens,
etc. Many decade number words sound much like teen number
words. For example, “fourteen” and “forty” sound very similar, as
do “fifteen” and “fifty,” and so on to “nineteen” and “ninety.” As
discussed in the Kindergarten section, the number words from 13 to
19 give the number of ones before the number of tens. From 20 to
100, the number words switch to agreement with written numerals
by giving the number of tens first. Because the decade words do
not clearly indicate they mean a number of tens (“-ty” does mean
tens but not clearly so) and because the number words “eleven” and
“twelve” do not cue students that they mean “1 ten and 1” and “1 ten
and 2,” children frequently make count errors such as “twenty-nine,
twenty-ten, twenty-eleven, twenty-twelve.”

Grade 1 students use their base-ten work to help them recognize
that the digit in the tens place is more important for determining
the size of a two-digit number.1.NBT.3 They use this understanding

1.NBT.3Compare two two-digit numbers based on meanings of the
tens and ones digits, recording the results of comparisons with
the symbols ą, “, and ă.to compare two two-digit numbers, indicating the result with the

symbols ą, “, and ă. Correctly placing the ă and ą symbols is a
challenge for early learners. Accuracy can improve if students think
of putting the wide part of the symbol next to the larger number.

Use place value understanding and properties of operations to
add and subtract First graders use their base-ten work to compute
sums within 100 with understanding.1.NBT.4 Concrete objects, cards, or

1.NBT.4Add within 100, including adding a two-digit number and a
one-digit number, and adding a two-digit number and a multiple
of 10, using concrete models or drawings and strategies based
on place value, properties of operations, and/or the relationship
between addition and subtraction; relate the strategy to a writ-
ten method and explain the reasoning used. Understand that
in adding two-digit numbers, one adds tens and tens, ones and
ones; and sometimes it is necessary to compose a ten.Draft, 6 March 2015, comment at commoncoretools.wordpress.com.
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drawings afford connections with written numerical work and dis-
cussions and explanations in terms of tens and ones. In particular,
showing composition of a ten with objects or drawings affords con-
nection of the visual ten with the written numeral 1 that indicates 1
ten.

Combining tens and ones separately as illustrated in the margin

Adding tens and ones separately

   46
+37

   46
+37 46

56 66 76 77 78 79 80 81

82 83

starting from 46
count on 3 tens
then count on 7 ones

combine ones
view 6+7 as 1 ten and 3 ones

combine 4 tens and 3 tens
with the new group of 1 ten
(shown below on the addition
line)

Using a sequence conception to add:

Adding tens and ones separately:

Figure 3:

combine ones
view 6 ` 7 as 1 ten and
3 ones

combine 4 tens and
3 tens with the newly
composed ten (shown
on the addition line)

This method is an application of the commutative and
associative properties. The diagrams can help children with
understanding and explaining the steps (MP.1). Advantages of
writing the 1 below the addends are discussed in the Grade 2
margin.

can be extended to the general method of combining like base-ten
units. The margin illustrates combining ones, then tens. Like base-
ten units can be combined in any order, but going from smaller to
larger eliminates the need to go back to a given place to add in a
new unit. For example, in computing 46 + 37 by combining tens,
then ones (going left to right), one needs to go back to add in the
new 1 ten: “4 tens and 3 tens is 7 tens, 6 ones and 7 ones is 13
ones which is 1 ten and 3 ones, 7 tens and 1 ten is 8 tens. The total
is 8 tens and 3 ones: 83.”

Students may also develop sequence methods that extend their
Level 2 single-digit counting on strategies (see the OA Progression)
to counting on by tens and ones, or mixtures of such strategies in
which they add instead of count the tens or ones. Using objects or

Counting on by tens

   46
+37

   46
+37 46

56 66 76 77 78 79 80 81

82 83

starting from 46
count on 3 tens
then count on 7 ones

combine ones
view 6+7 as 1 ten and 3 ones

combine 4 tens and 3 tens
with the new group of 1 ten
(shown below on the addition
line)

Using a sequence conception to add:

Adding tens and ones separately:

Figure 3:

starting from 46 count
on 3 tens then count on
7 ones

Counting on by tens from 46, beginning 56, 66, 76, then counting
on by ones. This method can be generalized, but the complexity
of the counting on required and the lack of efficiency becomes
apparent as the number of digits in the addends increases.

drawings of 5-groups can support students’ extension of the Level
3 make-a-ten methods discussed in the OA Progression for single-
digit numbers.

First graders also engage in mental calculation, such as mentally
finding 10 more or 10 less than a given two-digit number without
having to count by ones.1.NBT.5 They may explain their reasoning by

1.NBT.5Given a two-digit number, mentally find 10 more or 10 less
than the number, without having to count; explain the reasoning
used.

saying that they have one more or one less ten than before. Draw-
ings and layered cards can afford connections with place value and
be used in explanations.

In Grade 1, children learn to compute differences of two-digit
numbers for limited cases.1.NBT.6 Differences of multiples of 10, such

1.NBT.6Subtract multiples of 10 in the range 10–90 from multiples
of 10 in the range 10–90 (positive or zero differences), using con-
crete models or drawings and strategies based on place value,
properties of operations, and/or the relationship between addi-
tion and subtraction; relate the strategy to a written method and
explain the reasoning used.

as 70 ´ 40 can be viewed as 7 tens minus 4 tens and represented
with concrete models such as objects bundled in tens or draw-
ings. Children use the relationship between subtraction and addition
when they view 80 ´ 70 as an unknown addend addition problem,
70 ` l “ 80, and reason that 1 ten must be added to 70 to make
80, so 80´ 70 “ 10.

First graders are not expected to compute differences of two-
digit numbers other than multiples of ten. Deferring such work until
Grade 2 allows two-digit subtraction with and without decompos-
ing to occur in close succession, highlighting the similarity between
these two cases. This helps students to avoid making the general-
ization “in each column, subtract the larger digit from the smaller
digit, independent of whether the larger digit is in the subtrahend
or minuend,” e.g., making the error 82 - 45 = 43.
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Grade 2
At Grade 2, students extend their base-ten understanding to hun-
dreds. They now add and subtract within 1000, with composing
and decomposing, and they understand and explain the reasoning
of the processes they use. They become fluent with addition and
subtraction within 100.

Understand place value In Grade 2, students extend their under-
standing of the base-ten system by viewing 10 tens as forming a new
unit called a “hundred.”2.NBT.1a This lays the groundwork for under-

2.NBT.1a Understand that the three digits of a three-digit number
represent amounts of hundreds, tens, and ones; e.g., 706 equals
7 hundreds, 0 tens, and 6 ones. Understand the following as
special cases:

a 100 can be thought of as a bundle of ten tens—called a
“hundred.”

standing the structure of the base-ten system as based in repeated
bundling in groups of 10 and understanding that the unit associated
with each place is 10 of the unit associated with the place to its
right.

Representations such as manipulative materials, math drawings
and layered three-digit place value cards afford connections be-
tween written three-digit numbers and hundreds, tens, and ones.

Drawings to support seeing 10 tens as 1 hundred
drawings to support seeing 10 tens as 1 hundred

10 tens 1 hundred 1 hundred box
(quick drawing to
show 1 hundred)

Number words and numbers written in base-ten numerals and as
sums of their base-ten units can be connected with representations
in drawings and place value cards, and by saying numbers aloud and
in terms of their base-ten units, e.g., 456 is “Four hundred fifty six”
and “four hundreds five tens six ones.”2.NBT.3 Unlayering three-digit

2.NBT.3Read and write numbers to 1000 using base-ten numerals,
number names, and expanded form.

place value cards like the two-digit cards shown for Kindergarten
and Grade 1 reveals the expanded form of the number.

Unlike the decade words, the hundred words indicate base-ten
units. For example, it takes interpretation to understand that “fifty”
means five tens, but “five hundred” means almost what it says (“five
hundred” rather than “five hundreds”). Even so, this doesn’t mean
that students automatically understand 500 as 5 hundreds; they may
still only think of it as the number said after 499 or reached after
500 counts of 1.

A major task for Grade 2 is learning the counting sequence from
100 to 1,000. As part of learning and using the base-ten structure,
students count by ones within various parts of this sequence, espe-
cially the more difficult parts that “cross” tens or hundreds.

Building on their place value work, students continue to de-
velop proficiency with mental computation.2.NBT.8 They extend this

2.NBT.8Mentally add 10 or 100 to a given number 100–900, and
mentally subtract 10 or 100 from a given number 100–900.to skip-counting by 5s, 10s, and 100s to emphasize and experi-

ence the tens and hundreds within the sequence and to prepare
for multiplication.2.NBT.2 2.NBT.2Count within 1000; skip-count by 5s, 10s, and 100s.

Comparing magnitudes of two-digit numbers uses the under- 2.NBT.4Compare two three-digit numbers based on meanings of
the hundreds, tens, and ones digits, using ą, =, and ă symbols
to record the results of comparisons.

standing that 1 ten is greater than any amount of ones represented
by a one-digit number. Comparing magnitudes of three-digit num-

2.NBT.5Fluently add and subtract within 100 using strategies
based on place value, properties of operations, and/or the re-
lationship between addition and subtraction.

2.NBT.6Add up to four two-digit numbers using strategies based
on place value and properties of operations.

bers uses the understanding that 1 hundred (the smallest three-digit
number) is greater than any amount of tens and ones represented
by a two-digit number. For this reason, three-digit numbers are
compared by first inspecting the hundreds place (e.g. 845 ą 799;
849 ă 855).2.NBT.4 Drawings help support these understandings.
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Use place value understanding and properties of operations to add
and subtract Students fluently add and subtract within 100.2.NBT.5

2.NBT.5Fluently add and subtract within 100 using strategies
based on place value, properties of operations, and/or the re-
lationship between addition and subtraction.They also add and subtract within 1000.2.NBT.7 They explain why ad-
2.NBT.7Add and subtract within 1000, using concrete models or
drawings and strategies based on place value, properties of op-
erations, and/or the relationship between addition and subtrac-
tion; relate the strategy to a written method. Understand that
in adding or subtracting three-digit numbers, one adds or sub-
tracts hundreds and hundreds, tens and tens, ones and ones;
and sometimes it is necessary to compose or decompose tens or
hundreds.

dition and subtraction strategies work, using place value and the
properties of operations, and may support their explanations with
drawings or objects.2.NBT.9 Because adding and subtracting within

2.NBT.9Explain why addition and subtraction strategies work, us-
ing place value and the properties of operations.2

100 is a special case of adding and subtracting within 1000, meth-
ods within 1000 will be discussed before fluency within 100.

Two written methods for addition within 1000 are shown in the
margins of this page and the next. The first explicitly shows the

Addition: Recording newly composed units in separate
rows

2 7 8
+ 1 4 7

2 7 8
+ 1 4 7

3 0 0

2 7 8
+ 1 4 7

3 0 0
1 1 0

2 7 8
+ 1 4 7

3 0 0
1 1 0

1 5
4 2 5

The computation shown proceeds from left to right, but could
have gone from right to left. Working from left to right has two
advantages: Many students prefer it because they read from left
to right; working first with the largest units yields a closer
approximation earlier.

Illustrating combining like units and composing new units

The drawing shows the base-ten units of 278 and 147. Like units
are shown together, with boundaries drawn around ten tens and
ten ones to indicate the newly composed hundred and the newly
composed ten. The newly composed units could also be
indicated by crossing out grouped units and drawing a single
next-highest unit, e.g., crossing out the group of ten ones and
drawing a single ten. Drawings like this can be used to illustrate
and explain both of the written computations below.

hundreds, tens, and ones that are being added; this can be helpful
conceptually to students. The second method, shown on the next
page, explicitly shows the adding of the single digits in each place
and how this approach can continue on to places on the left.

Drawings can support students in explaining these and other
methods. The drawing in the margin shows addends decomposed
into their base-ten units (here, hundreds, tens, and ones), with the
tens and hundreds represented by quick drawings. These quick
drawings show each hundred as a single unit rather than ten tens
(see illustration on p. 8), generalizing the approach that students
used in Grade 1 of showing a ten as a single unit rather than as
10 separate ones. The putting together of like quick drawings illus-
trates adding like units as specified in 2.NBT.7: add ones to ones,
tens to tens, and hundreds to hundreds. The drawing also shows
newly composed units. Steps of adding like units and composing
new units shown in the drawing can be connected with correspond-
ing steps in other written methods. This also facilitates discussing
how different written methods may show steps in different locations
or different orders (MP.1 and MP.3). The associative and the com-
mutative properties enable adding like units to occur.

The first written method is a helping step variation that gener-
alizes to all numbers in base ten but becomes impractical because
of writing so many zeros. Students can move from this method to
the second method (or another compact method) by seeing how the
steps of the two methods are related. Some students might make
this transition in Grade 2, some in Grade 3, but all need to make it
by Grade 4 where fluency requires a more compact method.

This first method can be seen as related to oral counting-on or
written adding-on methods in which an addend is decomposed into
hundreds, tens, and ones. These are successively added to the other
addend, with the student saying or writing successive totals. These
methods require keeping track of what parts of the decomposed
addend have been added, and skills of mentally counting or adding
hundreds, tens, and ones correctly. For example, beginning with
hundreds: 278 plus 100 is 378 (“I’ve used all of the hundreds”), 378
plus 30 is 408 and plus 10 (to add on all of the 40) is 418, and 418
plus 7 is 425. One way to keep track: draw the 147 and cross out
parts as they are added on. Counting-on and adding-on methods
become even more difficult with numbers over 1000. If they arise
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from students, they should be discussed. But the major focus for
addition within 1000 needs to be on methods such as those in the
margin that are simpler for students and lead toward fluency (e.g.,
recording new units in separate rows shown) or are sufficient for
fluency (e.g., recording new units in one row).

Addition: Recording newly composed units in the same row

Add the ones,
8 ` 7, and record
these 15 ones
with 1 on the line
in the tens column
and 5 below in the
ones place.

Add the tens,
7 ` 4 ` 1, and
record these 12
tens with 1 on the
line in the
hundreds column
and 2 below in the
tens place.

Add the hundreds,
2 ` 1 ` 1, and
record these 4
hundreds below in
the hundreds
column.

Digits representing newly composed units are placed below the
addends, on the line. This placement has several advantages.
Each two-digit partial sum (e.g., “15”) is written with the digits
close to each other, suggesting their origin. In “adding from the
top down,” usually sums of larger digits are computed first, and
the easy-to-add “1” is added to that sum, freeing students from
holding an altered digit in memory. The original numbers are not
changed by adding numbers to the first addend; three multi-digit
numbers (the addends and the total) can be seen clearly. It is
easier to write teen numbers in their usual order (e.g., as 1 then
5) rather than “write the 5 and carry the 1” (write 5, then 1).

Drawings and steps for a generalizable method of subtracting
within 1000 are shown in the margin. The total 425 does not have

Subtraction: Decomposing where needed first

decomposing left to right,
1 hundred, then 1 ten

now subtract

   425
- 278

   425
- 278

Standard algorithm, ungroup where needed  rst, then subtract:

ungrouping left to right,
1 hundred, then 1 ten

   425
- 278

now subtract

[This is part 3 of Figure 5. Doug Clements drew the  rst two parts.]

All necessary decomposing is done first, then the subtractions
are carried out. This highlights the two major steps involved and
can help to inhibit the common error of subtracting a smaller
digit on the top from a larger digit. Decomposing and subtracting
can start from the left (as shown) or the right.

enough tens or ones to subtract the 7 tens or 8 ones in 278. There-
fore one hundred is decomposed to make ten tens and one ten is
decomposed to make ten ones. These decompositions can be done
and written in either order; starting from the left is shown because
many students prefer to operate in that order. In the middle step,
one hundred has been decomposed (making 3 hundreds, 11 tens,
15 ones) so that the 2 hundreds 7 tens and 8 ones in 278 can be
subtracted. These subtractions of like units can also be done in any
order. When students alternate decomposing and subtracting like
units, they may forget to decompose entirely or in a given column
after they have just subtracted (e.g., after subtracting 8 from 15 to
get 7, they move left to the tens column and see a 1 on the top and
a 7 on the bottom and write 6 because they are in subtraction mode,
having just subtracted the ones).

Students can also subtract within 1000 by viewing a subtraction
as an unknown addend problem, e.g., 278 ` ? “ 425. Counting-on
and adding-on methods such as those described above for addition
can be used. But as with addition, the major focus needs to be on
methods that lead toward fluency or are sufficient for fluency (e.g.,
recording as shown in the second row in the margin).

In Grade 1, students have added within 100 using concrete mod-
els or drawings and used at least one method that is generalizable
to larger numbers (such as between 101 and 1000). In Grade 2,
they can make that generalization, using drawings for explanation
as discussed above. This extension could be done first for two-digit
numbers (e.g., 78 ` 47) so that students can see and discuss com-
posing both ones and tens without the complexity of hundreds in
the drawings or numbers (imagine the margin examples for 78`47).
After computing totals that compose both ones and tens for two-digit
numbers, then within 1000, the type of problems required for fluency
in Grade 2 seem easy, e.g., 28` 47 requires only composing a new
ten from ones. This is now easier to do without drawings: one just
records the new ten before it is added to the other tens or adds it
to them mentally.

A similar approach can be taken for subtraction: first using con-
crete models or drawings to solve subtractions within 100 that in-
volve decomposing one ten, then rather quickly solving subtractions
that require two decompositions. Spending a long time on subtrac-
tion within 100 can stimulate students to count on or count down,
which, as discussed above, are methods that are considerably more
difficult with numbers above 100. Problems with different types of
decompositions could be included so that students solve problems
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requiring two, one, and no decompositions. Then students can spend
time on subtractions that include multiple hundreds (totals from 201
to 1000). Relative to these experiences, the objectives for fluency at
this grade are easy: focusing within 100 just on the two cases of
one decomposition (e.g., 73´ 28) or no decomposition (e.g., 78´ 23)
without drawings.

Students also add up to four two-digit numbers using strate-
gies based on place value and properties of operations.2.NBT.6 This

2.NBT.6Add up to four two-digit numbers using strategies based
on place value and properties of operations.work affords opportunities for students to see that they may have

to compose more than one ten, and as many as three new tens.
It is also an opportunity for students to reinforce what they have
learned by informally using the commutative and associative prop-
erties. They could mentally add all of the ones, then write the new
tens in the tens column, and finish the computation in writing. They
could successively add each addend or add the first two and last
two addends and then add these totals. Carefully chosen problems
could suggest strategies that depend on specific numbers. For ex-
ample, 38`47`93`62 can be easily added by adding the first and
last numbers to make 100, adding the middle two numbers to make
140, and increasing 140 by 100 to make 240. Students also can
develop special strategies for particularly easy computations such
as 398 + 529, where the 529 gives 2 to the 398 to make 400, leaving
400 plus 527 is 927. But the major focus in Grade 2 needs to remain
on the methods that work for all numbers and generalize readily to
numbers beyond 1000.
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Grade 3
At Grade 3, the major focus is multiplication,• so students’ work • See the progression on Operations and Algebraic Thinking.

with addition and subtraction is limited to maintenance of fluency
within 1000 for some students and building fluency to within 1000
for others.

Use place value understanding and properties of operations to
perform multi-digit arithmetic Students fluently add and subtract
within 1000 using methods based on place value, properties of oper-
ations, and/or the relationship between addition and subtraction.3.NBT.2

3.NBT.2Fluently add and subtract within 1000 using strategies and
algorithms based on place value, properties of operations, and/or
the relationship between addition and subtraction.They focus on methods that generalize readily to larger numbers so

that these methods can be extended to 1,000,000 in Grade 4 and
fluency can be reached with such larger numbers. Fluency within
1000 implies that students use written methods without concrete
models or drawings, though concrete models or drawings can be
used with explanations to overcome errors and to continue to build
understanding as needed.

Students use their place value understanding to round numbers
to the nearest 10 or 100.3.NBT.1 They need to understand that when

3.NBT.1Use place value understanding to round whole numbers to
the nearest 10 or 100.moving to the right across the places in a number (e.g., 456), the dig-

its represent smaller units. When rounding to the nearest 10 or 100,
the goal is to approximate the number by the closest number with no
ones or no tens and ones (e.g., so 456 to the nearest ten is 460; and
to the nearest hundred is 500). Rounding to the unit represented
by the leftmost place is typically the sort of estimate that is easiest
for students and often is sufficient for practical purposes. Rounding
to the unit represented by a place in the middle of a number may
be more difficult for students (the surrounding digits are sometimes
distracting). Rounding two numbers before computing can take as
long as just computing their sum or difference.

The special role of 10 in the base-ten system is important in
understanding multiplication of one-digit numbers with multiples of
10.3.NBT.3 For example, the product 3 ˆ 50 can be represented as 3

3.NBT.3Multiply one-digit whole numbers by multiples of 10 in the
range 10–90 (e.g., 9ˆ80, 5ˆ60) using strategies based on place
value and properties of operations.groups of 5 tens, which is 15 tens, which is 150. This reasoning relies

on the associative property of multiplication: 3ˆ50 “ 3ˆp5ˆ10q “
p3ˆ 5q ˆ 10 “ 15ˆ 10 “ 150. It is an example of how to explain an
instance of a calculation pattern for these products: calculate the
product of the non-zero digits, then shift the product one place to
the left to make the result ten times as large.

Draft, 6 March 2015, comment at commoncoretools.wordpress.com.

commoncoretools.wordpress.com


NBT, K–5 13

Grade 4
At Grade 4, students extend their work in the base-ten system.

4.NBT.1Recognize that in a multi-digit whole number, a digit in one
place represents ten times what it represents in the place to its
right.They use standard algorithms to fluently add and subtract. They

use methods based on place value and properties of operations sup-
ported by suitable representations to multiply and divide with multi-
digit numbers.

Generalize place value understanding for multi-digit whole num-
bers In the base-ten system, the value of each place is 10 times the

10ˆ 30 represented as 3 tens each taken 10 times

10 × 30
10 groups of 30

10 10 10

onestenshundreds

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

10 10 10

onestenshundreds

10 × 30 = 300

100 100 100

onestenshundreds

30

10 of each of the 3 tens

3 tens

10 times 3 tens
is 3 hundreds

Each of the 3 tens becomes a hundred and moves to the left. In
the product, the 3 in the tens place of 30 is shifted one place to
the left to represent 3 hundreds. In 300 divided by 10 the 3 is
shifted one place to the right in the quotient to represent 3 tens.

value of the place to the immediate right.4.NBT.1 Because of this, multi-
plying by 10 yields a product in which each digit of the multiplicand
is shifted one place to the left.

To read numerals between 1,000 and 1,000,000, students need
to understand the role of commas. Each sequence of three digits
made by commas is read as hundreds, tens, and ones, followed by
the name of the appropriate base-thousand unit (thousand, million,
billion, trillion, etc.). Thus, 457,000 is read “four hundred fifty seven
thousand.”4.NBT.2 The same methods students used for comparing and

4.NBT.2Read and write multi-digit whole numbers using base-ten
numerals, number names, and expanded form. Compare two
multi-digit numbers based on meanings of the digits in each
place, using ą, =, and ă symbols to record the results of com-
parisons.

rounding numbers in previous grades apply to these numbers, be-
cause of the uniformity of the base-ten system.4.NBT.3

4.NBT.3Use place value understanding to round multi-digit whole
numbers to any place.

Decimal notation and fractions Students in Grade 4 work with
fractions having denominators 10 and 100.4.NF.5

4.NF.5Express a fraction with denominator 10 as an equivalent
fraction with denominator 100, and use this technique to add two
fractions with respective denominators 10 and 100.3

ones
tens

tenths

hundredths

÷ 10

÷ 10

÷ 10 ÷ 10

.1

.1

.1

.1

.1

.1

.1

.1

.1

.1

  1
100

 1
10

each piece is .01 or 

each piece is .1 or 

÷ 10

1

$1
dime pennydollar

Because it involves partitioning into 10 equal
parts and treating the parts as numbers
called one tenth and one hundredth, work
with these fractions can be used as prepa-
ration to extend the base-ten system to non-
whole numbers.

Using the unit fractions 1
10 and 1

100 , non-
whole numbers like 23 7

10 can be written in
an expanded form that extends the form used
with whole numbers: 2ˆ10`3ˆ1`7ˆ 1

10 . As
with whole-number expansions in the base-
ten system, each unit in this decomposition
is ten times the unit to its right, reflect-
ing the uniformity of the base-ten system.
This can be connected with the use of base-
ten notation to represent 2 ˆ 10 ` 3 ˆ 1 `
7 ˆ 1

10 as 23.7. Using decimals allows stu-
dents to apply familiar place value reasoning
to fractional quantities.4.NF.6 The Number and

4.NF.6Use decimal notation for fractions with denominators 10 or
100.Operations—Fractions Progression discusses

decimals to hundredths and comparison of decimals4.NF.7 in more de- 4.NF.7Compare two decimals to hundredths by reasoning about
their size. Recognize that comparisons are valid only when the
two decimals refer to the same whole. Record the results of com-
parisons with the symbolsą, =, oră, and justify the conclusions,
e.g., by using a visual model.

tail.
The decimal point is used to signify the location of the ones place,

but its location may suggest there should be a “oneths" place to its
right in order to create symmetry with respect to the decimal point.
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However, because one is the basic unit from which the other base-
ten units are derived, the symmetry occurs instead with respect to
the ones place, as illustrated in the margin.

Symmetry with respect to the ones place

1hundred hundredthten tenth

4.NBT.4Fluently add and subtract multi-digit whole numbers using
the standard algorithm.

4.NBT.5Multiply a whole number of up to four digits by a one-digit
whole number, and multiply two two-digit numbers, using strate-
gies based on place value and the properties of operations. Illus-
trate and explain the calculation by using equations, rectangular
arrays, and/or area models.

Ways of reading decimals aloud vary. Mathematicians and sci-
entists often read 0.15 aloud as “zero point one five" or “point one
five." (Decimals smaller than one may be written with or without a
zero before the decimal point.) Decimals with many non-zero digits
are more easily read aloud in this manner. (For example, the number
π , which has infinitely many non-zero digits, begins 3.1415 . . .)

Other ways to read 0.15 aloud are “1 tenth and 5 hundredths”
and “15 hundredths,” just as 1,500 is sometimes read “15 hundred”
or “1 thousand, 5 hundred.” Similarly, 150 is read “one hundred and
fifty” or “a hundred fifty” and understood as 15 tens, as 10 tens and
5 tens, and as 100` 50. Multiplication: Illustrating partial products with an area

model

549
×  8

8

549 =       500                                              +           40            +       9  

Simpli"ed array/area drawing for 8 × 549

8 × 500 =

8 × 5 hundreds =

40 hundreds

8 × 40 =

8 × 4 tens =

32 tens

8 × 9 
= 72

Three accessible ways to record the standard algorithm:

Left to right
showing the
partial products

Right to left
showing the
partial products

Right to left
recording the
carries below

4000
  320
    72
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9

549
×  8

549
×  8

     72
   320
4000
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9 4022
4392

3 7

Each part of the region above corresponds to one of the terms in
the computation below.

8ˆ 549 “ 8ˆ p500` 40` 9q
“ 8ˆ 500` 8ˆ 40` 8ˆ 9.

An area model can be used for any multiplication situation after
students have discussed how to show an equal groups or a
compare situation with an area model by making the length of
the rectangle represent the size of the equal groups or the larger
compared quantity imagining things inside the square units to
make an array (but not drawing them), and understanding that
the dimensions of the rectangle are the same as the dimensions
of the imagined array, e.g., an array illustrating 8 x 549 would
have 8 rows and 549 columns. (See the Operations and
Algebraic Thinking Progression for discussion of “equal groups”
and “compare” situations.)

Just as 15 is understood as 15 ones and as 1 ten and 5 ones in
computations with whole numbers, 0.15 is viewed as 15 hundredths
and as 1 tenth and 5 hundredths in computations with decimals.

It takes time to develop understanding and fluency with the dif-
ferent forms. Layered cards for decimals can help students under-
stand how 2 tenths and 7 hundredths make 27 hundredths. Place
value cards can be layered with the places farthest from the deci-
mal point on the bottom (see illustration of the whole number cards
on p. 5). These places are then covered by each place toward the
decimal point: Tenths go on top of hundredth, and tens go on top
of hundreds (for example, .2 goes on top of .07 to make .27, and 20
goes on top of 700 to make 720).

Use place value understanding and properties of operations to
perform multi-digit arithmetic Students fluently add and subtract
multi-digit numbers through 1,000,000 using the standard algorithm.4.NBT.4

Because students in Grade 2 and Grade 3 have been using at least
one method that readily generalizes to 1,000,000, this extension does
not have to take a long time. Thus, students will have time for the
major NBT focus for this grade: multiplication and division.

Multiplication: Recording methods

549
×  8

8

549 =       500                                              +           40            +       9  

Simpli"ed array/area drawing for 8 × 549

8 × 500 =

8 × 5 hundreds =

40 hundreds

8 × 40 =

8 × 4 tens =

32 tens

8 × 9 
= 72

Three accessible ways to record the standard algorithm:

Left to right
showing the
partial products

Right to left
showing the
partial products

Right to left
recording the
carries below

4000
  320
    72
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9

549
×  8

549
×  8

     72
   320
4000
4392

thinking:

8 × 5 hundreds

8 × 4 tens

8 × 9 4022
4392

3 7

The first method proceeds from left to right, and the others from
right to left. In the third method, the digits representing new units
are written below the line rather than above 549, thus keeping
the digits of the products close to each other, e.g., the 7 from
8ˆ 9 “ 72 is written diagonally to the left of the 2 rather than
above the 4 in 549. The colors indicate correspondences with
the area model above.

In fourth grade, students compute products of one-digit num-
bers and multi-digit numbers (up to four digits) and products of two
two-digit numbers.4.NBT.5 They divide multi-digit numbers (up to four
digits) by one-digit numbers. As with addition and subtraction, stu-
dents should use methods they understand and can explain. Visual
representations such as area and array diagrams that students draw
and connect to equations and other written numerical work are use-
ful for this purpose, which is why 4.NBT.5 explicitly states that they
are to be used to illustrate and explain the calculation. By reason-
ing repeatedly (MP.8) about the connection between math drawings
and written numerical work, students can come to see multiplica-
tion and division algorithms as abbreviations or summaries of their
reasoning about quantities.
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One component of understanding general methods for multiplica-
tion is understanding how to compute products of one-digit numbers
and multiples of 10, 100, and 1000. This extends work in Grade 3 on

Illustrating partial products with an area modelSimpli!ed array/area drawing for 36 × 94

 30

  

  +

  6

              90                                 +    4

30 × 90 =
3 tens × 9 tens =
27 hundreds =
2700

6 × 90 =
6 × 9 tens
54 tens =
540

30 × 4 =
3 tens × 4 =
12 tens =
120

6 × 4 = 24

Two accessible, right to left ways to record 
the standard algorithm:

Showing the
partial products

Recording the carries below
for correct place value placement

    94
× 36

    94
× 36

     24
   540
   120
2700

thinking:

3 tens × 4

3 tens × 9 tens

6 × 9 tens

6 × 4

3384

5 2

2 1

1

1

3384

44

720

0   because we
are multiplying
by 3 tens in this row

The products of base-ten units are shown as parts of a
rectangular region. Such area models can support
understanding and explaining of different ways to record
multiplication. For students who struggle with the spatial
demands of other methods, a useful helping step method is to
make a quick sketch like this with the lengths labeled and just
the partial products, then to add the partial products outside the
rectangle.

Methods that compute partial products first

Simpli!ed array/area drawing for 36 × 94

 30

  

  +

  6

              90                                 +    4

30 × 90 =
3 tens × 9 tens =
27 hundreds =
2700

6 × 90 =
6 × 9 tens
54 tens =
540

30 × 4 =
3 tens × 4 =
12 tens =
120

6 × 4 = 24

Two accessible, right to left ways to record 
the standard algorithm:

Showing the
partial products

Recording the carries below
for correct place value placement

    94
× 36

    94
× 36

     24
   540
   120
2700

thinking:

3 tens × 4

3 tens × 9 tens

6 × 9 tens

6 × 4

3384

5 2

2 1

1

1

3384

44

720

0   because we
are multiplying
by 3 tens in this row

These proceed from right to left, but could go left to right. On the
right, digits that represent newly composed tens and hundreds
are written below the line instead of above 94. The digits 2 and 1
are surrounded by a blue box. The 1 from 30ˆ 4 “ 120 is
placed correctly in the hundreds place and the digit 2 from
30ˆ 90 “ 2700 is placed correctly in the thousands place. If
these digits had been placed above 94, they would be in
incorrect places. Note that the 0 (surrounded by a yellow box) in
the ones place of the second row of the method on the right is
there because the whole row of digits is produced by multiplying
by 30 (not 3). Colors on the left correspond with the area model
above.

Methods that alternate multiplying and adding

These methods put the newly composed units from a partial
product in the correct column, then they are added to the next
partial product. These alternating methods are more difficult
than the methods above that show the four partial products. The
first method can be used in Grade 5 division when multiplying a
partial quotient times a two-digit divisor.

Not shown is the recording method in which the newly composed
units are written above the top factor (e.g., 94). This puts the
hundreds digit of the tens times ones product in the tens column
(e.g., the 1 hundred in 120 from 30ˆ 4 above the 9 tens in 94).
This placement violates the convention that students have
learned: a digit in the tens place represents tens, not hundreds.

products of one-digit numbers and multiples of 10. We can calculate
6ˆ 700 by calculating 6ˆ 7 and then shifting the result to the left
two places (by placing two zeros at the end to show that these are
hundreds) because 6 groups of 7 hundred is 6ˆ7 hundreds, which is
42 hundreds, or 4,200. Students can use this place value reasoning,
which can also be supported with diagrams of arrays or areas, as
they develop and practice using the patterns in relationships among
products such as 6ˆ 7, 6ˆ 70, 6ˆ 700, and 6ˆ 7000. Products of 5
and even numbers, such as 5ˆ4, 5ˆ40, 5ˆ400, 5ˆ4000 and 4ˆ5,
4ˆ50, 4ˆ500, 4ˆ5000 might be discussed and practiced separately
afterwards because they may seem at first to violate the patterns
by having an “extra” 0 that comes from the one-digit product.

Another part of understanding general base-ten methods for multi-
digit multiplication is understanding the role played by the distribu-
tive property. This allows numbers to be decomposed into base-ten
units, products of the units to be computed, then combined. By de-
composing the factors into base-ten units and applying the distribu-
tive property, multiplication computations are reduced to single-digit
multiplications and products of numbers with multiples of 10, of 100,
and of 1000. Students can connect diagrams of areas or arrays to
numerical work to develop understanding of general base-ten mul-
tiplication methods.

Computing products of two two-digit numbers requires using the
distributive property several times when the factors are decomposed
into base-ten units. For example,

36ˆ 94 “ p30` 6q ˆ p94q
“ 30ˆ 94` 6ˆ 94
“ 30ˆ p90` 4q ` 6ˆ p90` 4q
“ 30ˆ 90` 30ˆ 4` 6ˆ 90` 6ˆ 4.

The four products in the last line correspond to the four rectan-
gles in the area model in the margin. Their factors correspond to the
factors in written methods. When written methods are abbreviated,
some students have trouble seeing how the single-digit factors are
related to the two-digit numbers whose product is being computed
(MP.2). They may find it helpful initially to write each two-digit
number as the sum of its base-ten units (e.g., writing next to the
calculation 94 “ 90 ` 4 and 36 “ 30 ` 6) so that they see what
the single digits are. Some students also initially find it helpful
to write what they are multiplying in front of the partial products
(e.g., 6 ˆ 4 “ 24). These helping steps can be dropped when they
are no longer needed. At any point before or after their acquisi-
tion of fluency, some students may prefer to multiply from the left
because they find it easier to align the subsequent products under
this biggest product.
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General methods for computing quotients of multi-digit numbers
and one-digit numbers rely on the same understandings as for mul-
tiplication, but cast in terms of division.4.NBT.6 One component is quo-

4.NBT.6Find whole-number quotients and remainders with up to
four-digit dividends and one-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

tients of multiples of 10, 100, or 1000 and one-digit numbers. For
example, 42 ˜ 6 is related to 420 ˜ 6 and 4200 ˜ 6. Students can

Division as finding group size

745 ÷ 3 = ? 

3 groups
3 groups

Thinking: 

Divide 
7 hundreds, 4 tens,  5 ones 
equally among 3 groups,
starting with hundreds.

7 hundreds ÷ 3
each group gets
2 hundreds;
1 hundred is left.

Unbundle 1 hundred.
Now I have
10 tens + 4 tens = 14 tens.

14 tens ÷ 3
each group gets
4 tens;
2 tens are left.

Unbundle 2 tens.
Now I have
20 + 5 = 25 left.

25 ÷ 3
each group gets 8;
1 is left.

3 )745

3 )745
   - 6
     1

2 hundr.

2 hundr.

2 hundr.

3 groups

2 hundr. + 4 tens

2 hundr. + 4 tens

2 hundr. + 4 tens

3 groups

2 hundr. + 4 tens + 8

2 hundr. + 4 tens + 8

2 hundr. + 4 tens + 8

2

3 )745
   - 6
     14

2

3 )745
   - 6
     14
   - 12
        2

24

3 )745
   - 6
     14
   - 12
        25

24

3 )745
   - 6
     14
   - 12
        25
     -  24
           1

248

Each group got 248 
and 1 is left.

1 2 3

745˜ 3 can be viewed as allocating 745 objects bundled in 7
hundreds, 4 tens, and 3 ones equally among 3 groups. In Step
1, the 2 indicates that each group got 2 hundreds, the 6 is the
number of hundreds allocated, and the 1 is the number of
hundreds not allocated. After Step 1, the remaining hundred is
decomposed as 10 tens and combined with the 4 tens (in 745) to
make 14 tens.

draw on their work with multiplication and they can also reason
that 4200 ˜ 6 means partitioning 42 hundreds into 6 equal groups,
so there are 7 hundreds in each group.

Another component of understanding general methods for multi-
digit division computation is the idea of decomposing the dividend
into like base-ten units and finding the quotient unit by unit, start-
ing with the largest unit and continuing on to smaller units. See
the figure in the margin. As with multiplication, this relies on the
distributive property. This can be viewed as finding the side length
of a rectangle (the divisor is the length of the other side) or as al-
locating objects (the divisor is the number of groups or the number
of objects in each group). See the figure on the next page for an
example.

Multi-digit division requires working with remainders. In prepa-
ration for working with remainders, students can compute sums of
a product and a number, such as 4 ˆ 8 ` 3.• In multi-digit division,

• A note on notation

The result of division within the system of whole numbers is
frequently written as:

84˜ 10 “ 8 R 4 and 44˜ 5 “ 8 R 4.

Because the two expressions on the right are the same, students
should conclude that 84˜ 10 is equal to 44˜ 5, but this is not
the case. (Because the equal sign is not used appropriately, this
usage is a non-example of Standard for Mathematical Practice
6.) Moreover, the notation 8 R 4 does not indicate a number.

Rather than writing the result of division in terms of a
whole-number quotient and remainder, the relationship of
whole-number quotient and remainder can be written as:

84 “ 8ˆ 10` 4 and 44 “ 8ˆ 5` 4.

students will need to find the greatest multiple less than a given
number. For example, when dividing by 6, the greatest multiple of
6 less than 50 is 6 ˆ 8 “ 48. Students can think of these “greatest
multiples” in terms of putting objects into groups. For example, when
50 objects are shared among 6 groups, the largest whole number of
objects that can be put in each group is 8, and 2 objects are left
over. (Or when 50 objects are allocated into groups of 6, the largest
whole number of groups that can be made is 8, and 2 objects are left
over.) The equation 6ˆ 8` 2 “ 50 (or 8ˆ 6` 2 “ 50) corresponds
with this situation.

Cases involving 0 in division may require special attention. See
the figure below.

Cases involving 0 in division

2 ) 836 ) 901
   - 6
     3

41

- 8
0

12 ) 3714
       -36
           11

    3

 

Stop now because
of the 0?

No, there are 
still 3 ones left.

Stop now because
11 is less than 12?

No, it is 11 tens, so
there are still 
110 + 4 = 114 left.

Case 1
a 0 in the
dividend:

Case 2
a 0 in a
remainder
part way
through:

Case 3
a 0 in the
quotient:

What to do
about the 0?

3 hundreds 
= 30 tens
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Division as finding side length
 
   ? hundreds + ? tens + ? ones 

 
Find the unknown length of the 
rectangle; first find the hundreds, 
then the tens, then the ones.  
 

 
 
 

Method A 

 

 
 
 

Method B 
 

 
             100 + ?? 

 
The length has 1 hundred, making a 
rectangle with area 700. 
 

 
 
 
 
 
Method A records the 
difference of the areas as  
966 – 700 = 266, showing the 
remaining area (266). Only 
hundreds are subtracted; the 
tens and ones digits do not 
change. 

 
 
 
 
 
Method B records only the hundreds 
digit (2) of the difference and “brings 
down” the unchanged tens digit (6). 
These digits represent:  
2 hundreds + 6 tens = 26 tens. 
 

                 100  +  30 + ? 

 
The length has 3 tens, making a 
rectangle with area 210. 
 

 
 
 
 
Method A records the 
difference of the areas as  
266 – 210 = 56. Only hundreds 
and tens are subtracted; the 
ones digit does not change. 

 
 
 
 
Method B records only the tens digit 
(5) of the difference and “brings down” 
the ones digit (6). These digits 
represent: 5 tens + 6 ones = 56 ones.  
 

                  100  +  30 + 8 

 
The length has 8 ones, making an 
area of 56. The original rectangle 
can now be seen as composed of 
three smaller rectangles with areas 
of the amounts that were subtracted 
from 966. 
 
966 ÷ 7 can be viewed as finding the 
unknown side length of a rectangular 
region with area 966 square units 
and a side of length 7 units. The 
divisor, partial quotients (100, 30, 8), 
and final quotient (138) represent 
quantities in length units and the 
dividend represents a quantity in 
area units. 
 

 
 
 
 
 
Method A shows each partial 
quotient and has the final step 
adding them (going from  
100 + 30 + 8 to 138).  
 

 
 
 
 
 
Method B abbreviates these partial 
quotients. These can be said explicitly 
when explaining the method (e.g., 7 
hundreds subtracted from the 9 
hundreds is 2 hundreds). 
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Grade 5
In Grade 5, students extend their understanding of the base-ten sys-
tem to decimals to the thousandths place, building on their Grade 4
work with tenths and hundredths. They become fluent with the stan-
dard multiplication algorithm with multi-digit whole numbers. They
reason about dividing whole numbers with two-digit divisors, and
reason about adding, subtracting, multiplying, and dividing decimals
to hundredths.

Understand the place value system Students extend their under-
standing of the base-ten system to the relationship between adjacent
places, how numbers compare, and how numbers round for decimals
to thousandths.

New at Grade 5 is the use of whole number exponents to denote
powers of 10.5.NBT.2 Students understand why multiplying by a power

5.NBT.2Explain patterns in the number of zeros of the product
when multiplying a number by powers of 10, and explain patterns
in the placement of the decimal point when a decimal is multi-
plied or divided by a power of 10. Use whole-number exponents
to denote powers of 10.

of 10 shifts the digits of a whole number or decimal that many places
to the left. For example, multiplying by 104 is multiplying by 10 four
times. Multiplying by 10 once shifts every digit of the multiplicand
one place to the left in the product (the product is ten times as large)
because in the base-ten system the value of each place is 10 times
the value of the place to its right. So multiplying by 10 four times
shifts every digit 4 places to the left. Patterns in the number of 0s in
products of a whole number and a power of 10 and the location of
the decimal point in products of decimals with powers of 10 can be
explained in terms of place value. Because students have developed
their understandings of and computations with decimals in terms
of multiples (consistent with 4.OA.4) rather than powers, connecting
the terminology of multiples with that of powers affords connections
between understanding of multiplication and exponentiation.

Perform operations with multi-digit whole numbers and with dec-
imals to hundredths At Grade 5, students fluently compute prod-
ucts of whole numbers using the standard algorithm.5.NBT.5 Underly-

5.NBT.5Fluently multiply multi-digit whole numbers using the stan-
dard algorithm.ing this algorithm are the properties of operations and the base-ten

system (see the Grade 4 section).
Division in Grade 5 extends Grade 4 methods to two-digit divisors.5.NBT.6

5.NBT.6Find whole-number quotients of whole numbers with up to
four-digit dividends and two-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

Students continue to decompose the dividend into base-ten units
and find the quotient place by place, starting from the highest place.
They illustrate and explain their calculations using equations, rect-
angular arrays, and/or area models. Estimating the quotients is a
new aspect of dividing by a two-digit number. Even if students round
the dividend appropriately, the resulting estimate may need to be
adjusted up or down. Sometimes multiplying the ones of a two-digit
divisor composes a new thousand, hundred, or ten. These newly
composed units can be written as part of the division computation,
added mentally, or as part of a separate multiplication computation.
Students who need to write decomposed units when subtracting
need to remember to leave space to do so.

Recording division after an underestimate

27 ) 1655
       -1350
          305
        -270
            35
          -27
              8

  1
10
50

61
1655 ÷ 27

Rounding 27
to 30 produces
the underestimate
50 at the first step
but this method
allows the division
process to be
continued

(30)
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Because of the uniformity of the structure of the base-ten sys-
tem, students use the same place value understanding for adding
and subtracting decimals that they used for adding and subtracting
whole numbers.5.NBT.7 Like base-ten units must be added and sub-

5.NBT.7Add, subtract, multiply, and divide decimals to hundredths,
using concrete models or drawings and strategies based on place
value, properties of operations, and/or the relationship between
addition and subtraction; relate the strategy to a written method
and explain the reasoning used.

tracted, so students need to attend to aligning the corresponding
places correctly (this also aligns the decimal points). It can help
to put 0s in places so that all numbers show the same number of
places to the right of the decimal point. A whole number is not
usually written with a decimal point, but a decimal point followed
by one or more 0s can be inserted on the right (e.g., 16 can also be
written as 16.0 or 16.00). The process of composing and decompos-
ing a base-ten unit is the same for decimals as for whole numbers
and the same methods of recording numerical work can be used with
decimals as with whole numbers. For example, students can write
digits representing newly composed units on the addition line, and
they can decompose units wherever needed before subtracting.

General methods used for computing products of whole numbers
extend to products of decimals. Because the expectations for deci-
mals are limited to thousandths and expectations for factors are lim-
ited to hundredths at this grade level, students will multiply tenths
with tenths and tenths with hundredths, but they need not multiply
hundredths with hundredths. Before students consider decimal mul-
tiplication more generally, they can study the effect of multiplying
by 0.1 and by 0.01 to explain why the product is ten or a hundred
times as small as the multiplicand (moves one or two places to the
right). They can then extend their reasoning to multipliers that are
single-digit multiples of 0.1 and 0.01 (e.g., 0.2 and 0.02, etc.).

There are several lines of reasoning that students can use to
explain the placement of the decimal point in other products of dec-
imals. Students can think about the product of the smallest base-ten
units of each factor. For example, a tenth times a tenth is a hun-
dredth, so 3.2ˆ7.1 will have an entry in the hundredth place. Note,
however, that students might place the decimal point incorrectly for
3.2 ˆ 8.5 unless they take into account the 0 in the ones place of
32ˆ85. (Or they can think of 0.2ˆ0.5 as 10 hundredths.) They can
also think of the decimals as fractions or as whole numbers divided
by 10 or 100.5.NF.3 When they place the decimal point in the product,

5.NF.3Interpret a fraction as division of the numerator by the de-
nominator (a{b “ a˜b). Solve word problems involving division
of whole numbers leading to answers in the form of fractions or
mixed numbers, e.g., by using visual fraction models or equations
to represent the problem.

they have to divide by a 10 from each factor or 100 from one factor.
For example, to see that 0.6 ˆ 0.8 “ 0.48, students can use frac-
tions: 6

10 ˆ
8
10 “

48
100 .5.NF.4 Students can also reason that when they 5.NF.4Apply and extend previous understandings of multiplication

to multiply a fraction or whole number by a fraction.carry out the multiplication without the decimal point, they have
multiplied each decimal factor by 10 or 100, so they will need to
divide by those numbers in the end to get the correct answer. Also,
students can use reasoning about the sizes of numbers to determine
the placement of the decimal point. For example, 3.2 ˆ 8.5 should
be close to 3ˆ 9, so 27.2 is a more reasonable product for 3.2ˆ 8.5
than 2.72 or 272. This estimation-based method is not reliable in
all cases, however, especially in cases students will encounter in
later grades. For example, it is not easy to decide where to place
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the decimal point in 0.023 ˆ 0.0045 based on estimation. Students
can summarize the results of their reasoning such as those above as
specific numerical patterns and then as one general overall pattern
such as “the number of decimal places in the product is the sum of
the number of decimal places in each factor.”

General methods used for computing quotients of whole numbers
extend to decimals with the additional issue of placing the decimal
point in the quotient. As with decimal multiplication, students can
first examine the cases of dividing by 0.1 and 0.01 to see that the
quotient becomes 10 times or 100 times as large as the dividend
(see also the Number and Operations—Fractions Progression). For
example, students can view 7˜ 0.1 “ l as asking how many tenths
are in 7.5.NF.7b Because it takes 10 tenths to make 1, it takes 7 times

5.NF.7bApply and extend previous understandings of division to
divide unit fractions by whole numbers and whole numbers by
unit fractions.

b Interpret division of a whole number by a unit fraction, and
compute such quotients.

as many tenths to make 7, so 7 ˜ 0.1 “ 7 ˆ 10 “ 70. Or students
could note that 7 is 70 tenths, so asking how many tenths are in
7 is the same as asking how many tenths are in 70 tenths, which
is 70. In other words, 7 ˜ 0.1 is the same as 70 ˜ 1. So dividing
by 0.1 moves the number 7 one place to the left, the quotient is
ten times as big as the dividend. As with decimal multiplication,
students can then proceed to more general cases. For example, to
calculate 7˜0.2, students can reason that 0.2 is 2 tenths and 7 is 70
tenths, so asking how many 2 tenths are in 7 is the same as asking
how many 2 tenths are in 70 tenths. In other words, 7 ˜ 0.2 is the
same as 70˜ 2; multiplying both the 7 and the 0.2 by 10 results in
the same quotient. Or students could calculate 7 ˜ 0.2 by viewing
0.2 as 2ˆ 0.1, so they can first divide 7 by 2, which is 3.5, and then
divide that result by 0.1, which makes 3.5 ten times as large, namely
35. Dividing by a decimal less than 1 results in a quotient larger
than the dividend5.NF.5 and moves the digits of the dividend one place 5.NF.5Interpret multiplication as scaling (resizing), by:

a Comparing the size of a product to the size of one factor
on the basis of the size of the other factor, without per-
forming the indicated multiplication.

b Explaining why multiplying a given number by a frac-
tion greater than 1 results in a product greater than the
given number (recognizing multiplication by whole num-
bers greater than 1 as a familiar case); explaining why
multiplying a given number by a fraction less than 1 results
in a product smaller than the given number; and relating
the principle of fraction equivalence a{b “ pnˆaq{pnˆbq
to the effect of multiplying a{b by 1.

to the left. Students can summarize the results of their reasoning
as specific numerical patterns, then as one general overall pattern
such as “when the decimal point in the divisor is moved to make a
whole number, the decimal point in the dividend should be moved
the same number of places.”
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Extending beyond Grade 5
At Grade 6, students extend their fluency with the standard algo-
rithms, using these for all four operations with decimals and to com-
pute quotients of multi-digit numbers. At Grade 6 and beyond, stu-
dents may occasionally compute with numbers larger than those
specified in earlier grades as required for solving problems, but the
Standards do not specify mastery with such numbers.

In Grade 6, students extend the base-ten system to negative
numbers. In Grade 7, they begin to do arithmetic with such numbers.

By reasoning about the standard division algorithm, students
learn in Grade 7 that every fraction can be represented with a dec-
imal that either terminates or repeats. In Grade 8, students learn
informally that every number has a decimal expansion, and that
those with a terminating or repeating decimal representation are
rational numbers (i.e., can be represented as a quotient of integers).
There are numbers that are not rational (irrational numbers), such
as the square root of 2. (It is not obvious that the square root of 2 is
not rational, but this can be proved.) In fact, surprisingly, it turns out
that most numbers are not rational. Irrational numbers can always
be approximated by rational numbers.

In Grade 8, students build on their work with rounding and expo-
nents when they begin working with scientific notation. This allows
them to express approximations of very large and very small numbers
compactly by using exponents and generally only approximately by
showing only the most significant digits. For example, the Earth’s
circumference is approximately 40,000,000 m. In scientific notation,
this is 4ˆ 107 m.

The Common Core Standards are designed so that ideas used
in base-ten computation, as well as in other domains, can support
later learning. For example, use of the distributive property occurs
together with the idea of combining like units in the NBT and NF
standards. Students use these ideas again when they calculate with
polynomials in high school.

The distributive property and like units: Multiplication of whole numbers and polynomials

52 ¨ 73
“ p5 ¨ 10` 2qp7 ¨ 10` 3q
“ 5 ¨ 10p7 ¨ 10` 3q ` 2 ¨ p7 ¨ 10` 3q
“ 35 ¨ 102 ` 15 ¨ 10` 14 ¨ 10` 2 ¨ 3
“ 35 ¨ 102 ` 29 ¨ 10` 6

p5x ` 2qp7x ` 3q
“ p5x ` 2qp7x ` 3q
“ 5xp7x ` 3q ` 2p7x ` 3q
“ 35x2 ` 15x ` 14x ` 2 ¨ 3
“ 35x2 ` 29x ` 6

decomposing as like units (powers of 10 or powers of x)

using the distributive property

using the distributive property again

combining like units (powers of 10 or powers of x)

Draft, 6 March 2015, comment at commoncoretools.wordpress.com.

commoncoretools.wordpress.com


Progressions for the Common Core
State Standards in Mathematics (draft)

c©The Common Core Standards Writing Team

20 June 2011

Draft, 6/20/2011, comment at commoncoretools. wordpress. com .1



K–3, Categorical Data;
Grades 2–5,
Measurement Data*

Overview
As students work with data in Grades K–5, they build foundations
for their study of statistics and probability in Grades 6 and be-
yond, and they strengthen and apply what they are learning in
arithmetic. Kindergarten work with data uses counting and order
relations. First- and second-graders solve addition and subtraction
problems in a data context. In Grades 3–5, work with data is closely
related to the number line, fraction concepts, fraction arithmetic, and
solving problems that involve the four operations. See Table 1 for
these and other notable connections between arithmetic and data
work in Grades K–5.

As shown in Table 1, the K–5 data standards run along two paths.
One path deals with categorical data and focuses on bar graphs as
a way to represent and analyze such data. Categorical data comes
from sorting objects into categories—for example, sorting a jumble
of alphabet blocks to form two stacks, a stack for vowels and a stack
for consonants. In this case there are two categories (Vowels and
Consonants). Students’ work with categorical data in early grades
will support their later work with bivariate categorical data and
two-way tables in eighth grade (this is discussed further at the end
of the Categorical Data Progression).

The other path deals with measurement data. As the name sug-
gests, measurement data comes from taking measurements. For ex-
ample, if every child in a class measures the length of his or her
hand to the nearest centimeter, then a set of measurement data is
obtained. Other ways to generate measurement data might include
measuring liquid volumes with graduated cylinders or measuring
room temperatures with a thermometer. In each case, the Standards
call for students to represent measurement data with a line plot.

*These progressions concern Measurement and Data standards related to data.
Other MD standards are discussed in the Geometric Measurement Progression.
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This is a type of display that positions the data along the appro-
priate scale, drawn as a number line diagram. These plots have
two names in common use, “dot plot” (because each observation is
represented as a dot) and “line plot” (because each observation is
represented above a number line diagram).

Example of a line plot

Note that the break in the scale between 0 and 25 indicates
that marks between 0 and 25 are not shown.

The number line diagram in a line plot corresponds to the scale
on the measurement tool used to generate the data. In a context
involving measurement of liquid volumes, the scale on a line plot
could correspond to the scale etched on a graduated cylinder. In a
context involving measurement of temperature, one might imagine a
picture in which the scale on the line plot corresponds to the scale
printed on a thermometer. In the last two cases, the correspondence
may be more obvious when the scale on the line plot is drawn
vertically. Example of a scale on a measurement tool

Students should understand that the numbers on the scale of a
line plot indicate the total number of measurement units from the
zero of the scale.

Students need to choose appropriate representations (MP5), la-
beling axes to clarify the correspondence with the quantities in the
situation and specifying units of measure (MP6). Measuring and
recording data require attention to precision (MP6). Students should
be supported as they learn to construct picture graphs, bar graphs,
and line plots. Grid paper should be used for assignments as well
as assessments. This may help to minimize errors arising from the
need to track across a graph visually to identify values. Also, a tem-
plate can be superimposed on the grid paper, with blanks provided
for the student to write in the graph title, scale labels, category la-
bels, legend, and so on. It might also help if students write relevant
numbers on graphs during problem solving.

In students’ work with data, context is important. As the Guide-
lines for Assessment and Instruction in Statistics Education Report
notes, “data are not just numbers, they are numbers with a context.
In mathematics, context obscures structure. In data analysis, context
provides meaning.”• In keeping with this perspective, students should

• The Guidelines for Assessment and Instruction in Statistics
Education Report was published in 2007 by the American Sta-
tistical Association, http://www.amstat.org/education/gaise.work with data in the context of science, social science, health, and

other subjects, always interpreting data plots in terms of the data
they represent (MP2).
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Table 1: Some notable connections to K–5 data work

Grade Standard Notable Connections

Categorical data

K

K.MD.3. Classify objects into given categories, count the
number of objects in each category and sort1 the categories
by count. Limit category counts to be less than or equal to
10.


 K.CC. Counting to tell the number of
objects


 K.CC. Comparing numbers

1

1.MD.4. Organize, represent, and interpret data with up to
three categories; ask and answer questions about the total
number of data points, how many in each category, and how
many more or less are in one category than in another.


 1.OA. Problems involving addition and
subtraction
� put-together, take-apart, compare

� problems that call for addition of
three whole numbers

2

2.MD.10. Draw a picture graph and a bar graph (with single-
unit scale) to represent a data set with up to four categories.
Solve simple put-together, take-apart, and compare problems
using information presented in a bar graph.


 2.OA. Problems involving addition and
subtraction
� put-together, take-apart, compare

3

3.MD.3. Draw a scaled picture graph and a scaled bar graph
to represent a data set with several categories. Solve one- and
two-step "how many more" and "how many less" problems
using information presented in scaled bar graphs. For example,
draw a bar graph in which each square in the bar graph might
represent 5 pets.


 3.OA.3. Problems involving multipli-
cation


 3.OA.8 Two-step problems using the
four operations


 3.G.1 Categories of shapes

Measurement data

2

2.MD.9. Generate measurement data by measuring lengths
of several objects to the nearest whole unit, or by making
repeated measurements of the same object. Show the mea-
surements by making a line plot, where the horizontal scale is
marked off in whole-number units.


 1.MD.2. Length measurement


 2.MD.6. Number line

3

3.MD.4. Generate measurement data by measuring lengths
using rulers marked with halves and fourths of an inch. Show
the data by making a line plot, where the horizontal scale
is marked off in appropriate units–whole numbers, halves, or
quarters.


 3.NF.2. Fractions on a number line

4

4.MD.4. Make a line plot to display a data set of measure-
ments in fractions of a unit

�
1
2 , 1

4 , 1
8

�
. Solve problems involv-

ing addition and subtraction of fractions by using information
presented in line plots. For example, from a line plot find
and interpret the difference in length between the longest and
shortest specimens in an insect collection.


 4.NF.3,4. Problems involving fraction
arithmetic

5

5.MD.2. Make a line plot to display a data set of measure-
ments in fractions of a unit

�
1
2 , 1

4 , 1
8

�
. Use operations on

fractions for this grade to solve problems involving informa-
tion presented in line plots. For example, given different mea-
surements of liquid in identical beakers, find the amount of
liquid each beaker would contain if the total amount in all the
beakers were redistributed equally.


 5.NF.1,2,4,6,7. Problems involving
fraction arithmetic

1 Here, “sort the categories” means “order the categories,” i.e., show the categories in order according to their respective
counts.
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Categorical Data
Kindergarten
Students in Kindergarten classify objects into categories, initially
specified by the teacher and perhaps eventually elicited from stu-
dents. For example, in a science context, the teacher might ask
students in the class to sort pictures of various organisms into two
piles: organisms with wings and those without wings. Students can
then count the number of specimens in each pile.K.CC.5 Students can

K.CC.5Count to answer “how many?” questions about as
many as 20 things arranged in a line, a rectangular array, or
a circle, or as many as 10 things in a scattered configuration;
given a number from 1–20, count out that many objects.use these category counts and their understanding of cardinality

to say whether there are more specimens with wings or without
wings.K.CC.6,K.CC.7 K.CC.6Identify whether the number of objects in one group is

greater than, less than, or equal to the number of objects in
another group, e.g., by using matching and counting strate-
gies.

K.CC.7Compare two numbers between 1 and 10 presented as
written numerals.

A single group of specimens might be classified in different ways,
depending on which attribute has been identified as the attribute
of interest. For example, some specimens might be insects, while
others are not insects. Some specimens might live on land, while
others live in water.

Grade 1
Students in Grade 1 begin to organize and represent categorical
data. For example, if a collection of specimens is sorted into two piles
based on which specimens have wings and which do not, students
might represent the two piles of specimens on a piece of paper, by
making a group of marks for each pile, as shown below (the marks
could also be circles, for example). The groups of marks should be
clearly labeled to reflect the attribute in question.

Sorting categorical data

The marks represent individual data points. The two
category counts, 7 and 8, are a numerical summary of the
data.

The work shown in the figure is the result of an intricate pro-
cess. At first, we have before us a jumble of specimens with many
attributes. Then there is a narrowing of attention to a single at-
tribute (wings or not). Then the objects might be arranged into
piles. The arranging of objects into piles is then mirrored in the
arranging of marks into groups. In the end, each mark represents
an object; its position in one column or the other indicates whether
or not that object has a given attribute.

There is no single correct way to represent categorical data-and
the Standards do not require Grade 1 students to use any specific
format. However, students should be familiar with mark schemes
like the one shown in the figure. Another format that might be
useful in Grade 1 is a picture graph in which one picture represents
one object. (Note that picture graphs are not an expectation in the
Standards until Grade 2.) If different students devise different ways
to represent the same data set, then the class might discuss relative
strengths and weaknesses of each scheme (MP5).

Students’ data work in Grade 1 has important connections to
addition and subtraction, as noted in Table 1. Students in Grade
1 can ask and answer questions about categorical data based on
a representation of the data. For example, with reference to the

Draft, 6/20/2011, comment at commoncoretools. wordpress. com .



6

figure above, a student might ask how many specimens there were
altogether, representing this problem by writing an equation such
as 7� 8 � l., Students can also ask and answer questions leading

2.MD.10Draw a picture graph and a bar graph (with single-
unit scale) to represent a data set with up to four categories.
Solve simple put-together, take-apart, and compare problems
using information presented in a bar graph.

2.OA.1Use addition and subtraction within 100 to solve one-
and two-step word problems involving situations of adding to,
taking from, putting together, taking apart, and comparing,
with unknowns in all positions, e.g., by using drawings and
equations with a symbol for the unknown number to represent
the problem.

to other kinds of addition and subtraction problems (1.OA), such
as compare problems or problems involving the addition of three
numbers (for situations with three categories).

Grade 2
Students in Grade 2 draw a picture graph and a bar graph (with
single-unit scale) to represent a data set with up to four categories.
They solve simple put-together, take-apart, and compare problems
using information presented in a bar graph.2.MD.10, 2.OA.1

The illustration shows an activity in which students make a bar
graph to represent categorical data, then solve addition and subtrac-
tion problems based on the data. Students might use scissors to cut
out the pictures of each organism and then sort the organisms into
piles by category. Category counts might be recorded efficiently in
the form of a table.

Activity for representing categorical data

Students might reflect on the way in which the category
counts in part 1 of the activity enable them to efficiently
solve the word problem in part 4. (The word problem in part
4 would be difficult to solve directly using just the array of
images.)

A bar graph representing categorical data displays no additional
information beyond the category counts. In such a graph, the bars
are a way to make the category counts easy to interpret visually.
Thus, the word problem in part 4 could be solved without drawing a
bar graph, just by using the category counts. The problem could even
be cast entirely in words, without the accompanying picture: “There
are 9 insects, 4 spiders, 13 vertebrates, and 2 organisms of other
kinds. How many more spiders would there have to be in order for
the number of spiders to equal the number of vertebrates?” Of course,
in solving this problem, students would not need to participate in
categorizing data or representing it.

Scales in bar graphs Consider the two bar graphs shown to the
right, in which the bars are oriented vertically. (Bars in a bar graph
can also be oriented horizontally, in which case the following dis-
cussion would be modified in the obvious way.) Both of these bar
graphs represent the same data set.

Different bar graphs representing the same data set

These examples illustrate that the horizontal axis in a bar graph
of categorical data is not a scale of any kind; position along the hor-
izontal axis has no numerical meaning. Thus, the horizontal position
and ordering of the bars are not determined by the data.•

• To minimize potential confusion, it might help to avoid pre-
senting students with examples of categorical data in which
the categories are named using numerals, e.g., “Candidate 1,”
“Candidate 2,” “Candidate 3.” This will ensure that the only
numbers present in the display are found along the count scale.

However, the vertical axes in these graphs do have numerical
meaning. In fact, the vertical axes in these graphs are segments of
number line diagrams. We might think of the vertical axis as a “count
scale” (a scale showing counts in whole numbers)—as opposed to
a measurement scale, which can be subdivided into fractions of a
measurement unit.

Because the count scale in a bar graph is a segment of a num-
ber line diagram, when we answer a question such as “How many
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more birds are there than spiders?” we are finding differences on a
number line diagram.2.MD.6

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to
the numbers 0, 1, 2, . . . , and represent whole-number sums
and differences within 100 on a number line diagram.When drawing bar graphs on grid paper, the tick marks on the

count scale should be drawn at intersections of the gridlines. The
tops of the bars should reach the respective gridlines of the appro-
priate tick marks. When drawing picture graphs on grid paper, the
pictures representing the objects should be drawn in the squares of
the grid paper.

A problem about interpreting a scaled picture graph

Problems involving categorical data

Students could discuss ways in which bar orientation (horizon-
tal or vertical), order, thickness, spacing, shading, colors, and so
forth make the bar graphs easier or more difficult to interpret. By
middle school, students could make thoughtful design choices about
data displays, rather than just accepting the defaults in a software
program (MP5).

Grade 3
In Grade 3, the most important development in data representation
for categorical data is that students now draw picture graphs in
which each picture represents more than one object, and they draw
bar graphs in which the height of a given bar in tick marks must
be multiplied by the scale factor in order to yield the number of
objects in the given category. These developments connect with the
emphasis on multiplication in this grade.

At the end of Grade 3, students can draw a scaled picture graph
or a scaled bar graph to represent a data set with several categories
(six or fewer categories).3.MD.3 They can solve one- and two-step

3.MD.3Draw a scaled picture graph and a scaled bar graph to
represent a data set with several categories. Solve one- and
two-step “how many more” and “how many less” problems
using information presented in scaled bar graphs.

“how many more” and “how many less” problems using information
presented in scaled bar graphs.3.OA.3,3.OA.8 See the examples in the

3.OA.3Use multiplication and division within 100 to solve word
problems in situations involving equal groups, arrays, and mea-
surement quantities,. . .

3.OA.8Solve two-step word problems using the four opera-
tions. Represent these problems using equations with a letter
standing for the unknown quantity . . .

margin, one of which involves categories of shapes.3.G.1 As in Grade

3.G.1Understand that shapes in different categories (e.g.,
rhombuses, rectangles, and others) may share attributes (e.g.,
having four sides), and that the shared attributes can define
a larger category (e.g., quadrilaterals). Recognize rhombuses,
rectangles, and squares as examples of quadrilaterals . . .

2, category counts might be recorded efficiently in the form of a
table.

Students can gather categorical data in authentic contexts, in-
cluding contexts arising in their study of science, history, health,
and so on. Of course, students do not have to generate the data ev-
ery time they work on making bar graphs and picture graphs. That
would be too time-consuming. After some experiences in generating
the data, most work in producing bar graphs and picture graphs can
be done by providing students with data sets. The Standards in
Grades 1–3 do not require students to gather categorical data.

Where the Categorical Data Progression is heading
Students’ work with categorical data in early grades will develop
into later work with bivariate categorical data and two-way tables
in eighth grade. “Bivariate categorical data” are data that are cat-
egorized according to two attributes. For example, if there is an
outbreak of stomach illness on a cruise ship, then passengers might
be sorted in two different ways: by determining who got sick and
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who didn’t, and by determining who ate the shellfish and who didn’t.
This double categorization—normally shown in the form of a two-
way table—might show a strong positive or negative association,
in which case it might used to support or contest (but not prove or
disprove) a claim about whether the shellfish was the cause of the
illness.8.SP.4

8.SP.4Understand that patterns of association can also be
seen in bivariate categorical data by displaying frequencies
and relative frequencies in a two-way table. Construct and
interpret a two-way table summarizing data on two categor-
ical variables collected from the same subjects. Use relative
frequencies calculated for rows or columns to describe possible
association between the two variables.
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Measurement Data
Grade 2
Students in Grade 2 measure lengths to generate a set of mea-
surement data. 2.MD.1 For example, each student might measure the

2.MD.1Measure the length of an object by selecting and using
appropriate tools such as rulers, yardsticks, meter sticks, and
measuring tapes.length of his or her arm in centimeters, or every student might mea-

sure the height of a statue in inches. (Students might also generate
their own ideas about what to measure.) The resulting data set will
be a list of observations, for example as shown in the margin on the
following page for the scenario of 28 students each measuring the
height of a statue. (This is a larger data set than students would
normally be expected to work with in elementary grades.)

How might one summarize this data set or display it visually?
Because students in Grade 2 are already familiar with categorical
data and bar graphs, a student might find it natural to summarize
this data set by viewing it in terms of categories—the categories
in question being the six distinct height values which appear in the
data (63 inches, 64 inches, 65 inches, 66 inches, 67 inches, and 69
inches). For example, the student might want to say that there are
four observations in the “category” of 67 inches. However, it is im-
portant to recognize that 64 inches is not a category like “spiders.”
Unlike “spiders,” 63 inches is a numerical value with a measure-
ment unit. That difference is why the data in this table are called
measurement data.

2.MD.5Use addition and subtraction within 100 to solve word
problems involving lengths that are given in the same units,
e.g., by using drawings (such as drawings of rulers) and equa-
tions with a symbol for the unknown number to represent the
problem.

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to
the numbers 0, 1, 2, . . . , and represent whole-number sums
and differences within 100 on a number line diagram.

A display of measurement data must present the measured values
with their appropriate magnitudes and spacing on the measurement
scale in question (length, temperature, liquid capacity, etc.). One
method for doing this is to make a line plot. This activity connects
with other work students are doing in measurement in Grade 2: rep-
resenting whole numbers on number line diagrams, and representing
sums and differences on such diagrams.2.MD.5,2.MD.6 A scale for a line plot of the statue data

To make a line plot from the data in the table, the student can
ascertain the greatest and least values in the data: 63 inches and 69
inches. The student can draw a segment of a number line diagram
that includes these extremes, with tick marks indicating specific val-
ues on the measurement scale.

Note that the value 68 inches, which was not present in the
data set, has been written in proper position midway between 67
inches and 69 inches. (This need to fill in gaps does not exist for a
categorical data set; there no “gap” between categories such as fish
and spiders!)

A line plot of the statue data

Having drawn the number line diagram, the student can pro-
ceed through the data set recording each observation by drawing a
symbol, such as a dot, above the proper tick mark. If a particular
data value appears many times in the data set, dots will “pile up”
above that value. There is no need to sort the observations, or to
do any counting of them, before producing the line plot. (In fact, one
could even assemble the line plot as the data are being collected,
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at the expense of having a record of who made what measurement.
Students might discuss whether such a record is valuable and why.)

Students might enjoy discussing and interpreting visual features
of line plots, such as the “outlier” value of 69 inches in this line plot.
(Did student #13 make a serious error in measuring the statue’s
height? Or in fact is student #13 the only person in the class who
measured the height correctly?) However, in Grade 2 the only re-
quirement of the Standards dealing with measurement data is that
students generate measurement data and build line plots to display
the resulting data sets. (Students do not have to generate the data
every time they work on making line plots. That would be too time-
consuming. After some experiences in generating the data, most
work in producing line plots can be done by providing students with
data sets.)

Students’ measurements of a statue and of a bamboo shoot

Statue Bamboo shoot
measurements measurements
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W.B. 64
D.W. 65
H.D. 65
G.W. 65
V.Y. 67
T.T. 66
D.F. 67
B.H. 65
H.H. 63
V.H. 64
I.O. 64
W.N. 65
B.P. 69
V.A. 65
H.L. 66
O.M. 64
L.E. 65
M.J. 66
T.D. 66
K.P. 64
H.N. 65
W.M. 67
C.Z. 64
J.I. 66

M.S. 66
T.C. 65
G.V. 67
O.F. 65
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W.B. 13 3{4

D.W. 14 1{2

H.D. 14 1{4

G.W. 14 3{4

V.Y. 14 1{4

T.T. 14 1{2

D.F. 14

B.H. 13 1{2

H.H. 14 1{4

V.H. 14 1{4

I.O. 14 1{4

W.N. 14

B.P. 14 1{2

V.A. 13 3{4

H.L. 14

O.M. 13 3{4

L.E. 14 1{4

M.J. 13 3{4

T.D. 14 1{4

K.P. 14

H.N. 14

W.M. 14

C.Z. 13 3{4

J.I. 14

M.S. 14 1{4

T.C. 14

G.V. 14

O.F. 14 1{4

Grid paper might not be as useful for drawing line plots as it
is for bar graphs, because the count scale on a line plot is seldom
shown for the small data sets encountered in the elementary grades.
Additionally, grid paper is usually based on a square grid, but the
count scale and the measurement scale of a line plot are conceptu-
ally distinct, and there is no need for the measurement unit on the
measurement scale to be drawn the same size as the counting unit
on the count scale.

Grade 3
In Grade 3, students are beginning to learn fraction concepts (3.NF).
They understand fraction equivalence in simple cases, and they use
visual fraction models to represent and order fractions. Grade 3
students also measure lengths using rulers marked with halves and
fourths of an inch. They use their developing knowledge of fractions
and number lines to extend their work from the previous grade by
working with measurement data involving fractional measurement
values.

A scale for a line plot of the bamboo shoot data

A line plot of the bamboo shoot data

For example, every student in the class might measure the height
of a bamboo shoot growing in the classroom, leading to the data set
shown in the table. (Again, this illustration shows a larger data set
than students would normally work with in elementary grades.)

To make a line plot from the data in the table, the student can
ascertain the greatest and least values in the data: 13 1

2 inches
and 14 3

4 inches. The student can draw a segment of a number line
diagram that includes these extremes, with tick marks indicating
specific values on the measurement scale. This is just like part of
the scale on a ruler.

Having drawn the number line diagram, the student can proceed
through the data set recording each observation by drawing a sym-
bol, such as a dot, above the proper tick mark. As with Grade 2 line
plots, if a particular data value appears many times in the data set,
dots will “pile up” above that value. There is no need to sort the
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observations, or to do any counting of them, before producing the
line plot.

Students can pose questions about data presented in line plots,
such as how many students obtained measurements larger than 14 1

4
inches.

Grades 4 and 5
Grade 4 students learn elements of fraction equivalence4.NF.1 and

4.NF.1Explain why a fraction a{b is equivalent to a fraction
pn�aq{pn�bq by using visual fraction models, with attention
to how the number and size of the parts differ even though the
two fractions themselves are the same size. Use this principle
to recognize and generate equivalent fractions.

arithmetic, including multiplying a fraction by a whole number4.NF.4

4.NF.4Apply and extend previous understandings of multipli-
cation to multiply a fraction by a whole number.

and adding and subtracting fractions with like denominators.4.NF.3

4.NF.3Understand a fraction a{b with a ¡ 1 as a sum of
fractions 1{b.

Students can use these skills to solve problems, including problems
that arise from analyzing line plots. For example, with reference to
the line plot above, students might find the difference between the
greatest and least values in the data. (In solving such problems,
students may need to label the measurement scale in eighths so as
to produce like denominators. Decimal data can also be used in this
grade.)

Grade 5 students grow in their skill and understanding of frac-
tion arithmetic, including multiplying a fraction by a fraction,5.NF.4 5.NF.4Apply and extend previous understandings of multipli-

cation to multiply a fraction or whole number by a fraction.dividing a unit fraction by a whole number or a whole number
by a unit fraction,4.NF.7 and adding and subtracting fractions with 4.NF.7Compare two decimals to hundredths by reasoning

about their size. Recognize that comparisons are valid only
when the two decimals refer to the same whole. Record the re-
sults of comparisons with the symbols ¡, =, or  , and justify
the conclusions, e.g., by using a visual model.

unlike denominators.5.NF.1 Students can use these skills to solve

5.NF.1Add and subtract fractions with unlike denominators
(including mixed numbers) by replacing given fractions with
equivalent fractions in such a way as to produce an equivalent
sum or difference of fractions with like denominators.

problems,5.NF.2,5.NF.6,5.NF.7c including problems that arise from ana-

5.NF.2Solve word problems involving addition and subtraction
of fractions referring to the same whole, including cases of
unlike denominators, e.g., by using visual fraction models or
equations to represent the problem. Use benchmark fractions
and number sense of fractions to estimate mentally and assess
the reasonableness of answers.

5.NF.6Solve real world problems involving multiplication of
fractions and mixed numbers, e.g., by using visual fraction
models or equations to represent the problem.

5.NF.7c Apply and extend previous understandings of division
to divide unit fractions by whole numbers and whole numbers
by unit fractions.

c Solve real world problems involving division of unit frac-
tions by non-zero whole numbers and division of whole
numbers by unit fractions, e.g., by using visual fraction
models and equations to represent the problem.

lyzing line plots. For example, given five graduated cylinders with
different measures of liquid in each, students might find the amount
of liquid each cylinder would contain if the total amount in all the
cylinders were redistributed equally. (Students in Grade 6 will view
the answer to this question as the mean value for the data set in
question.)

As in earlier grades, students should work with data in science
and other subjects. Grade 5 students working in these contexts
should be able to give deeper interpretations of data than in earlier
grades, such as interpretations that involve informal recognition of
pronounced differences in populations. This prefigures the work
they will do in middle school involving distributions, comparisons of
populations, and inference.

Where the Measurement Data Progression is heading
Connection to Statistics and Probability By the end of Grade 5,
students should be comfortable making line plots for measurement
data and analyzing data shown in the form of a line plot. In Grade
6, students will take an important step toward statistical reasoning
per se when they approach line plots as pictures of distributions
with features such as clustering and outliers.

Students’ work with line plots during the elementary grades de-
velops in two distinct ways during middle school. The first devel-
opment comes in sixth grade,6.SP.4 when histograms are used.1 Like 6.SP.4Display numerical data in plots on a number line, in-

cluding dot plots, histograms, and box plots.
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line plots, histograms have a measurement scale and a count scale;
thus, a histogram is a natural evolution of a line plot and is used for
similar kinds of data (univariate measurement data, the kind of data
discussed above).

The other evolution of line plots in middle school is arguably
more important. It involves the graphing of bivariate measurement
data.8.SP.1-3 “Bivariate measurement data” are data that represent

8.SP.1Construct and interpret scatter plots for bivariate mea-
surement data to investigate patterns of association between
two quantities. Describe patterns such as clustering, outliers,
positive or negative association, linear association, and non-
linear association.

8.SP.2Know that straight lines are widely used to model rela-
tionships between two quantitative variables. For scatter plots
that suggest a linear association, informally fit a straight line,
and informally assess the model fit by judging the closeness of
the data points to the line.

8.SP.3Use the equation of a linear model to solve problems in
the context of bivariate measurement data, interpreting the
slope and intercept.

two measurements. For example, if you take a temperature read-
ing every ten minutes, then every data point is a measurement of
temperature as well as a measurement of time. Representing two
measurements requires two measurement scales—or in other words,
a coordinate plane in which the two axes are each marked in the
relevant measurement units. Representations of bivariate measure-
ment data in the coordinate plane are called scatter plots. In the
case where one axis is a time scale, they are called time graphs or
line graphs. Time graphs can be used to visualize trends over time,
and scatter plots can be used to discover associations between mea-
sured variables in general.

Connection to the Number System The Standards do not explic-
itly require students to create time graphs. However, it might be
considered valuable to expose students to time series data and to
time graphs as part of their work in meeting standard 6.NS.8. For

6.NS.8Solve real-world and mathematical problems by graph-
ing points in all four quadrants of the coordinate plane. In-
clude use of coordinates and absolute value to find distances
between points with the same first coordinate or the same
second coordinate.

example, students could create time graphs of temperature mea-
sured each hour over a 24-hour period, where, to ensure a strong
connection to rational numbers, temperature values might cross from
positive to negative during the night and back to positive the next
day. It is traditional to connect ordered pairs with line segments
in such a graph, not in order to make any claims about the actual
temperature value at unmeasured times, but simply to aid the eye
in perceiving trends.

1To display a set of measurement data with a histogram, specify a set of non-
overlapping intervals along the measurement scale. Then, instead of showing each
individual measurement as a dot, use a bar oriented along the count scale to indicate
the number of measurements lying within each interval on the measurement scale. A
histogram is thus a little like a bar graph for categorical data, except that the “cate-
gories” are successive intervals along a measurement scale. (Note that the Standards
follow the GAISE report in reserving the term “categorical data” for non-numerical
categories. In the Standards, as in GAISE (see p. 35), bar graphs are for categori-
cal data with non-numerical categories, while histograms are for measurement data
which has been grouped by intervals along the measurement scale.)
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Appendix: Additional Examples
These examples show some rich possibilities for data work in K–8.
The examples are not shown by grade level because each includes
some aspects that go beyond the expectations stated in the Stan-
dards.

Example 1. Comparing bar graphs
Are younger students lighter sleepers than older students? To study
this question a class first agreed on definitions for light, medium and
heavy sleepers and then collected data from first and fifth grade
students on their sleeping habits. The results are shown in the
margin.

Sleeping habits

First grade sleepers
14
12
10
8
6
4
2
0

light medium heavy other

Fifth grade sleepers
12

10

8

6

4

2

0
light medium heavy other

How do the patterns differ? What is the typical value for first
graders? What is the typical value for fifth graders? Which of these
groups appears to be the heavier sleepers?

Example 2. Comparing line plots
Fourth grade students interested in seeing how heights of students
change for kids around their age measured the heights of a sample
of eight-year-olds and a sample of ten-year-olds. Their data are
plotted in the margin.

Describe the key differences between the heights of these two
age groups. What would you choose as the typical height of an
eight-year-old? A ten-year-old? What would you say is the typical
number of inches of growth from age eight to age ten?

Heights of students

48 50 52 54 56 58 60

te
n

ei
gh

t
In the plot of heights of students (second from the end) the legend on the vertical axis 
(Age) is missing.   
 

 
48 50 52 54 56 58 60

Height

Heigths of students (inches) Dot Plot

 
 

Height

A
geExample 3. Fair share averaging

Ten students decide to have a pizza party and each is asked to bring
his or her favorite pizza. The amount paid (in dollars) for each pizza
is shown in the plot to the right.

Pizza party

Each of the ten is asked to contribute an equal amount (his or
her fair share) to the cost of the pizza. Where does that fair share
amount lie on the plot? Is it closer to the smaller values or the large
one? Now, two more students show up for the party and they have
contributed no pizza. Plot their values on the graph and calculate
a new fair share. Where does it lie on the plot? How many more
students without pizza would have to show up to bring the fair share
cost below $8.00?
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K–5, Geometric Measurement
1

Overview
Geometric measurement connects the two most critical domains of
early mathematics, geometry and number, with each providing con-
ceptual support to the other. Measurement is central to mathematics,
to other areas of mathematics (e.g., laying a sensory and concep-
tual foundation for arithmetic with fractions), to other subject matter
domains, especially science, and to activities in everyday life. For
these reasons, measurement is a core component of the mathematics
curriculum.

Measurement is the process of assigning a number to a mag-
nitude of some attribute shared by some class of objects, such as
length, relative to a unit. Length is a continuous attribute—a length
can always be subdivided in smaller lengths. In contrast, we can
count 4 apples exactly—cardinality is a discrete attribute. We can
add the 4 apples to 5 other apples and know that the result is ex-
actly 9 apples. However, the weight of those apples is a continuous
attribute, and scientific measurement with tools gives only an ap-
proximate measurement—to the nearest pound (or, better, kilogram)
or the nearest 1/100th of a pound, but always with some error.•

• The Standards do not differentiate between weight and mass.
Technically, mass is the amount of matter in an object. Weight is
the force exerted on the body by gravity. On the earth’s surface,
the distinction is not important (on the moon, an object would
have the same mass, would weight less due to the lower gravity).

Before learning to measure attributes, children need to recog-
nize them, distinguishing them from other attributes. That is, the
attribute to be measured has to “stand out” for the student and be
discriminated from the undifferentiated sense of amount that young
children often have, labeling greater lengths, areas, volumes, and so
forth, as “big” or “bigger.”

Students then can become increasingly competent at direct com-
parison—comparing the amount of an attribute in two objects with-
out measurement. For example, two students may stand back to
back to directly compare their heights. In many circumstances, such
direct comparison is impossible or unwieldy. Sometimes, a third ob-
ject can be used as an intermediary, allowing indirect comparison.
For example, if we know that Aleisha is taller than Barbara and that

1This progression concerns Measurement and Data standards related to geomet-
ric measurement. The remaining Measurement and Data standards are discussed in
the K–3 Categorical Data and Grades 2–5 Measurement Data Progressions.
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Barbara is taller than Callie, then we know (due to the transitivity
of “taller than”) that Aleisha is taller than Callie, even if Aleisha and
Callie never stand back to back.•

• “Transitivity” abbreviates the Transitivity Principle for Indirect
Measurement stated in the Standards as:

If the length of object A is greater than the length
of object B, and the length of object B is greater
than the length of object C, then the length of ob-
ject A is greater than the length of object C. This
principle applies to measurement of other quanti-
ties as well.

Students should apply the principle of transitivity of measurement
to make indirect comparisons, but they need not use this techni-
cal term.

The purpose of measurement is to allow indirect comparisons
of objects’ amount of an attribute using numbers. An attribute of
an object is measured (i.e., assigned a number) by comparing it to
an amount of that attribute held by another object. One measures
length with length, mass with mass, torque with torque, and so on. In
geometric measurement, a unit is chosen and the object is subdivided
or partitioned by copies of that unit and, to the necessary degree
of precision, units subordinate to the chosen unit, to determine the
number of units and subordinate units in the partition.

Personal benchmarks, such as “tall as a doorway” build students’
intuitions for amounts of a quantity and help them use measurements
to solve practical problems. A combination of internalized units and
measurement processes allows students to develop increasing ac-
curate estimation competencies.

Both in measurement and in estimation, the concept of unit is
crucial. The concept of basic (as opposed to subordinate) unit just
discussed is one aspect of this concept. The basic unit can be in-
formal (e.g., about a car length) or standard (e.g., a meter). The
distinction and relationship between the notion of discrete “1” (e.g.,
one apple) and the continuous “1” (e.g., one inch) is important math-
ematically and is important in understanding number line diagrams
(e.g., see Grade 2) and fractions (e.g., see Grade 3). However, there
are also superordinate units or “units of units.” A simple example is
a kilometer consisting of 1,000 meters. Of course, this parallels the
number concepts students must learn, as understanding that tens
and hundreds are, respectively, “units of units” and “units of units
of units” (i.e., students should learn that 100 can be simultaneously
considered as 1 hundred, 10 tens, and 100 ones).

Students’ understanding of an attribute that is measured with
derived units is dependent upon their understanding that attribute
as entailing other attributes simultaneously. For example,

• Area as entailing two lengths, simultaneously;

• Volume as entailing area and length (and thereby three lengths),
simultaneously.

Scientists measure many types of attributes, from hardness of
minerals to speed. This progression emphasizes the geometric at-
tributes of length, area, and volume. Nongeometric attributes such
as weight, mass, capacity, time, and color, are often taught effectively
in science and social studies curricula and thus are not extensively
discussed here. Attributes derived from two different attributes, such
as speed (derived from distance and time), are discussed in the high
school Number and Quantity Progression and in the 6-7 Ratio and
Proportion Progression.
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Length is a characteristic of an object found by quantifying how
far it is between the endpoints of the object. “Distance” is often used
similarly to quantify how far it is between any two points in space.
Measuring length or distance consists of two aspects, choosing a unit
of measure and subdividing (mentally and physically) the object by
that unit, placing that unit end to end (iterating) alongside the object.
The length of the object is the number of units required to iterate
from one end of the object to the other, without gaps or overlaps.

Length is a core concept for several reasons. It is the basic
geometric measurement. It is also involved in area and volume mea-
surement, especially once formulas are used. Length and unit it-
eration are critical in understanding and using the number line in
Grade 3 and beyond (see the Number and Operations—Fractions
Progression). Length is also one of the most prevalent metaphors
for quantity and number, e.g., as the master metaphor for magni-
tude (e.g., vectors, see the Number and Quantity Progression). Thus,
length plays a special role in this progression.

Area is an amount of two-dimensional surface that is contained
within a plane figure. Area measurement assumes that congruent
figures enclose equal areas, and that area is additive, i.e., the area
of the union of two regions that overlap only at their boundaries is
the sum of their areas. Area is measured by tiling a region with
a two-dimensional unit (such as a square) and parts of the unit,
without gaps or overlaps. Understanding how to spatially structure
a two-dimensional region is an important aspect of the progression
in learning about area.

Volume is an amount of three-dimensional space that is con-
tained within a three-dimensional shape. Volume measurement as-
sumes that congruent shapes enclose equal volumes, and that vol-
ume is additive, i.e., the volume of the union of two regions that
overlap only at their boundaries is the sum of their volumes. Volume
is measured by packing (or tiling, or tessellating) a region with a
three-dimensional unit (such as a cube) and parts of the unit, with-
out gaps or overlaps. Volume not only introduces a third dimension
and thus an even more challenging spatial structuring, but also com-
plexity in the nature of the materials measured. That is, solid units
might be “packed,” such as cubes in a three-dimensional array or cu-
bic meters of coal, whereas liquids “fill” three-dimensional regions,
taking the shape of a container, and are often measured in units
such as liters or quarts.

A final, distinct, geometric attribute is angle measure. The size
of an angle is the amount of rotation between the two rays that form
the angle, sometimes called the sides of the angles.

Finally, although the attributes that we measure differ as just
described, it is important to note: central characteristics of mea-
surement are the same for all of these attributes. As one more
testament to these similarities, consider the following side-by-side
comparison of the Standards for measurement of area in Grade 3
and the measurement of volume in Grade 5.
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Grade 3 Grade 5

Understand concepts of area and relate area to multiplication and to
addition.

Understand concepts of volume and relate volume to multiplication and
to addition.

3.MD.5. Recognize area as an attribute of plane figures and understand
concepts of area measurement.

5.MD.3 Recognize volume as an attribute of solid figures and understand
concepts of volume measurement.

a. A square with side length 1 unit, called “a unit square,” is said to have
“one square unit” of area, and can be used to measure area.

b. A plane figure which can be covered without gaps or overlaps by �
unit squares is said to have an area of � square units.

a. A cube with side length 1 unit, called a “unit cube,” is said to have
“one cubic unit” of volume, and can be used to measure volume.

b. A solid figure which can be packed without gaps or overlaps using �
unit cubes is said to have a volume of � cubic units.

3.MD.6. Measure areas by counting unit squares (square cm, square m,
square in, square ft, and improvised units).

5.MD.4 Measure volumes by counting unit cubes, using cubic cm, cubic in,
cubic ft, and improvised units.

3.MD.7. Relate area to the operations of multiplication and addition. 5.MD.5 Relate volume to the operations of multiplication and addition and
solve real world and mathematical problems involving volume.

a. Find the area of a rectangle with whole-number side lengths by tiling
it, and show that the area is the same as would be found by multiplying
the side lengths.

b. Multiply side lengths to find areas of rectangles with whole-number
side lengths in the context of solving real world and mathematical
problems, and represent whole-number products as rectangular ar-
eas in mathematical reasoning.

c. Use tiling to show in a concrete case that the area of a rectangle
with whole-number side lengths � and � � is the sum of � �
and � �. Use area models to represent the distributive property in
mathematical reasoning.

d. Recognize area as additive. Find areas of rectilinear figures by de-
composing them into non-overlapping rectangles and adding the ar-
eas of the non-overlapping parts, applying this technique to solve real
world problems.

a. Find the volume of a right rectangular prism with whole-number side
lengths by packing it with unit cubes, and show that the volume is the
same as would be found by multiplying the edge lengths, equivalently
by multiplying the height by the area of the base. Represent threefold
whole-number products as volumes, e.g., to represent the associative
property of multiplication.

b. Apply the formulas V � � � and V � � for rectangular
prisms to find volumes of right rectangular prisms with whole-number
edge lengths in the context of solving real world and mathematical
problems.

c. Recognize volume as additive. Find volumes of solid figures com-
posed of two non-overlapping right rectangular prisms by adding the
volumes of the non-overlapping parts, applying this technique to solve
real world problems.
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Kindergarten
Describe and compare measurable attributes Students often ini-
tially hold undifferentiated views of measurable attributes, saying
that one object is “bigger” than another whether it is longer, or
greater in area, or greater in volume, and so forth. For example,
two students might both claim their block building is “the biggest.”
Conversations about how they are comparing—one building may
be taller (greater in length) and another may have a larger base
(greater in area)—help students learn to discriminate and name
these measureable attributes. As they discuss these situations and
compare objects using different attributes, they learn to distinguish,
label, and describe several measureable attributes of a single object.K.MD.1

K.MD.1Describe measurable attributes of objects, such as length
or weight. Describe several measurable attributes of a single ob-
ject.Thus, teachers listen for and extend conversations about things that

are “big,” or “small,” as well as “long,” “tall,” or “high,” and name, dis-
cuss, and demonstrate with gestures the attribute being discussed
(length as extension in one dimension is most common, but area,
volume, or even weight in others).

Length Of course, such conversations often occur in comparison
situations (“He has more than me!”). Kindergartners easily directly
compare lengths in simple situations, such as comparing people’s
heights, because standing next to each other automatically aligns
one endpoint.K.MD.2 However, in other situations they may initially

K.MD.2Directly compare two objects with a measurable attribute
in common, to see which object has “more of”/“less of” the at-
tribute, and describe the difference.compare only one endpoint of objects to say which is longer. Dis-

Sticks whose endpoints are not aligned

A B C

When shown this figure and asked which is “the longest stick,”
students may point to A because it “sticks out the farthest.”
Similarly, they may recognize a 12-inch vertical line as “tall” and
a 12-inch horizontal line as “long” but not recognize that the two
are the same length.

cussing such situations (e.g., when a child claims that he is “tallest”
because he is standing on a chair) can help students resolve and
coordinate perceptual and conceptual information when it conflicts.
Teachers can reinforce these understandings, for example, by hold-
ing two pencils in their hand showing only one end of each, with
the longer pencil protruding less. After asking if they can tell which
pencil is longer, they reveal the pencils and discuss whether children
were “fooled.” The necessity of aligning endpoints can be explicitly
addressed and then re-introduced in the many situations throughout
the day that call for such comparisons. Students can also make such
comparisons by moving shapes together to see which has a longer
side.

Even when students seem to understand length in such activities,
they may not conserve length. That is, they may believe that if one
of two sticks of equal lengths is vertical, it is then longer than the
other, horizontal, stick. Or, they may believe that a string, when bent
or curved, is now shorter (due to its endpoints being closer to each
other). Both informal and structured experiences, including demon-
strations and discussions, can clarify how length is maintained, or
conserved, in such situations. For example, teachers and students
might rotate shapes to see its sides in different orientations. As with
number, learning and using language such as “It looks longer, but it
really isn’t longer” is helpful.

Students who have these competencies can engage in experi-
ences that lay the groundwork for later learning. Many can begin
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to learn to compare the lengths of two objects using a third object,
order lengths, and connect number to length. For example, informal
experiences such as making a road “10 blocks long” help students
build a foundation for measuring length in the elementary grades.
See the Grade 1 section on length for information about these im-
portant developments.

Area and volume Although area and volume experiences are not
instructional foci for Kindergarten, they are attended to, at least
to distinguish these attributes from length, as previously described.
Further, certain common activities can help build students’ experi-
ential foundations for measurement in later grades. Understanding
area requires understanding this attribute as the amount of two-
dimensional space that is contained within a boundary. Kinder-
gartners might informally notice and compare areas associated with
everyday activities, such as laying two pieces of paper on top of
each other to find out which will allow a “bigger drawing.” Spa-
tial structuring activities described in the Geometry Progression, in
which designs are made with squares covering rectilinear shapes
also help to create a foundation for understanding area.

Similarly, kindergartners might compare the capacities of con-
tainers informally by pouring (water, sand, etc.) from one to the
other. They can try to find out which holds the most, recording that,
for example, the container labeled “J” holds more than the container
labeled “D” because when J was poured into D it overflowed. Fi-
nally, in play, kindergartners might make buildings that have layers
of rectangular arrays. Teachers aware of the connections of such
activities to later mathematics can support students’ growth in mul-
tiple domains (e.g., development of self-regulation, social-emotional,
spatial, and mathematics competencies) simultaneously, with each
domain supporting the other.
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Grade 1
Length comparisons First graders should continue to use direct
comparison—carefully, considering all endpoints—when that is ap-
propriate. In situations where direct comparison is not possible or
convenient, they should be able to use indirect comparison and ex-
planations that draw on transitivity (MP3). Once they can compare
lengths of objects by direct comparison, they could compare sev-
eral items to a single item, such as finding all the objects in the
classroom the same length as (or longer than, or shorter than) their
forearm.1.MD.1 Ideas of transitivity can then be discussed as they use

1.MD.1Order three objects by length; compare the lengths of two
objects indirectly by using a third object.a string to represent their forear’s length. As another example, stu-

dents can figure out that one path from the teachers’ desk to the
door is longer than another because the first path is longer than a
length of string laid along the path, but the other path is shorter
than that string. Transitivity can then be explicitly discussed: If A is
longer than B and B is longer than C , then A must be longer than
C as well.

Seriation Another important set of skills and understandings is
ordering a set of objects by length.1.MD.1 Such sequencing requires

1.MD.1Order three objects by length; compare the lengths of two
objects indirectly by using a third object.multiple comparisons. Initially, students find it difficult to seriate a

large set of objects (e.g., more than 6 objects) that differ only slightly
in length. They tend to order groups of two or three objects, but they
cannot correctly combine these groups while putting the objects in
order. Completing this task efficiently requires a systematic strat-
egy, such as moving each new object “down the line” to see where
it fits. Students need to understand that each object in a seriation
is larger than those that come before it, and shorter than those that
come after. Again, reasoning that draws on transitivity is relevant.

Such seriation and other processes associated with the mea-
surement and data standards are important in themselves, but also
play a fundamental role in students’ development. The general rea-
soning processes of seriation, conservation (of length and number),
and classification (which lies at the heart of the standards discussed
in the K–3 Categorical Data Progression) predict success in early
childhood as well as later schooling.

Measure lengths indirectly and by iterating length units Directly
comparing objects, indirectly comparing objects, and ordering ob-
jects by length are important practically and mathematically, but
they are not length measurement, which involves assigning a num-
ber to a length. Students learn to lay physical units such as cen-
timeter or inch manipulatives end-to-end and count them to measure
a length.1.MD.2 Such a procedure may seem to adults to be straight-

1.MD.2Express the length of an object as a whole number of
length units, by laying multiple copies of a shorter object (the
length unit) end to end; understand that the length measurement
of an object is the number of same-size length units that span it
with no gaps or overlaps.

forward, however, students may initially iterate a unit leaving gaps
between subsequent units or overlapping adjacent units. For such
students, measuring may be an activity of placing units along a
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path in some manner, rather than the activity of covering a region
or length with no gaps.

Also, students, especially if they lack explicit experience with
continuous attributes, may make their initial measurement judg-
ments based upon experiences counting discrete objects. For exam-
ple, researchers showed children two rows of matches. The matches
in each row were of different lengths, but there was a different num-
ber of matches in each so that the rows were the same length.

Matches of different lengths

Row A is 5 matches long–when the unit of measurement is white
matches. Row B is 6 matches long–when the unit of
measurement is dark matches. From Inhelder, Sinclair, and
Bovet, 1974, Learning and the Development of Cognition,
Harvard University Press.

Although, from the adult perspective, the lengths of the rows were
the same, many children argued that the row with 6 matches was
longer because it had more matches. They counted units (matches),
assigning a number to a discrete attribute (cardinality). In mea-
suring continuous attributes, the sizes of the units (white and dark
matches) must be considered. First grade students can learn that
objects used as basic units of measurement (e.g., “match-length”)
must be the same size.

As with transitive reasoning tasks, using comparison tasks and
asking children to compare results can help reveal the limitations of
such procedures and promote more accurate measuring. However,
students also need to see agreements. For example, understanding
that the results of measurement and direct comparison have the
same results encourages children to use measurement strategies.

Another important issue concerns the use of standard or nonstan-
dard units of length. Many curricula or other instructional guides
advise a sequence of instruction in which students compare lengths,
measure with nonstandard units (e.g., paper clips), incorporate the
use of manipulative standard units (e.g., inch cubes), and measure
with a ruler. This approach is probably intended to help students
see the need for standardization. However, the use of a variety of dif-
ferent length units, before students understand the concepts, proce-
dures, and usefulness of measurement, may actually deter students’
development. Instead, students might learn to measure correctly
with standard units, and even learn to use rulers, before they can
successfully use nonstandard units and understand relationships be-
tween different units of measurement. To realize that arbitrary (and
especially mixed-size) units result in the same length being de-
scribed by different numbers, a student must reconcile the varying
lengths and numbers of arbitrary units. Emphasizing nonstandard
units too early may defeat the purpose it is intended to achieve.
Early use of many nonstandard units may actually interfere with
students’ development of basic measurement concepts required to
understand the need for standard units. In contrast, using manipu-
lative standard units, or even standard rulers, is less demanding and
appears to be a more interesting and meaningful real-world activity
for young students.

Thus, an instructional progression based on this finding would
start by ensuring that students can perform direct comparisons.
Then, children should engage in experiences that allow them to
connect number to length, using manipulative units that have a stan-
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dard unit of length, such as centimeter cubes. These can be labeled
“length-units” with the students. Students learn to lay such physical
units end-to-end and count them to measure a length. They compare
the results of measuring to direct and indirect comparisons.

As they measure with these manipulative units, students discuss
the concepts and skills involved (e.g., as previously discussed, not
leaving space between successive length-units). As another example,
students initially may not extend the unit past the endpoint of the
object they are measuring. If students make procedural errors such
as these, they can be asked to tell in a precise and elaborate manner
what the problem is, why it leads to incorrect measurements, and
how to fix it and measure accurately.

Measurement activities can also develop other areas of mathe-
matics, including reasoning and logic. In one class, first graders
were studying mathematics mainly through measurement, rather
than counting discrete objects. They described and represented re-
lationships among and between lengths (MP2, MP3), such as com-
paring two sticks and symbolizing the lengths as “A B.” This
enabled them to reason about relationships. For example, after see-
ing the following statements recorded on the board, if V M , then
M V , V M , and M V , one first-grader noted, “If it’s an in-
equality, then you can write four statements. If it’s equal, you can
only write two”(MP8)

This indicates that with high-quality experiences (such as those
described in the Grade 2 section on length), many first graders can
also learn to use reasoning, connecting this to direct comparison,
and to measurement performed by laying physical units end-to-end.

Area and volume: Foundations As in Kindergarten, area and vol-
ume are not instructional foci for first grade, but some everyday
activities can form an experiential foundation for later instruction in
these topics. For example, in later grades, understanding area re-
quires seeing how to decompose shapes into parts and how to move
and recombine the parts to make simpler shapes whose areas are
already known (MP7). First graders learn the foundations of such
procedures both in composing and decomposing shapes, discussed
in the Geometry Progression, and in comparing areas in specific
contexts. For example, paper-folding activities lend themselves not
just to explorations of symmetry but also to equal-area congruent
parts. Some students can compare the area of two pieces of pa-
per by cutting and overlaying them. Such experiences provide only
initial development of area concepts, but these key foundations are
important for later learning.

Volume can involve liquids or solids. This leads to two ways to
measure volume, illustrated by “packing” a space such as a three-
dimensional array with cubic units and “filling” with iterations of a
fluid unit that takes the shape of the container (called liquid vol-
ume). Many first graders initially perceive filling as having a one-
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dimensional unit structure. For example, students may simply “read
off” the measure on a graduated cylinder. Thus, in a science or “free
time” activity, students might compare the volume of two contain-
ers in at least two ways. They might pour each into a graduated
cylinder to compare the measures. Or they might practice indirect
comparison using transitive reasoning by using a third container to
compare the volumes of the two containers. By packing unit cubes
into containers into which cubes fit readily, students also can lay a
foundation for later “packing” volume.
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Grade 2
Measure and estimate lengths in standard units Second graders
learn to measure length with a variety of tools, such as rulers, me-
ter sticks, and measuring tapes.2.MD.1 Although this appears to some

2.MD.1Measure the length of an object by selecting and using
appropriate tools such as rulers, yardsticks, meter sticks, and
measuring tapes.adults to be relatively simple, there are many conceptual and proce-

dural issues to address. For example, students may begin counting
at the numeral “1” on a ruler. The numerals on a ruler may signify
to students when to start counting, rather than the amount of space
that has already been covered. It is vital that students learn that
“one” represents the space from the beginning of the ruler to the
hash mark, not the hash mark itself. Again, students may not un-
derstand that units must be of equal size. They will even measure
with tools subdivided into units of different sizes and conclude that
quantities with more units are larger.

To learn measurement concepts and skills, students might use
both simple rulers (e.g., having only whole units such as centimeters
or inches) and physical units (e.g., manipulatives that are centimeter
or inch lengths). As described for Grade 1, teachers and students
can call these “length-units.” Initially, students lay multiple copies
of the same physical unit end-to-end along the ruler. They can also
progress to iterating with one physical unit (i.e., repeatedly marking
off its endpoint, then moving it to the next position), even though this
is more difficult physically and conceptually. To help them make the
transition to this more sophisticated understanding of measurement,
students might draw length unit marks along sides of geometric
shapes or other lengths to see the unit lengths. As they measure
with these tools, students with the help of the teacher discuss the
concepts and skills involved, such as the following.

• length-unit iteration. E.g., not leaving space between succes-
sive length-units;

• accumulation of distance. Understanding that the counting
“eight” when placing the last length-unit means the space cov-
ered by 8 length-units, rather then just the eighth length-unit
(note the connection to cardinalityK.CC.4);

K.CC.4Understand the relationship between numbers and quan-
tities; connect counting to cardinality.

• alignment of zero-point. Correct alignment of the zero-point on
a ruler as the beginning of the total length, including the case
in which the 0 of the ruler is not at the edge of the physical
ruler;

• meaning of numerals on the ruler. The numerals indicate the
number of length units so far;

• connecting measurement with physical units and with a ruler.
Measuring by laying physical units end-to-end or iterating a
physical unit and measuring with a ruler both focus on finding
the total number of unit lengths.
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Students also can learn accurate procedures and concepts by
drawing simple unit rulers. Using copies of a single length-unit
such as inch-long manipulatives, they mark off length-units on strips
of paper, explicitly connecting measurement with the ruler to mea-
surement by iterating physical units. Thus, students’ first rulers

Using a unit to draw a ruler

Students use a standard unit (shown in below the ruler) to make
rulers, helping them to understand the meaning of the markings
on rulers.

should be simply ways to help count the iteration of length-units.
Frequently comparing results of measuring the same object with
manipulative standard units and with these rulers helps students
connect their experiences and ideas. As they build and use these
tools, they develop the ideas of length-unit iteration, correct align-
ment (with a ruler), and the zero-point concept (the idea that the
zero of the ruler indicates one endpoint of a length). These are re-
inforced as children compare the results of measuring to compare to
objects with the results of directly comparing these objects.

Similarly, discussions might frequently focus on “What are you
counting?” with the answer being “length-units” or “centimeters”
or the like. This is especially important because counting discrete
items often convinces students that the size of things counted does
not matter (there could be exactly 10 toys, even if they are different
sizes). In contrast, for measurement, unit size is critical, so teachers
are advised to plan experiences and reflections on the use of other
units and length-units in various discrete counting and measurement
contexts. Given that counting discrete items often correctly teaches
students that the length-unit size does not matter, so teachers are
advised to plan experiences and reflections on the use of units in
various discrete counting and measurement contexts. For example,
a teacher might challenge students to consider a fictitious student’s
measurement in which he lined up three large and four small blocks
and claimed a path was “seven blocks long.” Students can discuss
whether he is correct or not.

Second graders also learn the concept of the inverse relation-
ship between the size of the unit of length and the number of units
required to cover a specific length or distance.2.MD.2 For example, it

2.MD.2Measure the length of an object twice, using length units
of different lengths for the two measurements; describe how the
two measurements relate to the size of the unit chosen.will take more centimeter lengths to cover a certain distance than

inch lengths because inches are the larger unit. Initially, students
may not appreciate the need for identical units. Previously described
work with manipulative units of standard measure (e.g., 1 inch or 1
cm), along with related use of rulers and consistent discussion, will
help children learn both the concepts and procedures of linear mea-
surement. Thus, second grade students can learn that the larger
the unit, the fewer number of units in a given measurement (as was
illustrated on p. 9). That is, for measurements of a given length there
is an inverse relationship between the size of the unit of measure
and the number of those units. This is the time that measuring and
reflecting on measuring the same object with different units, both
standard and nonstandard, is likely to be most productive (see the
discussion of this issue in the Grade 1 section on length). Results
of measuring with different nonstandard length-units can be explic-
itly compared. Students also can use the concept of unit to make
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inferences about the relative sizes of objects; for example, if object
A is 10 regular paperclips long and object B is 10 jumbo paperclips
long, the number of units is the same, but the units have different
sizes, so the lengths of A and B are different.

Second graders also learn to combine and compare lengths using
arithmetic operations. That is, they can add two lengths to obtain
the length of the whole and subtract one length from another to
find out the difference in lengths.2.MD.4 For example, they can use

2.MD.4Measure to determine how much longer one object is
than another, expressing the length difference in terms of a stan-
dard length unit.2.MD.5Use addition and subtraction within 100 to solve word
problems involving lengths that are given in the same units, e.g.,
by using drawings (such as drawings of rulers) and equations with
a symbol for the unknown number to represent the problem.

a simple unit ruler or put a length of connecting cubes together
to measure first one modeling clay “snake,” then another, to find
the total of their lengths. The snakes can be laid along a line,
allowing students to compare the measurement of that length with
the sum of the two measurements. Second graders also begin to
apply the concept of length in less obvious cases, such as the width
of a circle, the length and width of a rectangle, the diagonal of a
quadrilateral, or the height of a pyramid. As an arithmetic example,

Missing measurements problems

35 43 78

43 43 8 35

so, 35, and

43

8
43 8 35 35 43 78

43

8
35

43 35

�
� 43 35

� 78

Different solution methods for “A girl had a 43 cm section of a
necklace and another section that was 8 cm shorter than the
first. How long the necklace would be if she combined the two
sections?” 2.MD.5

students might measure all the sides of a table with unmarked (foot)
rulers to measure how much ribbon they would need to decorate
the perimeter of the table.2.MD.5 They learn to measure two objects
and subtract the smaller measurement from the larger to find how
much longer one object is than the other.

Second graders can also learn to represent and solve numer-
ical problems about length using tape or number-bond diagrams.
(See p. 16 of the Operations and Algebraic Thinking Progression
for discussion of when and how these diagrams are used in Grade
1.) Students might solve two-step numerical problems at different
levels of sophistication (see p. 18 of the Operations and Algebraic
Thinking Progression for similar two-step problems involving dis-
crete objects). Conversely, “missing measurements” problems about
length may be presented with diagrams.

Missing measurements problems

40

100

20

What are the missing lengths
of the third and fourth sides of
the rectangle?

60

20

Assume
all

seg-

ments in “steps” are

the same length

What are the missing lengths
of each step and the bottom
of the stairway?

These problems might be presented in the context of turtle
geometry. Students work on paper to figure out how far the Logo
turtle would have to travel to finish drawing the house (the
remainder of the right side, and the bottom). They then type in
Logo commands (e.g., for the rectangle, forward 40 right 90 fd
100 rt 90 fd 20 fd 20 rt 90 fd 100) to check their calculations
(MP5).

These understandings are essential in supporting work with num-
ber line diagrams.2.MD.6 That is, to use a number line diagram to

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to the
numbers 0, 1, 2, . . . , and represent whole-number sums and dif-
ferences within 100 on a number line diagram.

understand number and number operations, students need to un-
derstand that number line diagrams have specific conventions: the
use of a single position to represent a whole number and the use
of marks to indicate those positions. They need to understand that
a number line diagram is like a ruler in that consecutive whole
numbers are 1 unit apart, thus they need to consider the distances
between positions and segments when identifying missing numbers.
These understandings underlie students’ successful use of number
line diagrams. Students think of a number line diagram as a mea-
surement model and use strategies relating to distance, proximity of
numbers, and reference points.

After experience with measuring, second graders learn to esti-
mate lengths.2.MD.3 Real-world applications of length often involve

2.MD.3Estimate lengths using units of inches, feet, centimeters,
and meters.

estimation. Skilled estimators move fluently back and forth between
written or verbal length measurements and representations of their
corresponding magnitudes on a mental ruler (also called the “men-
tal number line”). Although having real-world “benchmarks” is useful
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(e.g., a meter is about the distance from the floor to the top of a door-
knob), instruction should also help children build understandings of
scales and concepts of measurement into their estimation competen-
cies. Although “guess and check” experiences can be useful, research
suggests explicit teaching of estimation strategies (such as iteration
of a mental image of the unit or comparison with a known mea-
surement) and prompting students to learn reference or benchmark
lengths (e.g., an inch-long piece of gum, a 6-inch dollar bill), order
points along a continuum, and build up mental rulers.

Length measurement should also be used in other domains of
mathematics, as well as in other subjects, such as science, and
connections should be made where possible. For example, a line
plot scale is just a ruler, usually with a non-standard unit of length.
Teachers can ask students to discuss relationships they see between
rulers and line plot scales. Data using length measures might be
graphed (see example on pp. 8–9 of the Measurement Data Pro-
gression). Students could also graph the results of many students
measuring the same object as precisely as possible (even involving
halves or fourths of a unit) and discuss what the “real” measurement
of the object might be. Emphasis on students solving real measure-
ment problems, and, in so doing, building and iterating units, as well
as units of units, helps students development strong concepts and
skills. When conducted in this way, measurement tools and pro-
cedures become tools for mathematics and tools for thinking about
mathematics.

Area and volume: Foundations To learn area (and, later, volume)
concepts and skills meaningfully in later grades, students need to
develop the ability known as spatial structuring. Students need to
be able to see a rectangular region as decomposable into rows and
columns of squares. This competence is discussed in detail in the
Geometry Progression, but is mentioned here for two reasons. First,
such spatial structuring precedes meaningful mathematical use of
the structures, such as determining area or volume. Second, Grade
2 work in multiplication involves work with rectangular arrays,2.G.2 2.G.2Partition a rectangle into rows and columns of same-size

squares and count to find the total number of them.and this work is an ideal context in which to simultaneously develop
both arithmetical and spatial structuring foundations for later work
with area.
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Grade 3
Perimeter Third graders focus on solving real-world and mathe-
matical problems involving perimeters of polygons.3.MD.8 A perime-

3.MD.8Solve real world and mathematical problems involving
perimeters of polygons, including finding the perimeter given the
side lengths, finding an unknown side length, and exhibiting rect-
angles with the same perimeter and different areas or with the
same area and different perimeters.

ter is the boundary of a two-dimensional shape. For a polygon,
the length of the perimeter is the sum of the lengths of the sides.
Initially, it is useful to have sides marked with unit length marks,
allowing students to count the unit lengths. Later, the lengths of the
sides can be labeled with numerals. As with all length tasks, stu-
dents need to count the length-units and not the end-points. Next,
students learn to mark off unit lengths with a ruler and label the
length of each side of the polygon. For rectangles, parallelograms,
and regular polygons, students can discuss and justify faster ways to
find the perimeter length than just adding all of the lengths (MP3).
Rectangles and parallelograms have opposite sides of equal length,
so students can double the lengths of adjacent sides and add those
numbers or add lengths of two adjacent sides and double that num-
ber. A regular polygon has all sides of equal length, so its perimeter
length is the product of one side length and the number of sides.

Missing measurements and other perimeter problems

21

The perimeter of this rectangle
is 168 length units. What are
the lengths of the three unla-
beled sides?

40
Assume all short segments are
the same length and all angles
are right

Compare these problems with the “missing measurements”
problems of Grade 2.

Another type of perimeter problem is to draw a robot on squared
grid paper that meets specific criteria. All the robot’s body parts
must be rectangles. The perimeter of the head might be 36
length-units, the body, 72; each arm, 24; and each leg, 72.
Students are asked to provide a convincing argument that their
robots meet these criteria (MP3). Next, students are asked to
figure out the area of each of their body parts (in square units).
These are discussed, with students led to reflect on the different
areas that may be produced with rectangles of the same
perimeter. These types of problems can be also presented as
turtle geometry problems. Students create the commands on
paper and then give their commands to the Logo turtle to check
their calculations. For turtle length units, the perimeter of the
head might be 300 length-units, the body, 600; each arm, 400;
and each leg, 640.

Perimeter problems for rectangles and parallelograms often give
only the lengths of two adjacent sides or only show numbers for
these sides in a drawing of the shape. The common error is to add
just those two numbers. Having students first label the lengths of
the other two sides as a reminder is helpful.

Students then find unknown side lengths in more difficult “miss-
ing measurements” problems and other types of perimeter prob-
lems.3.MD.8

Children learn to subdivide length-units. Making one’s own ruler
and marking halves and other partitions of the unit may be helpful
in this regard. For example, children could fold a unit in halves,
mark the fold as a half, and then continue to do so, to build fourths
and eighths, discussing issues that arise. Such activities relate to
fractions on the number line.3.NF.2 Labeling all of the fractions can

3.NF.2Understand a fraction as a number on the number line;
represent fractions on a number line diagram.

help students understand rulers marked with halves and fourths but
not labeled with these fractions. Students also measure lengths
using rulers marked with halves and fourths of an inch.3.MD.4 They 3.MD.4Generate measurement data by measuring lengths using

rulers marked with halves and fourths of an inch. Show the data
by making a line plot, where the horizontal scale is marked off in
appropriate units—whole numbers, halves, or quarters.

show these data by making a line plot, where the horizontal scale is
marked off in appropriate units—whole numbers, halves, or quarters
(see the Measurement Data Progression, p. 10).

Understand concepts of area and relate area to multiplication andto addition Third graders focus on learning area. Students learn
formulas to compute area, with those formulas based on, and sum-
marizing, a firm conceptual foundation about what area is. Stu-
dents need to learn to conceptualize area as the amount of two-
dimensional space in a bounded region and to measure it by choos-
ing a unit of area, often a square. A two-dimensional geometric
figure that is covered by a certain number of squares without gaps
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or overlaps can be said to have an area of that number of square
units.3.MD.5 3.MD.5Recognize area as an attribute of plane figures and un-

derstand concepts of area measurement.Activities such as those in the Geometry Progression teach stu-
dents to compose and decompose geometric regions. To begin an ex-
plicit focus on area, teachers might then ask students which of three
rectangles covers the most area. Students may first solve the prob-

Which rectangle covers the most area?

(a) (b)

(c)

These rectangles are formed from unit squares (tiles students
have used) although students are not informed of this or the
rectangle’s dimensions: (a) 4 by 3, (b) 2 by 6, and (c) 1 row of
12. Activity from Lehrer, et al., 1998, “Developing understanding
of geometry and space in the primary grades,” in R. Lehrer & D.
Chazan (Eds.), Designing Learning Environments for Developing
Understanding of Geometry and Space, Lawrence Erlbaum
Associates.

lem with decomposition (cutting and/or folding) and re-composition,
and eventually analyses with area-units, by covering each with unit
squares (tiles).3.MD.5, 3.MD.6 Discussions should clearly distinguish

3.MD.5Recognize area as an attribute of plane figures and un-
derstand concepts of area measurement.3.MD.6Measure areas by counting unit squares (square cm,
square m, square in, square ft, and improvised units).

the attribute of area from other attributes, notably length.
Students might then find the areas of other rectangles. As pre-

viously stated, students can be taught to multiply length measure-
ments to find the area of a rectangular region. But, in order that
they make sense of these quantities (MP2), they first learn to in-
terpret measurement of rectangular regions as a multiplicative re-
lationship of the number of square units in a row and the number of
rows.3.MD.7a This relies on the development of spatial structuring.MP7

3.MD.7aFind the area of a rectangle with whole-number side
lengths by tiling it, and show that the area is the same as would
be found by multiplying the side lengths.

To build from spatial structuring to understanding the number of

MP7 See the Geometry Progression

area-units as the product of number of units in a row and number of
rows, students might draw rectangular arrays of squares and learn
to determine the number of squares in each row with increasingly
sophisticated strategies, such as skip-counting the number in each
row and eventually multiplying the number in each row by the num-
ber of rows (MP8). They learn to partition a rectangle into identical
squares by anticipating the final structure and forming the array by
drawing line segments to form rows and columns. They use skip
counting and multiplication to determine the number of squares in
the array.

Many activities that involve seeing and making arrays of squares
to form a rectangle might be needed to build robust conceptions
of a rectangular area structured into squares. One such activity
is illustrated in the margin. In this progression, less sophisticated

Incomplete array

To determine the area of this rectangular region, students might
be encouraged to construct a row, corresponding to the
indicated positions, then repeating that row to fill the region.
Cutouts of strips of rows can help the needed spatial structuring
and reduce the time needed to show a rectangle as rows or
columns of squares. Drawing all of the squares can also be
helpful, but it is slow for larger rectangles. Drawing the unit
lengths on the opposite sides can help students see that joining
opposite unit end-points will create the needed unit square grid.

activities of this sort were suggested for earlier grades so that Grade
3 students begin with some experience.

Students learn to understand and explain why multiplying the
side lengths of a rectangle yields the same measurement of area
as counting the number of tiles (with the same unit length) that fill
the rectangle’s interior (MP3).3.MD.7a For example, students might
explain that one length tells how many unit squares in a row and
the other length tells how many rows there are.

Students might then solve numerous problems that involve rect-
angles of different dimensions (e.g., designing a house with rooms
that fit specific area criteria) to practice using multiplication to com-
pute areas.3.MD.7b The areas involved should not all be rectangular, 3.MD.7bMultiply side lengths to find areas of rectangles with

whole-number side lengths in the context of solving real world
and mathematical problems, and represent whole-number prod-
ucts as rectangular areas in mathematical reasoning.

but decomposable into rectangles (e.g., an “L-shaped” room).3.MD.7d

3.MD.7dRecognize area as additive. Find areas of rectilinear fig-
ures by decomposing them into non-overlapping rectangles and
adding the areas of the non-overlapping parts, applying this tech-
nique to solve real world problems.

Students also might solve problems such as finding all the rect-
angular regions with whole-number side lengths that have an area
of 12 area-units, doing this later for larger rectangles (e.g., enclosing
24, 48, or 72 area-units), making sketches rather than drawing each
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square. They learn to justify their belief they have found all possible
solutions (MP3).

Similarly using concrete objects or drawings, and their compe-
tence with composition and decomposition of shapes, spatial struc-
turing, and addition of area measurements, students learn to inves-
tigate arithmetic properties using area models. For example, they
learn to rotate rectangular arrays physically and mentally, under-
standing that their areas are preserved under rotation, and thus,
for example, 4 7 7 4, illustrating the commutative property
of multiplication.3.MD.7c They also learn to understand and explain

3.MD.7cUse tiling to show in a concrete case that the area of a
rectangle with whole-number side lengths � and � � is the sum
of � � and � �. Use area models to represent the distributive
property in mathematical reasoning.that the area of a rectangular region of, for example, 12 length-units

by 5 length-units can be found either by multiplying 12 5, or by
adding two products, e.g., 10 5 and 2 5, illustrating the distributive
property.

Recognize perimeter as an attribute of plane figures and distin-guish between linear and area measures With strong and distinct
concepts of both perimeter and area established, students can work
on problems to differentiate their measures. For example, they can
find and sketch rectangles with the same perimeter and different ar-
eas or with the same area and different perimeters and justify their
claims (MP3).3.MD.8 Differentiating perimeter from area is facilitated

3.MD.8Solve real world and mathematical problems involving
perimeters of polygons, including finding the perimeter given the
side lengths, finding an unknown side length, and exhibiting rect-
angles with the same perimeter and different areas or with the
same area and different perimeters.

by having students draw congruent rectangles and measure, mark
off, and label the unit lengths all around the perimeter on one rect-
angle, then do the same on the other rectangle but also draw the
square units. This enables students to see the units involved in
length and area and find patterns in finding the lengths and areas
of non-square and square rectangles (MP7). Students can continue
to describe and show the units involved in perimeter and area after
they no longer need these .

Problem solving involving measurement and estimation of inter-vals of time, liquid volumes, and masses of objects Students in
Grade 3 learn to solve a variety of problems involving measurement
and such attributes as length and area, liquid volume, mass, and
time.3.MD.1, 3.MD.2 Many such problems support the Grade 3 empha-

3.MD.1Tell and write time to the nearest minute and measure
time intervals in minutes. Solve word problems involving addition
and subtraction of time intervals in minutes, e.g., by representing
the problem on a number line diagram.3.MD.2Measure and estimate liquid volumes and masses of ob-
jects using standard units of grams (g), kilograms (kg), and liters
(l).2 Add, subtract, multiply, or divide to solve one-step word prob-
lems involving masses or volumes that are given in the same
units, e.g., by using drawings (such as a beaker with a measure-
ment scale) to represent the problem.3

sis on multiplication (see Table 1) and the mathematical practices of
making sense of problems (MP1) and representing them with equa-
tions, drawings, or diagrams (MP4). Such work will involve units of
mass such as the kilogram.
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Table 1: Multiplication and division situations for measurement

Unknown Product Group Size Unknown Number of Groups UnknownA B A C and C A B C and C B
Grouped Objects
(Units of Units)

You need A lengths of string,
each B inches long. How much
string will you need altogether?

You have C inches of string,
which you will cut into A equal
pieces. How long will each piece
of string be?

You have C inches of string,
which you will cut into pieces
that are B inches long. How
many pieces of string will you
have?

Arrays of Objects
(Spatial Structuring)

What is the area of a A cm by B
cm rectangle?

A rectangle has area C square
centimeters. If one side is A cm
long, how long is a side next to
it?

A rectangle has area C square
centimeters. If one side is B cm
long, how long is a side next to
it?

Compare A rubber band is B cm long.
How long will the rubber band be
when it is stretched to be A times
as long?

A rubber band is stretched to be
C cm long and that is A times as
long as it was at first. How long
was the rubber band at first?

A rubber band was B cm long at
first. Now it is stretched to be
C cm long. How many times as
long is the rubber band now as it
was at first?

Adapted from box 2-4 of Mathematics Learning in Early Childhood: Paths Toward Excellence and Equity, National Research Council,
2009, pp. 32–33. Note that Grade 3 work does not include Compare problems with “times as much,” see the Operations and Algebraic
Thinking Progression, Table 3, also p. 29.

A few words on volume are relevant. Compared to the work in
area, volume introduces more complexity, not only in adding a third
dimension and thus presenting a significant challenge to students’
spatial structuring, but also in the materials whose volumes are
measured. These materials may be solid or fluid, so their volumes
are generally measured with one of two methods, e.g., “packing” a
right rectangular prism with cubic units or “filling” a shape such as a
right circular cylinder. Liquid measurement, for many third graders,
may be limited to a one-dimensional unit structure (i.e., simple iter-
ative counting of height that is not processed as three-dimensional).
Thus, third graders can learn to measure with liquid volume and
to solve problems requiring the use of the four arithmetic opera-
tions, when liquid volumes are given in the same units throughout
each problem. Because liquid measurement can be represented with
one-dimensional scales, problems may be presented with drawings
or diagrams, such as measurements on a beaker with a measurement
scale in milliliters.
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Grade 4
In Grade 4, students build on competencies in measurement and in
building and relating units and units of units that they have devel-
oped in number, geometry, and geometric measurement.

4.MD.1Know relative sizes of measurement units within one sys-
tem of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec.
Within a single system of measurement, express measurements
in a larger unit in terms of a smaller unit. Record measurement
equivalents in a two-column table.Solve problems involving measurement and conversion of mea-surements from a larger unit to a smaller unit Fourth graders

learn the relative sizes of measurement units within a system of
measurement4.MD.1 including:

Super- or subordinate unit Length in terms of basic
unit

kilometer 103 or 1000 meters
hectometer 102 or 100 meters
decameter 101 or 10 meters
meter 1 meter
decimeter 10 1 or 1

10 meters
centimeter 10 2 or 1

100 meters
millimeter 10 3 or 1

1000 meters

Note the similarity to the structure of base-ten units and U.S.
currency (see illustrations on p. 12 of the Number and
Operations in Base Ten Progression).

length: meter (m), kilometer (km), centimeter (cm), mil-
limeter (mm); volume: liter (l), milliliter (ml, 1 cubic cen-
timeter of water; a liter, then, is 1000 ml);
mass: gram (g, about the weight of a cc of water), kilo-
gram (kg); time: hour (hr), minute (min), second (sec).

For example, students develop benchmarks and mental images
about a meter (e.g., about the height of a tall chair) and a kilometer
(e.g., the length of 10 football fields including the end zones, or the
distance a person might walk in about 12 minutes), and they also
understand that “kilo” means a thousand, so 3000 m is equivalent to
3 km.

Centimeter and meter
equivalences

cm m
100 1
200 2
300 3
500

1000

Foot and inch equivalences

feet inches
0 0
1 12
2 24
3

Expressing larger measurements in smaller units within the met-
ric system is an opportunity to reinforce notions of place value. There
are prefixes for multiples of the basic unit (meter or gram), although
only a few (kilo-, centi-, and milli-) are in common use. Tables
such as the one in the margin indicate the meanings of the prefixes
by showing them in terms of the basic unit (in this case, meters).
Such tables are an opportunity to develop or reinforce place value
concepts and skills in measurement activities.

4.MD.2Use the four operations to solve word problems involving
distances, intervals of time, liquid volumes, masses of objects,
and money, including problems involving simple fractions or deci-
mals, and problems that require expressing measurements given
in a larger unit in terms of a smaller unit. Represent measure-
ment quantities using diagrams such as number line diagrams
that feature a measurement scale.

Relating units within the metric system is another opportunity to
think about place value. For example, students might make a table
that shows measurements of the same lengths in centimeters and
meters.

Relating units within the traditional system provides an oppor-
tunity to engage in mathematical practices, especially “look for and
make use of structure” (MP7) and “look for and express regularity
in repeated reasoning” (MP8). For example, students might make
a table that shows measurements of the same lengths in feet and
inches.

Using tape diagrams to solve word problems

Lisa put two flavors of soda
in a glass. There were
80 ml of soda in all. She
put three times as much or-
ange drink as strawberry.
How many ml of orange did
she put in?

0

10

20

30

40

50

60

70

80

90

100

3 times as
much orange
as strawberry

In this diagram, quantities are represented on a measurement
scale.

Students also combine competencies from different domains as
they solve measurement problems using all four arithmetic opera-
tions, addition, subtraction, multiplication, and division (see exam-
ples in Table 1).4.MD.2 For example, “How many liters of juice does
the class need to have at least 35 cups if each cup takes 225 ml?”
Students may use tape or number line diagrams for solving such
problems (MP1).

Draft, 6/23/2012, comment at commoncoretools.wordpress.com .



21

Using number line diagrams to solve word problems

Juan spent 1/4 of his money on a game.
The game cost $20. How much money did
he have at first?

10 20 30 40 50 60 70 80 900

?

What time does Marla have to leave to be
at her friend’s house by a quarter after 3 if
the trip takes 90 minutes?

90 minutes

1:30 1:45 2:00 2:15 2:30 2:45 3:00 3:15 3:30

Using a number line diagram to represent time is easier if stu-
dents think of digital clocks rather than round clocks. In the latter
case, placing the numbers on the number line involves consider-
ing movements of the hour and minute hands.

Students learn to consider perimeter and area of rectangles, be-
gun in Grade 3, more abstractly (MP2). Based on work in previous
grades with multiplication, spatially structuring arrays, and area,
they abstract the formula for the area of a rectangle A � � .•

• The formula is a generalization of the understanding, that, given
a unit of length, a rectangle whose sides have length � units
and � units, can be partitioned into � rows of unit squares with
� squares in each row. The product � � gives the number of
unit squares in the partition, thus the area measurement is � �
square units. These square units are derived from the length unit.

Students generate and discuss advantages and disadvantages
of various formulas for the perimeter length of a rectangle that is
� units by � units.• Giving verbal summaries of these formulas is • For example, P 2� 2� has two multiplications and one

addition, but P 2 � � , which has one addition and one
multiplication, involves fewer calculations. The latter formula is
also useful when generating all possible rectangles with a given
perimeter. The length and width vary across all possible pairs
whose sum is half of the perimeter (e.g., for a perimeter of 20,
the length and width are all of the pairs of numbers with sum 10).

also helpful. For example, a verbal summary of the basic formula,
A � � � � , is “add the lengths of all four sides.” Specific
numerical instances of other formulas or mental calculations for the
perimeter of a rectangle can be seen as examples of the properties
of operations, e.g., 2� 2� 2 � � illustrates the distributive
property.

Perimeter problems often give only one length and one width,
thus remembering the basic formula can help to prevent the usual
error of only adding one length and one width. The formula P
2 � � emphasizes the step of multiplying the total of the given
lengths by 2. Students can make a transition from showing all length
units along the sides of a rectangle or all area units within (as in
Grade 3, p. 18) by drawing a rectangle showing just parts of these
as a reminder of which kind of unit is being used. Writing all of
the lengths around a rectangle can also be useful. Discussions of
formulas such as P 2� 2� , can note that unlike area formulas,
perimeter formulas combine length measurements to yield a length
measurement.

Such abstraction and use of formulas underscores the impor-
tance of distinguishing between area and perimeter in Grade 33.MD.8

3.MD.8Solve real world and mathematical problems involving
perimeters of polygons, including finding the perimeter given the
side lengths, finding an unknown side length, and exhibiting rect-
angles with the same perimeter and different areas or with the
same area and different perimeters.

and maintaining the distinction in Grade 4 and later grades, where
rectangle perimeter and area problems may get more complex and
problem solving can benefit from knowing or being able to rapidly
remind oneself of how to find an area or perimeter. By repeatedly
reasoning about how to calculate areas and perimeters of rectangles,
students can come to see area and perimeter formulas as summaries
of all such calculations (MP8).
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Students learn to apply these understandings and formulas to
the solution of real-world and mathematical problems.4.MD.3 For ex- 4.MD.3Apply the area and perimeter formulas for rectangles in

real world and mathematical problems.ample, they might be asked, “A rectangular garden has as an area
of 80 square feet. It is 5 feet wide. How long is the garden?” Here,
specifying the area and the width, creates an unknown factor prob-
lem (see Table 1). Similarly, students could solve perimeter problems
that give the perimeter and the length of one side and ask the length
of the adjacent side. Students could be challenged to solve multi-
step problems such as the following. “A plan for a house includes
rectangular room with an area of 60 square meters and a perimeter
of 32 meters. What are the length and the width of the room?”

In Grade 4 and beyond, the mental visual images for perime-
ter and area from Grade 3 can support students in problem solving
with these concepts. When engaging in the mathematical practice
of reasoning abstractly and quantitatively (MP2) in work with area
and perimeter, students think of the situation and perhaps make a
drawing. Then they recreate the “formula” with specific numbers
and one unknown number as a situation equation for this particu-
lar numerical situation.• “Apply the formula” does not mean write

• “Situation equation” refers to the idea that the student con-
structs an equation as a representation of a situation rather than
identifying the situation as an example of a familiar equation.down a memorized formula and put in known values because at

Grade 4 students do not evaluate expressions (they begin this type
of work in Grade 6). In Grade 4, working with perimeter and area
of rectangles is still grounded in specific visualizations and num-
bers. These numbers can now be any of the numbers used in Grade
4 (for addition and subtraction for perimeter and for multiplication
and division for area).4.NBT.4, 4.NF.3d, 4.OA.4 By repeatedly reasoning

4.NBT.4Fluently add and subtract multi-digit whole numbers us-
ing the standard algorithm.4.NF.3dSolve word problems involving addition and subtraction
of fractions referring to the same whole and having like denom-
inators, e.g., by using visual fraction models and equations to
represent the problem.4.OA.4Find all factor pairs for a whole number in the range 1–
100. Recognize that a whole number is a multiple of each of its
factors. Determine whether a given whole number in the range 1–
100 is a multiple of a given one-digit number. Determine whether
a given whole number in the range 1–100 is prime or composite.

about constructing situation equations for perimeter and area involv-
ing specific numbers and an unknown number, students will build
a foundation for applying area, perimeter, and other formulas by
substituting specific values for the variables in later grades.

Understand concepts of angle and measure angles Angle mea-
sure is a “turning point” in the study of geometry. Students often
find angles and angle measure to be difficult concepts to learn, but
that learning allows them to engage in interesting and important
mathematics. An angle is the union of two rays, � and �, with the
same initial point P . The rays can be made to coincide by rotating

An angle

a

bP

P is called the vertex of the angle and the rays � and � are
called the arms.

one to the other about P ; this rotation determines the size of the
angle between � and �. The rays are sometimes called the sides of
the angles.

Another way of saying this is that each ray determines a di-
rection and the angle size measures the change from one direction
to the other. (This illustrates how angle measure is related to the
concepts of parallel and perpendicular lines in Grade 4 geometry.)
A clockwise rotation is considered positive in surveying or turtle
geometry; but a counterclockwise rotation is considered positive in
Euclidean geometry. Angles are measured with reference to a circle
with its center at the common endpoint of the rays, by considering
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the fraction of the circular arc between the points where the two
rays intersect the circle. An angle that turns through 1

360 of a circle
is called a “one-degree angle,” and degrees are the unit used to
measure angles in elementary school. A full rotation is thus 360 .

An angle

name measurement
right angle 90

straight angle 180
acute angle between 0 and 90

obtuse angle between 90 and 180
reflex angle between 180 and 360

Two angles are called complementary if their measurements have
the sum of 90 . Two angles are called supplementary if their mea-
surements have the sum of 180 . Two angles with the same vertex
that overlap only at a boundary (i.e., share a side) are called adjacent
angles. Angles created by the intersection of two lines

When two lines intersect, they form four angles. If the
measurement of one is known (e.g., angle � is 60 ), the
measurement of the other three can be determined.

Like length, area, and volume, angle measure is additive: The
sum of the measurements of adjacent angles is the measurement of
the angle formed by their union. This leads to other important prop-
erties. If a right angle is decomposed into two adjacent angles, the
sum is 90 , thus they are complementary. Two adjacent angles that
compose a “straight angle” of 180 must be supplementary. In some
situations (see margin), such properties allow logical progressions
of statements (MP3).

As with all measureable attributes, students must first recog-
nize the attribute of angle measure, and distinguish it from other
attributes. This may not appear too difficult, as the measure of
angles and rotations appears to knowledgeable adults as quite dif-
ferent than attributes such as length and area. However, the unique
nature of angle size leads many students to initially confuse angle
measure with other, more familiar, attributes. Even in contexts de-

Two representations of three angles

Initially, some students may correctly compare angle sizes only if
all the line segments are the same length (as shown in the top
row). If the lengths of the line segments are different (as shown
in the bottom row), these students base their judgments on the
lengths of the segments, the distances between their endpoints,
or even the area of the triangles determined by the drawn arms.
They believe that the angles in the bottom row decrease in size
from left to right, although they have, respectively, the same
angle measurements as those in the top row.

signed to evoke a dynamic image of turning, such as hinges or doors,
many students use the length between the endpoints, thus teachers
find it useful to repeatedly discuss such cognitive “traps.”

As with other concepts (e.g., see the Geometry Progression), stu-
dents need varied examples and explicit discussions to avoid learn-
ing limited ideas about measuring angles (e.g., misconceptions that
a right angle is an angle that points to the right, or two right angles
represented with different orientations are not equal in measure). If
examples and tasks are not varied, students can develop incomplete
and inaccurate notions. For example, some come to associate all
slanted lines with 45 measures and horizontal and vertical lines
with measures of 90 . Others believe angles can be “read off” a 4.MD.6Measure angles in whole-number degrees using a pro-

tractor. Sketch angles of specified measure.protractor in “standard” position, that is, a base is horizontal, even if
neither arm of the angle is horizontal. Measuring and then sketching
many angles with no horizontal or vertical arms,4.MD.6 perhaps ini-
tially using circular 360 protractors, can help students avoid such
limited conceptions.

A 360 protractor and its use

The figure on the right shows a protractor being used to
measure a 45 angle. The protractor is placed so that one side
of the angle lies on the line corresponding to 0 on the protractor
and the other side of the angle is located by a clockwise rotation
from that line.

As with length, area, and volume, children need to understand
equal partitioning and unit iteration to understand angle and turn
measure. Whether defined as more statically as the measure of the
figure formed by the intersection of two rays or as turning, having a
given angle measure involves a relationship between components of
plane figures and therefore is a property (see the Overview in the
Geometry Progression).4.G.2

4.G.2Classify two-dimensional figures based on the presence or
absence of parallel or perpendicular lines, or the presence or ab-
sence of angles of a specified size. Recognize right triangles as
a category, and identify right triangles.

Given the complexity of angles and angle measure, it is unsur-
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prising that students in the early and elementary grades often form
separate concepts of angles as figures and turns, and may have sep-
arate notions for different turn contexts (e.g., unlimited rotation as a
fan vs. a hinge) and for various “bends.”

However, students can develop more accurate and useful angle
and angle measure concepts if presented with angles in a variety
of situations. They learn to find the common features of superfi-
cially different situations such as turns in navigation, slopes, bends,
corners, and openings. With guidance, they learn to represent an
angle in any of these contexts as two rays, even when both rays are
not explicitly represented in the context; for example, the horizon-
tal or vertical in situations that involve slope (e.g., roads or ramps),
or the angle determined by looking up from the horizon to a tree-
or mountain-top. Eventually they abstract the common attributes of
the situations as angles (which are represented with rays and a ver-
tex, MP4) and angle measurements (MP2). To accomplish the latter,

Determining angles in pattern blocks

Students might determine all the angles in the common “pattern
block” shape set based on equilateral triangles. Placing six
equilateral triangles so that they share a common vertex (as
shown in part a), students can figure out that because the sum
of the angles at this vertex is 360 , each angle which shares this
vertex must have measure 60 . Because they are congruent, all
the angles of the equilateral triangles must have measure 60
(again, to ensure they develop a firm foundation, students can
verify these for themselves with a protractor). Because each
angle of the regular hexagon (part b) is composed of two angles
from equilateral triangles, the hexagon’s angles each measure
120 . Similarly, in a pattern block set, two of the smaller angles
from tan rhombi compose an equilateral triangle’s angle, so each
of the smaller rhombus angles has measure 30 .

students integrate turns, and a general, dynamic understanding of
angle measure-as-rotation, into their understandings of angles-as-
objects. Computer manipulatives and tools can help children bring
such a dynamic concept of angle measure to an explicit level of
awareness. For example, dynamic geometry environments can pro-
vide multiple linked representations, such as a screen drawing that
students can “drag” which is connected to a numerical representa-
tion of angle size. Games based on similar notions are particularly
effective when students manipulate not the arms of the angle itself,
but a representation of rotation (a small circular diagram with radii
that, when manipulated, change the size of the target angle turned).

Students with an accurate conception of angle can recognize that
angle measure is additive.4.MD.7 As with length, area, and volume,

4.MD.7Recognize angle measure as additive. When an angle
is decomposed into non-overlapping parts, the angle measure of
the whole is the sum of the angle measures of the parts. Solve
addition and subtraction problems to find unknown angles on a
diagram in real world and mathematical problems, e.g., by using
an equation with a symbol for the unknown angle measure.

when an angle is decomposed into non-overlapping parts, the angle
measure of the whole is the sum of the angle measures of the parts.
Students can then solve interesting and challenging addition and
subtraction problems to find the measurements of unknown angles
on a diagram in real world and mathematical problems. For exam-
ple, they can find the measurements of angles formed a pair of inter-
secting lines, as illustrated above, or given a diagram showing the
measurement of one angle, find the measurement of its complement.
They can use a protractor to check, not to check their reasoning, but
to ensure that they develop full understanding of the mathematics
and mental images for important benchmark angles (e.g., 30 , 45 ,
60 , and 90 ).

Determining angle measurements

Students might be asked to determine the measurements of the
following angles:

BOD
BOF
ODE
CDE
CDJ
BHG

Such reasoning can be challenged with many situations as il-
lustrated in the margin.

Similar activities can be done with drawings of shapes using
right angles and half of a right angle to develop the important bench-
marks of 90 and 45 .

Missing measures can also be done in the turtle geometry con-
text, building on the previous work. Note that unguided use of
Logo’s turtle geometry does not necessary develop strong angle
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concepts. However, if teachers emphasize mathematical tasks and,
within those tasks, the difference between the angle of rotation the
turtle makes (in a polygon, the external angle) and the angle formed
(internal angle) and integrates the two, students can develop ac-
curate and comprehensive understandings of angle measure. For
example, what series of commands would produce a square? How
many degrees would the turtle turn? What is the measure of the
resulting angle? What would be the commands for an equilateral
triangle? How many degrees would the turtle turn? What is the
measure of the resulting angle? Such questions help to connect
what are often initially isolated ideas about angle conceptions.

These understandings support students in finding all the missing
length and angle measures in situations such as the examples in the
margin (compare to the missing measures problems Grade 2 and
Grade 3).

Missing measures: Length (top) and length and angle (turn)

Students are asked to determine the missing lengths. They might first work on paper to figure out how far the
Logo turtle would have to travel to finish drawing the house, then type in Logo commands to verify their
reasoning and calculations.
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Grade 5 4.MD.1Know relative sizes of measurement units within one sys-
tem of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec.
Within a single system of measurement, express measurements
in a larger unit in terms of a smaller unit. Record measurement
equivalents in a two-column table.5.MD.1Convert among different-sized standard measurement
units within a given measurement system (e.g., convert 5 cm to
0.05 m), and use these conversions in solving multi-step, real
world problems.

Convert like measurement units within a given measurement sys-tem In Grade 5, students extend their abilities from Grade 4 to
express measurements in larger or smaller units within a measure-
ment system.4.MD.1, 5.MD.1 This is an excellent opportunity to rein-
force notions of place value for whole numbers and decimals, and
connection between fractions and decimals (e.g., 2 1

2 meters can be
expressed as 2.5 meters or 250 centimeters). For example, building
on the table from Grade 4, Grade 5 students might complete a table
of equivalent measurements in feet and inches.

Feet Inches
0 0

1
2
3

In Grade 6, this table can be discussed in terms of ratios and
proportional relationships (see the Ratio and Proportion
Progression). In Grade 5, however, the main focus is on arriving
at the measurements that generate the table.

Grade 5 students also learn and use such conversions in solving
multi-step, real world problems (see example in the margin).

Multi-step problem with unit conversion

Kumi spent a fifth of her money on lunch. She then spent half
of what remained. She bought a card game for $3, a book
for $8.50, and candy for 90 cents. How much money did she
have at first?

?

3�00 8�50 0�90 12�40

$31

12�4012�406�20

Students can use tape diagrams to represent problems that
involve conversion of units, drawing diagrams of important
features and relationships (MP1).

Understand concepts of volume and relate volume to multiplicationand to addition The major emphasis for measurement in Grade 5
is volume. Volume not only introduces a third dimension and thus a
significant challenge to students’ spatial structuring, but also com-
plexity in the nature of the materials measured. That is, solid units
are “packed,” such as cubes in a three-dimensional array, whereas
a liquid “fills” three-dimensional space, taking the shape of the con-
tainer. As noted earlier (see Overview, also Grades 1 and 3), the
unit structure for liquid measurement may be psychologically one-
dimensional for some students.

“Packing” volume is more difficult than iterating a unit to measure
length and measuring area by tiling. Students learn about a unit
of volume, such as a cube with a side length of 1 unit, called a unit
cube.5.MD.3 They pack cubes (without gaps) into right rectangular

5.MD.3Recognize volume as an attribute of solid figures and un-
derstand concepts of volume measurement.

prisms and count the cubes to determine the volume or build right
rectangular prisms from cubes and see the layers as they build.5.MD.4

5.MD.4Measure volumes by counting unit cubes, using cubic cm,
cubic in, cubic ft, and improvised units.

They can use the results to compare the volume of right rectangu-
lar prisms that have different dimensions. Such experiences enable
students to extend their spatial structuring from two to three di-
mensions (see the Geometry Progression). That is, they learn to
both mentally decompose and recompose a right rectangular prism
built from cubes into layers, each of which is composed of rows
and columns. That is, given the prism, they have to be able to de-
compose it, understanding that it can be partitioned into layers, and
each layer partitioned into rows, and each row into cubes. They also
have to be able to compose such as structure, multiplicatively, back
into higher units. That is, they eventually learn to conceptualize a
layer as a unit that itself is composed of units of units—rows, each
row composed of individual cubes—and they iterate that structure.
Thus, they might predict the number of cubes that will be needed to
fill a box given the net of the box.

Net for five faces of a right rectangular prism

Students are given a net and asked to predict the number of
cubes required to fill the container formed by the net. In such
tasks, students may initially count single cubes or repeatedly
add the number of cubes in a row to determine the number in
each layer, and repeatedly add the number in each layer to find
the total number of unit cubes. In folding the net to make the
shape, students can see how the side rectangles fit together and
determine the number of layers.

Another complexity of volume is the connection between “pack-
ing” and “filling.” Often, for example, students will respond that a
box can be filled with 24 centimeter cubes, or build a structure of
24 cubes, and still think of the 24 as individual, often discrete, not
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necessarily units of volume. They may, for example, not respond
confidently and correctly when asked to fill a graduated cylinder
marked in cubic centimeters with the amount of liquid that would
fill the box. That is, they have not yet connected their ideas about
filling volume with those concerning packing volume. Students learn
to move between these conceptions, e.g., using the same container,
both filling (from a graduated cylinder marked in ml or cc) and pack-
ing (with cubes that are each 1 cm3). Comparing and discussing the
volume-units and what they represent can help students learn a
general, complete, and interconnected conceptualization of volume
as filling three-dimensional space.

Students then learn to determine the volumes of several right
rectangular prisms, using cubic centimeters, cubic inches, and cubic
feet. With guidance, they learn to increasingly apply multiplica-
tive reasoning to determine volumes, looking for and making use
of structure (MP7). That is, they understand that multiplying the
length times the width of a right rectangular prism can be viewed
as determining how many cubes would be in each layer if the prism
were packed with or built up from unit cubes.5.MD.5a They also learn

5.MD.5aFind the volume of a right rectangular prism with whole-
number side lengths by packing it with unit cubes, and show that
the volume is the same as would be found by multiplying the edge
lengths, equivalently by multiplying the height by the area of the
base. Represent threefold whole-number products as volumes,
e.g., to represent the associative property of multiplication.

that the height of the prism tells how many layers would fit in the
prism. That is, they understand that volume is a derived attribute
that, once a length unit is specified, can be computed as the product
of three length measurements or as the product of one area and one
length measurement.

Then, students can learn the formulas V � � � and
V B � for right rectangular prisms as efficient methods for com-
puting volume, maintaining the connection between these methods
and their previous work with computing the number of unit cubes
that pack a right rectangular prism.5.MD.5b They use these compe-

5.MD.5bApply the formulas V � � � and V � � for rect-
angular prisms to find volumes of right rectangular prisms with
whole-number edge lengths in the context of solving real world
and mathematical problems.tencies to find the volumes of right rectangular prisms with edges

whose lengths are whole numbers and solve real-world and math-
ematical problems involving such prisms.

Students also recognize that volume is additive (see Overview)
and they find the total volume of solid figures composed of two
right rectangular prisms.5.MD.5c For example, students might design

5.MD.5cRecognize volume as additive. Find volumes of solid fig-
ures composed of two non-overlapping right rectangular prisms
by adding the volumes of the non-overlapping parts, applying this
technique to solve real world problems.a science station for the ocean floor that is composed of several

rooms that are right rectangular prisms and that meet a set criterion
specifying the total volume of the station. They draw their station
(e.g., using an isometric grid, MP7) and justify how their design
meets the criterion (MP1).
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Where the Geometric Measurement Progression isheading
Connection to Geometry In Grade 6, students build on their un-
derstanding of length, area, and volume measurement, learning to
how to compute areas of right triangles and other special figures and
volumes of right rectangular prisms that do not have measurements
given in whole numbers. To do this, they use dissection arguments.
These rely on the understanding that area and volume measures are
additive, together with decomposition of plane and solid shapes (see
the K–5 Geometry Progression) into shapes whose measurements
students already know how to compute (MP1, MP7). In Grade 7,
they use their understanding of length and area in learning and
using formulas for the circumference and area of circles. In Grade
8, they use their understanding of volume in learning and using
formulas for the volumes of cones, cylinders, and spheres. In high
school, students learn formulas for volumes of pyramids and revisit
the formulas from Grades 7 and 8, explaining them with dissection
arguments, Cavalieri’s principle, and informal limit arguments.

Connection to the Number System In Grade 6, understanding of
length-units and spatial structuring comes into play as students
learn to plot points in the coordinate plane.

Connection to Ratio and Proportion Students use their knowledge
of measurement and units of measurement in Grades 6–8, coming to
see conversions between two units of measurement as describing
proportional relationships.
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Chapter 1

Geometry, K–6

Overview

Like core knowledge of number, core geometrical knowledge ap-
pears to be a universal capability of the human mind. Geometric and
spatial thinking are important in and of themselves, because they
connect mathematics with the physical world, and play an impor-
tant role in modeling phenomena whose origins are not necessarily
physical, for example, as networks or graphs. They are also impor-
tant because they support the development of number and arithmetic
concepts and skills. Thus, geometry is essential for all grade levels
for many reasons: its mathematical content, its roles in physical sci-
ences, engineering, and many other subjects, and its strong aesthetic
connections.

This progression discusses the most important goals for elemen-
tary geometry according to three categories.

• Geometric shapes, their components (e.g., sides, angles, faces),
their properties, and their categorization based on those prop-
erties.

• Composing and decomposing geometric shapes.

• Spatial relations and spatial structuring.

Geometric shapes, components, and properties. Students de-
velop through a series of levels of geometric and spatial thinking.
As with all of the domains discussed in the Progressions, this de-
velopment depends on instructional experiences. Initially, students
cannot reliably distinguish between examples and nonexamples of
categories of shapes, such as triangles, rectangles, and squares.•

• In formal mathematics, a geometric shape is a boundary of a
region, e.g., “circle” is the boundary of a disk. This distinction is
not expected in elementary school.With experience, they progress to the next level of thinking, rec-

ognizing shapes in ways that are visual or syncretic (a fusion of
differing systems). At this level, students can recognize shapes as
wholes, but cannot form mathematically-constrained mental images
of them. A given figure is a rectangle, for example, because “it looks
like a door.” They do not explicitly think about the components or
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about the defining attributes, or properties, of shapes. Students
then move to a descriptive level in which they can think about the
components of shapes, such as triangles having three sides. For ex-
ample, kindergartners can decide whether all of the sides of a shape
are straight and they can count the sides. They also can discuss
if the shape is closed• and thus convince themselves that a three-

• A shape with straight sides is closed if exactly two sides meet
at every vertex, every side meets exactly two other sides, and no
sides cross each other.sided shape is a triangle even if it is “very skinny” (e.g., an isosceles

triangle with large obtuse angle).
At the analytic level, students recognize and characterize shapes

Levels of geometric thinking

Visual/syncretic. Students recognize shapes, e.g., a rectangle
“looks like a door.”

Descriptive. Students perceive properties of shapes, e.g., a
rectangle has four sides, all its sides are straight, opposite sides
have equal length.

Analytic. Students characterize shapes by their properties, e.g.,
a rectangle has opposite sides of equal length and four right
angles.

Abstract. Students understand that a rectangle is a
parallelogram because it has all the properties of parallelograms.

by their properties.1 For instance, a student might think of a square
as a figure that has four equal sides and four right angles. Different
components of shapes are the focus at different grades, for instance,
second graders measure lengths and fourth graders measure angles
(see the Geometric Measurement Progression). Students find that
some combinations of properties signal certain classes of figures and
some do not; thus the seeds of geometric implication are planted.
However, only at the next level, abstraction, do students see rela-
tionships between classes of figures (e.g., understand that a square
is a rectangle because it has all the properties of rectangles).• Com-

• Note that in the U.S., that the term “trapezoid” may have
two different meanings. In their study The Classification of
Quadrilaterals (Information Age Publishing, 2008), Usiskin et al.
call these the exclusive and inclusive definitions:

T(E): a trapezoid is a quadrilateral with exactly one pair
of parallel sides

T(I): a trapezoid is a quadrilateral with at least one pair
of parallel sides.

These different meanings result in different classifica-
tions at the analytic level. According to T(E), a parallelogram is
not a trapezoid; according to T(I), a parallelogram is a trapezoid.

Both definitions are legitimate. However, Usiskin et al.
conclude, “The preponderance of advantages to the inclusive
definition of trapezoid has caused all the articles we could find
on the subject, and most college-bound geometry books, to favor
the inclusive definition.”

petence at this level affords the learning of higher-level geometry,
including deductive arguments and proof.

Thus, learning geometry cannot progress in the same way as
learning number, where the size of the numbers is gradually in-
creased and new kinds of numbers are considered later. In learning
about shapes, it is important to vary the examples in many ways
so that students do not learn limited concepts that they must later
unlearn. From Kindergarten on, students experience all of the prop-
erties of shapes that they will study in Grades K–7, recognizing and
working with these properties in increasingly sophisticated ways.
The Standards describe particular aspects on which students at that
grade level work systematically, deeply, and extensively, building on
related experiences in previous years.

Composing and decomposing. As with their learning of shapes,
components, and properties, students follow a progression to learn
about the composition and decomposition of shapes. Initially, they
lack competence in composing geometric shapes. With experience,
they gain abilities to combine shapes into pictures–first, through
trial and error, then gradually using attributes. Finally, they are
able to synthesize combinations of shapes into new shapes.•

• A note about research The ability to describe, use, and vi-
sualize the effects of composing and decomposing geometric re-
gions is significant in that the concepts and actions of creating
and then iterating units and higher-order units in the context of
constructing patterns, measuring, and computing are established
bases for mathematical understanding and analysis. Additionally,
there is suggestive evidence that this type of composition corre-
sponds with, and may support, children’s ability to compose and
decompose numbers.

Students compose new shapes by putting two or more shapes
together and discuss the shapes involved as the parts and the totals.
They decompose shapes in two ways. They take away a part by
covering the total with a part (for example, covering the “top” of a

1In this progression, the term “property” is reserved for those attributes that
indicate a relationship between components of shapes. Thus, “having parallel sides”
or “having all sides of equal lengths” are properties. “Attributes” and “features” are
used interchangeably to indicate any characteristic of a shape, including properties,
and other defining characteristics (e.g., straight sides) and nondefining characteristics
(e.g., “right-side up”).
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triangle with a smaller triangle to make a trapezoid). And they take
shapes apart by building a copy beside the original shape to see
what shapes that shape can be decomposed into (initially, they may
need to make the decomposition on top of the total shape). With
experience, students are able to use a composed shape as a new
unit in making other shapes. Grade 1 students make and use such a
unit of units (for example, making a square or a rectangle from two
identical right triangles, then making pictures or patterns with such
squares or rectangles). Grade 2 students make and use three levels
of units (making an isosceles triangle from two 12 by 22 right trian-
gles, then making a rhombus from two of such isosceles triangles,
and then using such a rhombus with other shapes to make a picture
or a pattern). Grade 2 students also compose with two such units of
units (for example, making adjacent strips from a shorter parallelo-
gram made from a 12 by 22 rectangle and two right triangles and a
longer parallelogram made from a 12 by 32 parallelogram and the
same two right triangles). Grade 1 students also rearrange a com-
posite shape to make a related shape, for example, they change a
12 by 22 rectangle made from two right triangles into an isosceles
triangle by flipping one right triangle. They explore such rearrange-
ments of the two right triangles more systematically by matching the
short right angle side (a tall isosceles triangle and a parallelogram
with a “little slant”), then the long right angle sides (a short isosceles
triangle and a parallelogram with a “long slant”). Grade 2 students
rearrange more complex shapes, for example, changing a parallelo-
gram made from a rectangle and two right triangles into a trapezoid
by flipping one of the right triangles to make a longer and a shorter
parallel side.

Composing and decomposing requires and thus builds experience
with properties such as having equal lengths or equal angles.

Spatial structuring and spatial relations. Early composition and
decomposition of shape is a foundation for spatial structuring, an
important case of geometric composition and decomposition. Stu-
dents need to conceptually structure an array to understand two-
dimensional objects and sets of such objects in two-dimensional
space as truly two-dimensional. Such spatial structuring is the men-
tal operation of constructing an organization or form for an object or
set of objects in space, a form of abstraction, the process of select-
ing, coordinating, unifying, and registering in memory a set of men-
tal objects and actions. Spatial structuring builds on previous shape
composition, because it takes previously abstracted items as content
and integrates them to form new structures. For two-dimensional
arrays, students must see a composite of squares (iterated units)
and as a composite of rows or columns (units of units). Such spatial
structuring precedes meaningful mathematical use of the structures,
including multiplication and, later, area, volume, and the coordinate
plane. Spatial relations such as above/below and right/left are un-
derstood within such spatial structures. These understandings begin
informally, later becoming more formal.
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The ability to structure a two-dimensional rectangular region
into rows and columns of squares requires extended experiences
with shapes derived from squares (e.g., squares, rectangles, and right
triangles) and with arrays of contiguous squares that form patterns.
Development of this ability benefits from experience with compo-
sitions, decompositions, and iterations of the two, but it requires
extensive experience with arrays.

Students make pictures from shapes whose sides or points touch,
and they fill in outline puzzles. These gradually become more elab-
orate, and students build mental visualizations that enable them to
move from trial and error rotating of a shape to planning the orien-
tation and moving the shape as it moves toward the target location.
Rows and columns are important units of units within square arrays
for the initial study of area, and squares of 1 by 1, 1 by 10, and 10
by 10 are the units, units of units, and units of units of units used
in area models of two-digit multiplication in Grade 4. Layers of
three-dimensional shapes are central for studying volume in Grade
5. Each layer of a right rectangular prism can also be structured in
rows and columns, such layers can also be viewed as units of units
of units. That is, as 1000 is a unit (one thousand) of units (one hun-
dred) of units (tens) of units (singletons), a right rectangular prism
can be considered a unit (solid, or three-dimensional array) of units
(layers) of units (rows) of units (unit cubes).

Summary. The Standards for Kindergarten, Grade 1, and Grade
2 focus on three major aspects of geometry. Students build under-
standings of shapes and their properties, becoming able to do and
discuss increasingly elaborate compositions, decompositions, and it-
erations of the two, as well as spatial structures and relations. In
Grade 2, students begin the formal study of measure, learning to
use units of length and use and understand rulers. Measurement of
angles and parallelism are a focus in Grades 3, 4, and 5. At Grade 3,
students begin to consider relationships of shape categories, consid-
ering two levels of subcategories (e.g., rectangles are parallelograms
and squares are rectangles). They complete this categorization in
Grade 5 with all necessary levels of categories and with the under-
standing that any property of a category also applies to all shapes
in any of its subcategories. They understand that some categories
overlap (e.g., not all parallelograms are rectangles) and some are
disjoint (e.g., no square is a triangle), and they connect these with
their understanding of categories and subcategories. Spatial struc-
turing for two- and three-dimensional regions is used to understand
what it means to measure area and volume of the simplest shapes
in those dimensions: rectangles at Grade 3 and right rectangular
prisms at Grade 5 (see the Geometric Measurement Progression).

K.G.4Analyze and compare two- and three-dimensional shapes,
in different sizes and orientations, using informal language to de-
scribe their similarities, differences, parts (e.g., number of sides
and vertices/“corners”) and other attributes (e.g., having sides of
equal length).

Draft, 27 December 2014, comment at commoncoretools.wordpress.com.

commoncoretools.wordpress.com


CHAPTER 1. G, K–6 6

Kindergarten
Understanding and describing shapes and space is one of the two

K.G.4Analyze and compare two- and three-dimensional shapes,
in different sizes and orientations, using informal language to de-
scribe their similarities, differences, parts (e.g., number of sides
and vertices/“corners”) and other attributes (e.g., having sides of
equal length).

critical areas of Kindergarten mathematics. Students develop ge-
ometric concepts and spatial reasoning from experience with two
perspectives on space: the shapes of objects and the relative posi-
tions of objects.

In the domain of shape, students learn to match two-dimensional
shapes even when the shapes have different orientations.K.G.4 They
learn to name shapes such as circles, triangles, and squares, whose
names occur in everyday language, and distinguish them from nonex-
amples of these categories, often based initially on visual prototypes.

Exemplars are the typical visual prototypes of the shape
category.

Variants are other examples of the shape category.

Palpable distractors are nonexamples with little or no overall
resemblance to the exemplars.

Difficult distractors are visually similar to examples but lack at
least one defining attribute.

For example, they can distinguish the most typical examples of tri-
angles from the obvious nonexamples.

From experiences with varied examples of these shapes (e.g., the
variants shown in the margin), students extend their initial intuitions
to increasingly comprehensive and accurate intuitive concept images
of each shape category.• These richer concept images support stu-

• Tall and Vinner describe concept image as “the total cognitive
structure that is associated with the concept, which includes all
the mental pictures and associated properties and processes. It
is built over the years through experiences of all kinds, chang-
ing as the individual meets new stimuli and matures.” (See “Con-
cept Image and Concept Definition in Mathematics with Particular
Reference to Limits and Continuity,” Educational Studies in Math-
ematics, 12, pp. 151–169.) This term was formulated by Shlomo
Vinner in 1980.

dents’ ability to perceive a variety of shapes in their environments
and describe these shapes in their own words.MP7 This includes

MP7 Mathematically proficient students look closely to discern a
pattern or structure.

recognizing and informally naming three-dimensional shapes, e.g.,
“balls,” “boxes,” “cans.” Such learning might also occur in the con-
text of solving problems that arise in construction of block buildings
and in drawing pictures, simple maps, and so forth.

Students then refine their informal language by learning mathe-
matical concepts and vocabulary so as to increasingly describe their
physical world from geometric perspectives, e.g., shape, orientation,
spatial relations (MP4). They increase their knowledge of a variety
of shapes, including circles, triangles, squares, rectangles, and spe-
cial cases of other shapes such as regular hexagons, and trapezoids
with unequal bases and non-parallel sides of equal length.K.G.1 •

K.G.1Describe objects in the environment using names of
shapes, and describe the relative positions of these objects using
terms such as above, below, beside, in front of, behind, and next
to.

• If the exclusive definition of trapezoid is used (see p. 3), such
trapezoids would be called isosceles trapezoids.

They learn to sort shapes according to these categories.MP7 The

MP7 Young students, for example, . . . may sort a collection of
shapes according to how many sides the shapes have.

need to explain their decisions about shape names or classifications
prompts students to attend to and describe certain features of the
shapes.K.G.4 That is, concept images and names they have learned
for the shapes are the raw material from which they can abstract
common features.MP2 This also supports their learning to represent

MP2 Mathematically proficient students have the ability to ab-
stract a given situation.

shapes informally with drawings and by building them from compo-
nents (e.g., manipulatives such as sticks).K.G.5 With repeated expe-

K.G.5Model shapes in the world by building shapes from compo-
nents (e.g., sticks and clay balls) and drawing shapes.

riences such as these, students become more precise (MP6). They
begin to attend to attributes, such as being a triangle, square, or
rectangle, and being closed figures with straight sides. Similarly,
they attend to the lengths of sides and, in simple situations, the size
of angles when comparing shapes.

Students also begin to name and describe three-dimensional
shapes with mathematical vocabulary, such as “sphere,” “cube,” “cylin-
der,” and “cone.”K.G.1 They identify faces of three-dimensional shapes
as two-dimensional geometric figuresK.G.4 and explicitly identify shapes
as two-dimensional (“flat” or lying in a plane) or three-dimensional
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(“solid”).K.G.3 K.G.3Identify shapes as two-dimensional (lying in a plane, “flat”)
or three-dimensional (“solid”).A second important area for kindergartners is the composition of

geometric figures. Students not only build shapes from components, Combining shapes to build pictures

Students first use trial and error (part a) and gradually consider
components (part b).

but also compose shapes to build pictures and designs. Initially
lacking competence in composing geometric shapes, they gain abil-
ities to combine shapes–first by trial and error and gradually by
considering components–into pictures. At first, side length is the
only component considered. Later experience brings an intuitive
appreciation of angle size.

Students combine two-dimensional shapes and solve problems
such as deciding which piece will fit into a space in a puzzle, intu-
itively using geometric motions (slides, flips, and turns, the informal
names for translations, reflections, and rotations, respectively). They
can construct their own outline puzzles and exchange them, solving
each other’s.

Finally, in the domain of spatial reasoning, students discuss not
only shape and orientation, but also the relative positions of objects,
using terms such as “above,” “below,” “next to,” “behind,” “in front of,”
and “beside.”K.G.1 They use these spatial reasoning competencies,
along with their growing knowledge of three-dimensional shapes
and their ability to compose them, to model objects in their environ-
ment, e.g., building a simple representation of the classroom using
unit blocks and/or other solids (MP4).
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Grade 1
In Grade 1, students reason about shapes. They describe and clas-
sify shapes, including drawings, manipulatives, and physical-world
objects, in terms of their geometric attributes. That is, based on
early work recognizing, naming, sorting, and building shapes from
components, they describe in their own words why a shape belongs
to a given category, such as squares, triangles, circles, rectangles,
rhombuses, (regular) hexagons, and trapezoids (with bases of dif-
ferent lengths and nonparallel sides of the same length). In doing
so, they differentiate between geometrically defining attributes (e.g.,
“hexagons have six straight sides”) and nondefining attributes (e.g.,
color, overall size, or orientation).1.G.1 For example, they might say

1.G.1Distinguish between defining attributes (e.g., triangles are
closed and three-sided) versus non-defining attributes (e.g.,
color, orientation, overall size) ; build and draw shapes to pos-
sess defining attributes.of this shape, “This has to go with the squares, because all four

sides are the same, and these are square corners. It doesn’t matter
which way it’s turned” (MP3, MP7). They explain why the variants
shown earlier (p. 6) are members of familiar shape categories and
why the difficult distractors are not, and they draw examples and
nonexamples of the shape categories. Students learn to sort shapes
accurately and exhaustively based on these attributes, describing
the similarities and differences of these familiar shapes and shape
categories (MP7, MP8).

From the early beginnings of informally matching shapes and
solving simple shape puzzles, students learn to intentionally com-
pose and decompose plane and solid figures (e.g., putting two con-
gruent isosceles triangles together with the explicit purpose of mak-
ing a rhombus),1.G.2 building understanding of part-whole relation-

1.G.2Compose two-dimensional shapes (rectangles, squares,
trapezoids, triangles, half-circles, and quarter-circles) or three-
dimensional shapes (cubes, right rectangular prisms, right cir-
cular cones, and right circular cylinders) to create a composite
shape, and compose new shapes from the composite shape.2

ships as well as the properties of the original and composite shapes.
In this way, they learn to perceive a combination of shapes as a sin-
gle new shape (e.g., recognizing that two isosceles triangles can be
combined to make a rhombus, and simultaneously seeing the rhom-
bus and the two triangles). Thus, they develop competencies that

Arches created from prisms

Right rectangular prisms are composed with prisms with right
triangle bases. Note that the dimensions of the triangular prism
on the top arch differ from the dimensions of that on the right.

include solving shape puzzles and constructing designs with shapes,
creating and maintaining a shape as a unit, and combining shapes
to create composite shapes that are conceptualized as independent
entities (MP2). They then learn to substitute one composite shape
for another congruent composite composed of different parts.

Students build these competencies, often more slowly, in the
domain of three-dimensional shapes. For example, students may
intentionally combine two right triangular prisms to create a right
rectangular prism, and recognize that each triangular prism is half
of the rectangular prism.1.G.3 They also show recognition of the com- 1.G.3Partition circles and rectangles into two and four equal

shares, describe the shares using the words halves, fourths, and
quarters, and use the phrases half of, fourth of, and quarter of.
Describe the whole as two of, or four of the shares. Understand
for these examples that decomposing into more equal shares cre-
ates smaller shares.

posite shape of “arch.” (Note that the process of combining shapes
to create a composite shape is much like combining 10 ones to make
1 ten.) Even simple compositions, such as building a floor or wall of
rectangular prisms, build a foundation for later mathematics.

As students combine shapes, they continue to develop their so-
phistication in describing geometric attributes and properties and
determining how shapes are alike and different, building founda-
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tions for measurement and initial understandings of properties such
as congruence and symmetry. Students can learn to use their in-
tuitive understandings of measurement, congruence, and symmetry
to guide their work on tasks such as solving puzzles and making
simple origami constructions by folding paper to make a given two-
or three-dimensional shape (MP1).•

• For example, students might fold a square of paper once to
make a triangle or nonsquare rectangle. For examples of other
simple two- and three-dimensional origami constructions, see
http://www.origami-instructions.com/simple-origami.html.
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Grade 2
Students learn to name and describe the defining attributes of cate-
gories of two-dimensional shapes, including circles, triangles, squares,
rectangles, rhombuses, trapezoids, and the general category of quadri-
lateral. They describe pentagons, hexagons, septagons, octagons,
and other polygons by the number of sides, for example, describing
a septagon as either a “seven-gon” or simply “seven-sided shape”
(MP2).2.G.1 Because they have developed both verbal descriptions

2.G.1Recognize and draw shapes having specified attributes,
such as a given number of angles or a given number of equal
faces.3 Identify triangles, quadrilaterals, pentagons, hexagons,
and cubes.of these categories and their defining attributes and a rich store of

associated mental images, they are able to draw shapes with spec-
ified attributes, such as a shape with five sides or a shape with
six angles.2.G.1 They can represent these shapes’ attributes accu-

2.G.1Recognize and draw shapes having specified attributes,
such as a given number of angles or a given number of equal
faces.4 Identify triangles, quadrilaterals, pentagons, hexagons,
and cubes.rately (within the constraints of fine motor skills). They use length

to identify the properties of shapes (e.g., a specific figure is a rhom-
bus because all four of its sides have equal length). They recognize
right angles, and can explain the distinction between a rectangle
and a parallelogram without right angles and with sides of different
lengths (sometimes called a “rhomboid”).

Students learn to combine their composition and decomposition
competencies to build and operate on composite units (units of units),
intentionally substituting arrangements or composites of smaller
shapes or substituting several larger shapes for many smaller shapes,
using geometric knowledge and spatial reasoning to develop foun-
dations for area, fraction, and proportion. For example, they build

Different pattern blocks compose a regular hexagon

the same shape from different parts, e.g., making with pattern blocks,
a regular hexagon from two trapezoids, three rhombuses, or six equi-
lateral triangles. They recognize that the hexagonal faces of these
constructions have equal area, that each trapezoid has half of that
area, and each rhombus has a third of that area.2.G.3

2.G.3Partition circles and rectangles into two, three, or four equal
shares, describe the shares using the words halves, thirds, half
of, a third of, etc., and describe the whole as two halves, three
thirds, four fourths. Recognize that equal shares of identical
wholes need not have the same shape.

This example emphasizes the fraction concepts that are devel-
oped; students can build and recognize more difficult composite
shapes and solve puzzles with numerous pieces. For example, a
tangram is a special set of 7 shapes which compose an isosceles
right triangle. The tangram pieces can be used to make many dif-
ferent configurations and tangram puzzles are often posed by show-
ing pictures of these configurations as silhouettes or outlines. These
pictures often are made more difficult by orienting the shapes so that
the sides of right angles are not parallel to the edges of the page on
which they are displayed. Such pictures often do not show a grid
that shows the composing shapes and are generally not preceded
by analysis of the composing shapes.

Squares partitioned into fourths

These different partitions of a square afford the opportunity for
students to identify correspondences between the
differently-shaped fourths (MP.1), and to explain how one of the
fourths on the left can be transformed into one of the fourths on
the right (MP.7).

Students also explore decompositions of shapes into regions that
are congruent or have equal area.2.G.3 For example, two squares can

2.G.3Partition circles and rectangles into two, three, or four equal
shares, describe the shares using the words halves, thirds, half
of, a third of, etc., and describe the whole as two halves, three
thirds, four fourths. Recognize that equal shares of identical
wholes need not have the same shape.

be partitioned into fourths in different ways. Any of these fourths
represents an equal share of the shape (e.g., “the same amount of
cake”) even though they have different shapes.

Another type of composition and decomposition is essential to
students’ mathematical development—spatial structuring. Students
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need to conceptually structure an array to understand two-dimensional
regions as truly two-dimensional. This involves more learning than
is sometimes assumed. Students need to understand how a rectan-
gle can be tiled with squares lined up in rows and columns.2.G.2 At

2.G.2Partition a rectangle into rows and columns of same-size
squares and count to find the total number of them.

Levels of thinking in spatial structuring

Levels of thinking portrayed by different students as they
attempted to complete a drawing of an array of squares, given
one column and row. This was an assessment, not an
instructional task.

the lowest level of thinking, students draw or place shapes inside
the rectangle, but do not cover the entire region. Only at the later
levels do all the squares align vertically and horizontally, as the stu-
dents learn to compose this two-dimensional shape as a collection
of rows of squares and as a collection of columns of squares (MP7).

Spatial structuring is thus the mental operation of constructing
an organization or form for an object or set of objects in space, a
form of abstraction, the process of selecting, coordinating, unifying,
and registering in memory a set of mental objects and actions. Spa-
tial structuring builds on previous shape composition, because pre-
viously abstracted items (e.g., squares, including composites made
up of squares) are used as the content of new mental structures.
Students learn to see an object such as a row in two ways: as a
composite of multiple squares and as a single entity, a row (a unit
of units). Using rows or columns to cover a rectangular region is, at
least implicitly, a composition of units. At first, students might tile a
rectangle with identical squares or draw such arrays and then count
the number of squares one-by-one. In the lowest levels of the pro-
gression, they may even lose count of or double-count some squares.
As the mental structuring process helps them organize their count-
ing, they become more systematic, using the array structure to guide
the quantification. Eventually, they begin to use repeated addition
of the number in each row or each column. Such spatial structuring
precedes meaningful mathematical use of the structures, including
multiplication and, later, area, volume, and the coordinate plane.

Foundational activities, such as forming arrays by tiling a rectan-
gle with identical squares (as in building a floor or wall from blocks)
should have developed students’ basic spatial structuring competen-
cies before second grade—if not, teachers should ensure that their
students learn these skills. Spatial structuring can be further devel-
oped with several activities with grids. Games such as “battleship”
can be useful in this regard.

Another useful type of instructional activity is copying and cre-
ating designs on grids. Students can copy designs drawn on grid

Copying and creating designs on grid paper

Students can copy designs such as these, using only squares
(all of the same size) and isosceles right triangles (half of the
square) as manipulatives, creating their copies on paper with
grid squares of the same size as the manipulative square.

paper by placing manipulative squares and right triangles onto other
copies of the grid. They can also create their own designs, draw their
creations on grid paper, and exchange them, copying each others’
designs.

Another, more complex, activity designing tessellations by iter-
ating a “core square.” Students design a unit composed of smaller
units: a core square composed of a 2 by 2 array of squares filled
with square or right triangular regions. They then create the tes-
sellation (“quilt”) by iterating that core in the plane. This builds
spatial structuring because students are iterating “units of units”
and reflecting on the resulting structures. Computer software can
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aid in this iteration. “Core squares” iterated to make a tessellation

In the software environment illustrated above (Pattern Blocks
and Mini-Quilts software), students need to be explicitly aware of
the transformations they are using in order to use slide, flip, and
turn tools. At any time, they can tessellate any one of the core
squares using the “quilt” tool indicated by the rightmost icon.
Part a shows four different core squares. The upper left core
square produces the tessellation in part b. Parts c and d are
produced, respectively, by the upper right and lower right core
squares. Interesting discussions result when the class asks
which designs are mathematically different (e.g., should a
rotation or flip of the core be counted as “different”s?).

These various types of composition and decomposition experi-
ences simultaneously develop students’ visualization skills, including
recognizing, applying, and anticipating (MP1) the effects of applying
rigid motions (slides, flips, and turns) to two-dimensional shapes.
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Grade 3
Students analyze, compare, and classify two-dimensional shapes by
their properties (see the footnote on p. 3).3.G.1 They explicitly relate

3.G.1Understand that shapes in different categories (e.g., rhom-
buses, rectangles, and others) may share attributes (e.g., having
four sides), and that the shared attributes can define a larger cat-
egory (e.g., quadrilaterals). Recognize rhombuses, rectangles,
and squares as examples of quadrilaterals, and draw examples
of quadrilaterals that do not belong to any of these subcategories.

and combine these classifications. Because they have built a firm
foundation of several shape categories, these categories can be the
raw material for thinking about the relationships between classes.
For example, students can form larger, superordinate, categories,
such as the class of all shapes with four sides, or quadrilaterals,
and recognize that it includes other categories, such as squares,
rectangles, rhombuses, parallelograms, and trapezoids. They also
recognize that there are quadrilaterals that are not in any of those
subcategories. A description of these categories of quadrilaterals is

Quadrilaterals and some special kinds of quadrilaterals

The representations above might be used by teachers in class.
Note that the left-most four shapes in the first section at the top
left have four sides but do not have properties that would place
them in any of the other categories shown (parallelograms,
rectangles, squares).

illustrated in the margin. The Standards do not require that such
representations be constructed by Grade 3 students, but they should
be able to draw examples of quadrilaterals that are not in the sub-
categories.

Similarly, students learn to draw shapes with prespecified at-
tributes, without making a priori assumptions regarding their class-
ification.MP1 For example, they could solve the problem of making a

MP1 Students . . . analyze givens, constraints, relationships,
and goals.

shape with two long sides of the same length and two short sides
of the same length that is not a rectangle.

Quadrilaterals that are not rectangles

These quadrilaterals have two pairs of sides of the same length
but are not rectangles. A kite is on lower left and a deltoid is at
lower right.

Students investigate, describe, and reason about decomposing
and composing polygons to make other polygons. Problems such
as finding all the possible different compositions of a set of shapes
involve geometric problem solving and notions of congruence and
symmetry (MP7). They also involve the practices of making and
testing conjectures (MP1), and convincing others that conjectures
are correct (or not) (MP3). Such problems can be posed even for
sets of simple shapes such as tetrominoes, four squares arranged
to form a shape so that every square shares at least one side and
sides coincide or share only a vertex.

More advanced paper-folding (origami) tasks afford the same
mathematical practices of seeing and using structure, conjecturing,
and justifying conjectures. Paper folding can also illustrate many
geometric concepts. For example, folding a piece of paper creates a
line segment. Folding a square of paper twice, horizontal edge to
horizontal edge, then vertical edge to vertical edge, creates a right
angle, which can be unfolded to show four right angles. Students can
be challenged to find ways to fold paper into rectangles or squares
and to explain why the shapes belong in those categories.

Students also develop more competence in the composition and
decomposition of rectangular regions, that is, spatially structuring
rectangular arrays. They learn to partition a rectangle into identical
squares3.G.2 by anticipating the final structure and thus forming the

3.G.2Partition shapes into parts with equal areas. Express the
area of each part as a unit fraction of the whole.

array by drawing rows and columns (see the bottom right example
on p. 11; some students may still need work building or drawing
squares inside the rectangle first). They count by the number of
columns or rows, or use multiplication to determine the number of
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squares in the array. They also learn to rotate these arrays phys-
ically and mentally to view them as composed of smaller arrays,
allowing illustrations of properties of multiplication (e.g., the com-
mutative property and the distributive property).
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Grade 4
Students describe, analyze, compare, and classify two-dimensional
shapes by their properties (see the footnote on p. 3), including ex-
plicit use of angle sizes4.G.1 and the related geometric properties of

4.G.1Draw points, lines, line segments, rays, angles (right, acute,
obtuse), and perpendicular and parallel lines. Identify these in
two-dimensional figures.perpendicularity and parallelism.4.G.2 They can identify these prop-
4.G.2Classify two-dimensional figures based on the presence or
absence of parallel or perpendicular lines, or the presence or ab-
sence of angles of a specified size. Recognize right triangles as
a category, and identify right triangles.

erties in two-dimensional figures. They can use side length to clas-
sify triangles as equilateral, equiangular, isosceles, or scalene; and
can use angle size to classify them as acute, right, or obtuse. They
then learn to cross-classify, for example, naming a shape as a right
isosceles triangle. Thus, students develop explicit awareness of and
vocabulary for many concepts they have been developing, includ-
ing points, lines, line segments, rays, angles (right, acute, obtuse),
and perpendicular and parallel lines. Such mathematical terms are
useful in communicating geometric ideas, but more important is that
constructing examples of these concepts, such as drawing angles
and triangles that are acute, obtuse, and right,4.G.1 help students

4.G.1Draw points, lines, line segments, rays, angles (right, acute,
obtuse), and perpendicular and parallel lines. Identify these in
two-dimensional figures.form richer concept images connected to verbal definitions. That is,

students have more complete and accurate mental images and as-
sociated vocabulary for geometric ideas (e.g., they understand that
angles can be larger than 90˝ and their concept images for angles
include many images of such obtuse angles). Similarly, students see
points and lines as abstract objects: Lines are infinite in extent and
points have location but no dimension. Grids are made of points and
lines and do not end at the edge of the paper.

Students also learn to apply these concepts in varied contexts
(MP4). For example, they learn to represent angles that occur in
various contexts as two rays, explicitly including the reference line,
e.g., a horizontal or vertical line when considering slope or a “line
of sight” in turn contexts. They understand the size of the angle as
a rotation of a ray on the reference line to a line depicting slope
or as the “line of sight” in computer environments. Students might
solve problems of drawing shapes with turtle geometry.• Analyzing

• The computer programming language Logo has a pointer, often
a icon of a turtle, that draws representations of points, line seg-
ments, and shapes, with commands such as “forward 100” and
“right 120.”the shapes in order to construct them (MP1) requires students to

explicitly formulate their ideas about the shapes (MP4, MP6). For
instance, what series of commands would produce a square? How
many degrees would the turtle turn? What is the measure of the
resulting angle? What would be the commands for an equilateral
triangle? How many degrees would the turtle turn? What is the
measure of the resulting angle? Such experiences help students
connect what are often initially isolated ideas about the concept of
angle.

Students might explore line segments, lengths, perpendicularity,
and parallelism on different types of grids, such as rectangular and
triangular (isometric) grids (MP1, MP2).4.G.2, 4.G.3 Can you find a

4.G.2Classify two-dimensional figures based on the presence or
absence of parallel or perpendicular lines, or the presence or ab-
sence of angles of a specified size. Recognize right triangles as
a category, and identify right triangles.

4.G.3Recognize a line of symmetry for a two-dimensional figure
as a line across the figure such that the figure can be folded along
the line into matching parts. Identify line-symmetric figures and
draw lines of symmetry.

non-rectangular parallelogram on a rectangular grid? Can you find
a rectangle on a triangular grid? Given a segment on a rectangular
grid that is not parallel to a grid line, draw a parallel segment of
the same length with a given endpoint. Given a half of a figure and
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a line of symmetry, can you accurately draw the other half to create
a symmetric figure?

Students also learn to reason about these concepts. For example,
in “guess my rule” activities, they may be shown two sets of shapes
and asked where a new shape belongs (MP1, MP2).4.G.2

4.G.2Classify two-dimensional figures based on the presence or
absence of parallel or perpendicular lines, or the presence or ab-
sence of angles of a specified size. Recognize right triangles as
a category, and identify right triangles.

Guess My Rule

Students can be shown the two groups of shapes in part a and
asked “Where does the shape on the left belong?” They might
surmise that it belongs with the other triangles at the bottom.
When the teacher moves it to the top, students must search for a
different rule that fits all the cases.

Later (part b), students may induce the rule: “Shapes with at
least one right angle are at the top.” Students with rich visual
images of right angles and good visualization skills would
conclude that the shape at the left (even though it looks vaguely
like another one already at the bottom) has one right angle, thus
belongs at the top.

In an interdisciplinary lesson (that includes science and engi-
neering ideas as well as items from mathematics), students might
encounter another property that all triangles have: rigidity. If four
fingers (both thumbs and index fingers) form a shape (keeping the
fingers all straight), the shape of that quadrilateral can be easily
changed by changing the angles. However, using three fingers (e.g.,
a thumb on one hand and the index and third finger of the other
hand), students can see that the shape is fixed by the side lengths.
Triangle rigidity explains why this shape is found so frequently in
bridge, high-wire towers, amusement park rides, and other construc-
tions where stability is sought.
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Grade 5
By the end of Grade 5, competencies in shape composition and de-
composition, and especially the special case of spatial structuring of
rectangular arrays (recall p. 11), should be highly developed (MP7).
Students need to develop these competencies because they form a
foundation for understanding multiplication, area, volume, and the
coordinate plane. To solve area problems, for example, the ability
to decompose and compose shapes plays multiple roles. First, stu-
dents understand that the area of a shape (in square units) is the
number of unit squares it takes to cover the shape without gaps or
overlaps. They also use decomposition in other ways. For example,
to calculate the area of an “L-shaped” region, students might de-
compose the region into rectangular regions, then decompose each
region into an array of unit squares, spatially structuring each array
into rows or columns. Students extend their spatial structuring in
two ways. They learn to spatially structure in three dimensions; for
example, they can decompose a right rectangular prism built from
cubes into layers, seeing each layer as an array of cubes. They use
this understanding to find the volumes of right rectangular prisms
with edges whose lengths are whole numbers as the number of unit
cubes that pack the prisms (see the Geometric Measurement Pro-
gression). Second, students extend their knowledge of the coordi-
nate plane, understanding the continuous nature of two-dimensional
space and the role of fractions in specifying locations in that space.

Thus, spatial structuring underlies coordinates for the plane as
well, and students learn both to apply it and to distinguish the ob-
jects that are structured. For example, they learn to interpret the
components of a rectangular grid structure as line segments or lines
(rather than regions) and understand the precision of location that
these lines require, rather than treating them as fuzzy boundaries
or indicators of intervals. Students learn to reconstruct the levels of
counting and quantification that they had already constructed in the
domain of discrete objects to the coordination of (at first) two contin-
uous linear measures. That is, they learn to apply their knowledge
of number and length to the order and distance relationships of a
coordinate grid and to coordinate this across two dimensions.5.G.1

5.G.1Use a pair of perpendicular number lines, called axes, to de-
fine a coordinate system, with the intersection of the lines (the ori-
gin) arranged to coincide with the 0 on each line and a given point
in the plane located by using an ordered pair of numbers, called
its coordinates. Understand that the first number indicates how
far to travel from the origin in the direction of one axis, and the
second number indicates how far to travel in the direction of the
second axis, with the convention that the names of the two axes
and the coordinates correspond (e.g.,x-axis and x-coordinate, y-
axis and y-coordinate).

Although students can often “locate a point,” these understand-
ings are beyond simple skills. For example, initially, students often
fail to distinguish between two different ways of viewing the point
p2, 3q, say, as instructions: “right 2, up 3”; and as the point defined
by being a distance 2 from the y-axis and a distance 3 from the
x-axis. In these two descriptions the 2 is first associated with the
x-axis, then with the y-axis.

They connect ordered pairs of (whole number) coordinates to
points on the grid, so that these coordinate pairs constitute numeri-
cal objects and ultimately can be operated upon as single mathemat-
ical entities. Students solve mathematical and real-world problems
using coordinates. For example, they plan to draw a symmetric fig-
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ure using computer software in which students’ input coordinates
that are then connected by line segments.5.G.2

5.G.2Represent real world and mathematical problems by graph-
ing points in the first quadrant of the coordinate plane, and inter-
pret coordinate values of points in the context of the situation.Students learn to analyze and relate categories of two-dimensional

and three-dimensional shapes explicitly based on their properties.5.G.4 5.G.4Classify two-dimensional figures in a hierarchy based on
properties.

Venn diagram showing classification of quadrilaterals

Note that rhomboids are parallelograms that are not rhombuses
or rectangles. This example uses the inclusive definition of
trapezoid (see p. [pageref “T(E)”)]).

Based on analysis of properties, they classify two-dimensional fig-
ures in hierarchies. For example, they conclude that all rectan-
gles are parallelograms, because they are all quadrilaterals with
two pairs of opposite, parallel, equal-length sides (MP3). In this
way, they relate certain categories of shapes as subclasses of other
categories.5.G.3 This leads to understanding propagation of prop-

5.G.3Understand that attributes belonging to a category of two-
dimensional figures also belong to all subcategories of that cate-
gory.

erties; for example, students understand that squares possess all
properties of rhombuses and of rectangles. Therefore, if they then
show that rhombuses’ diagonals are perpendicular bisectors of one
another, they infer that squares’ diagonals are perpendicular bisec-
tors of one another as well.
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Grade 6
Problems involving areas and volumes extend previous work and
provide a context for developing and using equations.6.G.1, 6.G.2 Stu-

6.G.1Find the area of right triangles, other triangles, special
quadrilaterals, and polygons by composing into rectangles or de-
composing into triangles and other shapes; apply these tech-
niques in the context of solving real-world and mathematical prob-
lems.

6.G.2Find the volume of a right rectangular prism with fractional
edge lengths by packing it with unit cubes of the appropriate unit
fraction edge lengths, and show that the volume is the same as
would be found by multiplying the edge lengths of the prism. Ap-
ply the formulas V “ lwh and V “ bh to find volumes of right
rectangular prisms with fractional edge lengths in the context of
solving real-world and mathematical problems.

dents’ competencies in shape composition and decomposition, espe-
cially with spatial structuring of rectangular arrays (recall p. 11),
should be highly developed. These competencies form a foundation
for understanding multiplication, formulas for area and volume, and
the coordinate plane.6.NS.6, 6.NS.8

6.NS.6Understand a rational number as a point on the number
line. Extend number line diagrams and coordinate axes familiar
from previous grades to represent points on the line and in the
plane with negative number coordinates.

6.NS.8Solve real-world and mathematical problems by graphing
points in all four quadrants of the coordinate plane. Include use of
coordinates and absolute value to find distances between points
with the same first coordinate or the same second coordinate.

Using the shape composition and decomposition skills acquired
in earlier grades, students learn to develop area formulas for paral-
lelograms, then triangles. They learn how to address three different
cases for triangles: a height that is a side of a right angle, a height
that “lies over the base” and a height that is outside the triangle.MP.1

MP.1 Students . . . try special cases and simpler forms of the
original problem in order to gain insight into its solution.

Through such activity, students learn that that any side of a
triangle can be considered as a base and the choice of base deter-
mines the height (thus, the base is not necessarily horizontal and
the height is not always in the interior of the triangle). The ability
to view a triangle as part of a parallelogram composed of two copies
of that triangle and the understanding that area is additive (see the
Geometric Measurement Progression) provides a justification (MP3)
for halving the product of the base times the height, helping students
guard against the common error of forgetting to take half.

Also building on their knowledge of composition and decompo-
sition, students decompose rectilinear polygons into rectangles, and
decompose special quadrilaterals and other polygons into triangles
and other shapes, using such decompositions to determine their ar-
eas, and justifying and finding relationships among the formulas for
the areas of different polygons.

Building on the knowledge of volume (see the Geometric Mea-
surement Progression) and spatial structuring abilities developed in
earlier grades, students learn to find the volume of a right rectangu-
lar prism with fractional edge lengths by packing it with unit cubes
of the appropriate unit fraction edge lengths, and show that the vol-
ume is the same as would be found by multiplying the edge lengths
of the prism.6.G.2 MP.1 MP.4

6.G.2Find the volume of a right rectangular prism with fractional
edge lengths by packing it with unit cubes of the appropriate unit
fraction edge lengths, and show that the volume is the same as
would be found by multiplying the edge lengths of the prism. Ap-
ply the formulas V “ lwh and V “ bh to find volumes of right
rectangular prisms with fractional edge lengths in the context of
solving real-world and mathematical problems.

MP.1 explain correspondences

MP.4 write an equation to describe a situation.

Students also analyze and compose and decompose polyhedral
solids. They describe the shapes of the faces, as well as the num-
ber of faces, edges, and vertices. They make and use drawings of
solid shapes and learn that solid shapes have an outer surface as
well as an interior. They develop visualization skills connected to
their mathematical concepts as they recognize the existence of, and
visualize, components of three-dimensional shapes that are not vis-
ible from a given viewpoint (MP1). They measure the attributes of
these shapes, allowing them to apply area formulas to solve surface
area problems (MP7). They solve problems that require them to
distinguish between units used to measure volume and units used
to measure area (or length). They learn to plan the construction of
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complex three-dimensional compositions through the creation of cor-
responding two-dimensional nets (e.g., through a process of digital
fabrication and/or graph paper).6.G.4 For example, they may design

6.G.4Represent three-dimensional figures using nets made up of
rectangles and triangles, and use the nets to find the surface area
of these figures. Apply these techniques in the context of solving
real-world and mathematical problems.a living quarters (e.g., a space station) consistent with given speci-

fications for surface area and volume (MP2, MP7). In this and many
other contexts, students learn to apply these strategies and formulas
for areas and volumes to the solution of real-world and mathemati-
cal problems.6.G.1, 6.G.2 These problems include those in which areas

6.G.1Find the area of right triangles, other triangles, special
quadrilaterals, and polygons by composing into rectangles or de-
composing into triangles and other shapes; apply these tech-
niques in the context of solving real-world and mathematical prob-
lems.

6.G.2Find the volume of a right rectangular prism with fractional
edge lengths by packing it with unit cubes of the appropriate unit
fraction edge lengths, and show that the volume is the same as
would be found by multiplying the edge lengths of the prism. Ap-
ply the formulas V “ lwh and V “ bh to find volumes of right
rectangular prisms with fractional edge lengths in the context of
solving real-world and mathematical problems.

or volumes are to be found from lengths or lengths are to be found
from volumes or areas and lengths.

Students extend their understanding of properties of two-dimensional
shapes to use of coordinate systems.6.G.3 For example, they may

6.G.3Draw polygons in the coordinate plane given coordinates for
the vertices; use coordinates to find the length of a side joining
points with the same first coordinate or the same second coordi-
nate. Apply these techniques in the context of solving real-world
and mathematical problems.

specify coordinates for a polygon with specific properties, justifying
the attribution of those properties through reference to relationships
among the coordinates (e.g., justifying that a shape is a parallelo-
gram by computing the lengths of its pairs of horizontal and vertical
sides).

As a precursor for learning to describe cross-sections of three-
dimensional figures,7.G.3 students use drawings and physical models

7.G.3Describe the two-dimensional figures that result from slicing
three-dimensional figures, as in plane sections of right rectangu-
lar prisms and right rectangular pyramids.

to learn to identify parallel lines in three-dimensional shapes, as
well as lines perpendicular to a plane, lines parallel to a plane, the
plane passing through three given points, and the plane perpendic-
ular to a given line at a given point.
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Where the Geometry Progression is Heading
Composition and decomposition of shapes is used throughout ge-
ometry from Grade 6 to high school and beyond. Compositions and
decompositions of regions continues to be important for solving a
wide variety of area problems, including justifications of formulas
and solving real world problems that involve complex shapes. De-
compositions are often indicated in geometric diagrams by an aux-
iliary line, and using the strategy of drawing an auxiliary line to
solve a problem are part of looking for and making use of structure
(MP7). Recognizing the significance of an existing line in a figure
is also part of looking for and making use of structure. This may
involve identifying the length of an associated line segment, which
in turn may rely on students’ abilities to identify relationships of line
segments and angles in the figure. These abilities become more so-
phisticated as students gain more experience in geometry. In Grade
7, this experience includes making scale drawings of geometric fig-
ures and solving problems involving angle measure, surface area,
and volume (which builds on understandings described in the Geo-
metric Measurement Progression as well as the ability to compose
and decompose figures).
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Chapter 1
Number and
Operations—Fractions, 3–5
Overview
Overview to be written.

Note. Changes such as including relevant equations or replacing
with tape diagrams or fraction strips are planned for some diagrams.
Some readers may find it helpful to create their own equations or
representations.
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Grade 3
The meaning of fractions In Grades 1 and 2, students use fraction
language to describe partitions of shapes into equal shares.2.G.3 In

2.G.3Partition circles and rectangles into two, three, or four equal
shares, describe the shares using the words halves, thirds, half
of, a third of, etc., and describe the whole as two halves, three
thirds, four fourths. Recognize that equal shares of identical
wholes need not have the same shape.

Grade 3 they start to develop the idea of a fraction more formally,
building on the idea of partitioning a whole into equal parts. The
whole can be a shape such as a circle or rectangle, a line segment,
or any one finite entity susceptible to subdivision and measurement.
In Grade 4, this is extended to include wholes that are collections
of objects.

Grade 3 students start with unit fractions (fractions with numer-
ator 1), which are formed by partitioning a whole into equal parts
and taking one part, e.g., if a whole is partitioned into 4 equal parts
then each part is 1

4 of the whole, and 4 copies of that part make
the whole. Next, students build fractions from unit fractions, seeing
the numerator 3 of 3

4 as saying that 3
4 is the quantity you get by

putting 3 of the 1
4 ’s together.3.NF.1 They read any fraction this way,

3.NF.1Understand a fraction 1{b as the quantity formed by 1 part
when a whole is partitioned into b equal parts; understand a frac-
tion a{b as the quantity formed by a parts of size 1{b.and in particular there is no need to introduce “proper fractions" and

“improper fractions" initially; 5
3 is the quantity you get by combining

5 parts together when the whole is divided into 3 equal parts.
Two important aspects of fractions provide opportunities for the

mathematical practice of attending to precision (MP6):
• Specifying the whole.

The importance of specifying the whole3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Without specifying the whole it is not reasonable to ask what
fraction is represented by the shaded area. If the left square is
the whole, the shaded area represents the fraction 3

2 ; if the
entire rectangle is the whole, the shaded area represents 3

4 .

• Explaining what is meant by “equal parts.”
Initially, students can use an intuitive notion of congruence (“same

size and same shape”) to explain why the parts are equal, e.g., when
they divide a square into four equal squares or four equal rectangles. Area representations of 1

4 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

In each representation the square is the whole. The two squares
on the left are divided into four parts that have the same size
and shape, and so the same area. In the three squares on the
right, the shaded area is 1

4 of the whole area, even though it is
not easily seen as one part in a division of the square into four
parts of the same shape and size.

Students come to understand a more precise meaning for “equal
parts” as “parts with equal measurements.” For example, when a
ruler is partitioned into halves or quarters of an inch, they see that
each subdivision has the same length. In area models they reason
about the area of a shaded region to decide what fraction of the
whole it represents (MP3).

The goal is for students to see unit fractions as the basic building
blocks of fractions, in the same sense that the number 1 is the basic
building block of the whole numbers; just as every whole number is
obtained by combining a sufficient number of 1s, every fraction is
obtained by combining a sufficient number of unit fractions.
The number line and number line diagrams On the number line,
the whole is the unit interval, that is, the interval from 0 to 1, mea-
sured by length. Iterating this whole to the right marks off the whole
numbers, so that the intervals between consecutive whole numbers,
from 0 to 1, 1 to 2, 2 to 3, etc., are all of the same length, as shown.
Students might think of the number line as an infinite ruler.

The number line3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.
0 1 2 3 4 5 6 etc.

To construct a unit fraction on a number line diagram, e.g. 1
3 ,

students partition the unit interval into 3 intervals of equal length
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and recognize that each has length 1
3 . They locate the number 1

3 on
the number line by marking off this length from 0, and locate other
fractions with denominator 3 by marking off the number of lengths
indicated by the numerator.3.NF.2

The number line marked off in thirds3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.
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3.NF.2Understand a fraction as a number on the number line;
represent fractions on a number line diagram.

a Represent a fraction 1{b on a number line diagram by
defining the interval from 0 to 1 as the whole and par-
titioning it into b equal parts. Recognize that each part
has size 1{b and that the endpoint of the part based at 0
locates the number 1{b on the number line.

b Represent a fraction a{b on a number line diagram by
marking off a lengths 1{b from 0. Recognize that the re-
sulting interval has size a{b and that its endpoint locates
the number a{b on the number line.

Students sometimes have difficulty perceiving the unit on a num-
ber line diagram. When locating a fraction on a number line dia-
gram, they might use as the unit the entire portion of the number
line that is shown on the diagram, for example indicating the number
3 when asked to show 3

4 on a number line diagram marked from 0 to
4. Although number line diagrams are important representations for
students as they develop an understanding of a fraction as a number,
in the early stages of the NF Progression they use other represen-
tations such as area models, tape diagrams, and strips of paper.

Number line representation of 5
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One part of a division of
the unit interval into 3
parts of equal length

0 1 2 3 4

5 parts the point 5
3 on the number line

These, like number line diagrams, can be subdivided, representing
an important aspect of fractions.

The number line reinforces the analogy between fractions and
whole numbers. Just as 5 is the point on the number line reached
by marking off 5 times the length of the unit interval from 0, so 5

3 is
the point obtained in the same way using a different interval as the
basic unit of length, namely the interval from 0 to 1

3 .
Equivalent fractions Grade 3 students do some preliminary rea-
soning about equivalent fractions, in preparation for work in Grade
4. As students experiment on number line diagrams they discover
that many fractions label the same point on the number line, and are
therefore equal; that is, they are equivalent fractions. For example,
the fraction 1

2 is equal to 2
4 and also to 3

6 . Students can also use
fraction strips to see fraction equivalence.3.NF.3ab 3.NF.3abcExplain equivalence of fractions in special cases, and

compare fractions by reasoning about their size.

a Understand two fractions as equivalent (equal) if they are
the same size, or the same point on a number line.

b Recognize and generate simple equivalent fractions, e.g.,
1{2 � 2{4, 4{6 � 2{3. Explain why the fractions are
equivalent, e.g., by using a visual fraction model.

c Express whole numbers as fractions, and recognize frac-
tions that are equivalent to whole numbers.

Using the number line and fraction strips to see fraction
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In particular, students in Grade 3 see whole numbers as frac-
tions, recognizing, for example, that the point on the number line
designated by 2 is now also designated by 2

1 , 4
2 , 6

3 , 8
4 , etc. so

that3.NF.3c
2 �

2

1
�

4

2
�

6

3
�

8

4
� � � � .

Of particular importance are the ways of writing 1 as a fraction:
1 �

2

2
�

3

3
�

4

4
�

5

5
� � � � .

Comparing fractions Previously, in Grade 2, students compared
lengths using a standard measurement unit.2.MD.3 In Grade 3 they

2.MD.3Estimate lengths using units of inches, feet, centimeters,
and meters.

build on this idea to compare fractions with the same denominator.
They see that for fractions that have the same denominator, the
underlying unit fractions are the same size, so the fraction with
the greater numerator is greater because it is made of more unit
fractions. For example, segment from 0 to 3

4 is shorter than the
segment from 0 to 5

4 because it measures 3 units of 1
4 as opposed

to 5 units of 1
4 . Therefore 3

4  
5
4 .3.NF.3d 3.NF.3d Explain equivalence of fractions in special cases, and

compare fractions by reasoning about their size.
d Compare two fractions with the same numerator or the

same denominator by reasoning about their size. Recog-
nize that comparisons are valid only when the two frac-
tions refer to the same whole. Record the results of com-
parisons with the symbols ¡, =, or  , and justify the con-
clusions, e.g., by using a visual fraction model.
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Students also see that for unit fractions, the one with the larger
denominator is smaller, by reasoning, for example, that in order for
more (identical) pieces to make the same whole, the pieces must be
smaller. From this they reason that for fractions that have the same
numerator, the fraction with the smaller denominator is greater. For
example, 2

5 ¡ 2
7 , because 1

7   1
5 , so 2 lengths of 1

7 is less than 2
lengths of 1

5 .
As with equivalence of fractions, it is important in comparing

fractions to make sure that each fraction refers to the same whole.

The importance of referring to the same whole when
comparing fractions3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

A student might think that 1
4 ¡

1
2 , because a fourth of the pizza

on the right is bigger than a half of the pizza on the left.

As students move towards thinking of fractions as points on the
number line, they develop an understanding of order in terms of
position. Given two fractions—thus two points on the number line—
the one to the left is said to be smaller and the one to right is said
to be larger. This understanding of order as position will become
important in Grade 6 when students start working with negative
numbers.
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Grade 4
Grade 4 students learn a fundamental property of equivalent frac-
tions: multiplying the numerator and denominator of a fraction by
the same non-zero whole number results in a fraction that repre-
sents the same number as the original fraction. This property forms

4.NF.1Explain why a fraction a{b is equivalent to a fraction
pn � aq{pn � bq by using visual fraction models, with attention
to how the number and size of the parts differ even though the
two fractions themselves are the same size. Use this principle to
recognize and generate equivalent fractions.

the basis for much of their other work in Grade 4, including the com-
parison, addition, and subtraction of fractions and the introduction
of finite decimals.
Equivalent fractions Students can use area models and number
line diagrams to reason about equivalence.4.NF.1 They see that the

Using an area model to show that 2
3 �

4�2
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The whole is the square, measured by area. On the left it is di-
vided horizontally into 3 rectangles of equal area, and the shaded
region is 2 of these and so represents 2

3 . On the right it is divided
into 4 � 3 small rectangles of equal area, and the shaded area
comprises 4� 2 of these, and so it represents 4�2

4�3 .

Using the number line to show that 4
3 �

5�4
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3

4
3 is 4 parts when each part is 1

3 , and we want to see that this
is also 5 � 4 parts when each part is 1

5�3 . Divide each of the
intervals of length 1

3 into 5 parts of equal length. There are 5� 3

parts of equal length in the unit interval, and 4
3 is 5� 4 of these.

Therefore 4
3 �

5�4
5�3 �

20
15 .

numerical process of multiplying the numerator and denominator of
a fraction by the same number, n, corresponds physically to par-
titioning each unit fraction piece into n smaller equal pieces. The
whole is then partitioned into n times as many pieces, and there
are n times as many smaller unit fraction pieces as in the original
fraction.

This argument, once understood for a range of examples, can
be seen as a general argument, working directly from the Grade 3
understanding of a fraction as a point on the number line.

The fundamental property can be presented in terms of division,
as in, e.g.

28

36
�

28� 4

36� 4
�

7

9
.

Because the equations 28 � 4 � 7 and 36 � 4 � 9 tell us that
28 � 4� 7 and 36 � 4� 9, this is the fundamental fact in disguise:

4� 7

4� 9
�

7

9
.

It is possible to over-emphasize the importance of simplifying frac-
tions in this way. There is no mathematical reason why fractions
must be written in simplified form, although it may be convenient to
do so in some cases.

Grade 4 students use their understanding of equivalent frac-
tions to compare fractions with different numerators and different
denominators.4.NF.2 For example, to compare 5

8 and 7
12 they rewrite

4.NF.2Compare two fractions with different numerators and dif-
ferent denominators, e.g., by creating common denominators or
numerators, or by comparing to a benchmark fraction such as 1/2.
Recognize that comparisons are valid only when the two fractions
refer to the same whole. Record the results of comparisons with
symbols ¡, =, or  , and justify the conclusions, e.g., by using a
visual fraction model.

both fractions as
60

96

�
�

12� 5

12� 8



and 56

96

�
�

7� 8

12� 8




Because 60
96 and 56

96 have the same denominator, students can com-
pare them using Grade 3 methods and see that 56

96 is smaller, so
7

12
 

5

8
.

Students also reason using benchmarks such as 1
2 and 1. For

example, they see that 7
8   13

12 because 7
8 is less than 1 (and is
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therefore to the left of 1) but 13
12 is greater than 1 (and is therefore

to the right of 1).
Grade 5 students who have learned about fraction multiplication

can see equivalence as “multiplying by 1":
7

9
�

7

9
� 1 �

7

9
�

4

4
�

28

36

However, although a useful mnemonic device, this does not constitute
a valid argument at this grade, since students have not yet learned
fraction multiplication.
Adding and subtracting fractions The meaning of addition is the
same for both fractions and whole numbers, even though algorithms
for calculating their sums can be different. Just as the sum of 4
and 7 can be seen as the length of the segment obtained by joining
together two segments of lengths 4 and 7, so the sum of 2

3 and 8
5can be seen as the length of the segment obtained joining together

two segments of length 2
3 and 8

5 . It is not necessary to know how
Representation of 2

3 �
8
5 as a length3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

2

3

8

5

Using the number line to see that 5
3 �

1
3 �

1
3 �

1
3 �

1
3 �

1
3 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Segment of length 1
3

0 1 2 3 4

5 segments put end to end 5
3 �

1
3 �

1
3 �

1
3 �

1
3 �

1
3

much 2
3 �

8
5 is exactly in order to know what the sum means. This

is analogous to understanding 51 � 78 as 51 groups of 78, without
necessarily knowing its exact value.

This simple understanding of addition as putting together allows
students to see in a new light the way fractions are built up from
unit fractions. The same representation that students used in Grade
4 to see a fraction as a point on the number line now allows them to
see a fraction as a sum of unit fractions: just as 5 � 1�1�1�1�1,
so

5

3
�

1

3
�

1

3
�

1

3
�

1

3
�

1

3

because 5
3 is the total length of 5 copies of 1

3 .4.NF.3 4.NF.3Understand a fraction a{b with a ¡ 1 as a sum of fractions
1{b.

a Understand addition and subtraction of fractions as join-
ing and separating parts referring to the same whole.

b Decompose a fraction into a sum of fractions with the
same denominator in more than one way, recording each
decomposition by an equation. Justify decompositions,
e.g., by using a visual fraction model.

c Add and subtract mixed numbers with like denominators,
e.g., by replacing each mixed number with an equivalent
fraction, and/or by using properties of operations and the
relationship between addition and subtraction.

Armed with this insight, students decompose and compose frac-
tions with the same denominator. They add fractions with the same
denominator:4.NF.3c

7

5
�

4

5
�

7hkkkkikkkkj
1

5
� � � �

1

5
�

4hkkkkikkkkj
1

5
� � � �

1

5

�

7�4hkkkkkkkkikkkkkkkkj
1� 1� � � � � 1

5

�
7� 4

5
.

Using the understanding gained from work with whole numbers of
the relationship between addition and subtraction, they also subtract
fractions with the same denominator. For example, to subtract 5

6 from
17
6 , they decompose

17

6
�

12

6
�

5

6
, so 17

6
�

5

6
�

17� 5

6
�

12

6
� 2.
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Students also compute sums of whole numbers and fractions, by
representing the whole number as an equivalent fraction with the
same denominator as the fraction, e.g.

7
1

5
� 7�

1

5
�

35

5
�

1

5
�

36

5
.

Students use this method to add mixed numbers with like denominators.• • A mixed number is a whole number plus a fraction smaller than
1, written without the� sign, e.g. 5 3

4 means 5� 3
4 and 7 1

5 means
7� 1

5 .Converting a mixed number to a fraction should not be viewed as a
separate technique to be learned by rote, but simply as a case of
fraction addition.

Similarly, converting an improper fraction to a mixed number is a
matter of decomposing the fraction into a sum of a whole number and
a number less than 1.4.NF.3b Students can draw on their knowledge

4.NF.3b Understand a fraction a{b with a ¡ 1 as a sum of frac-
tions 1{b.

b Decompose a fraction into a sum of fractions with the
same denominator in more than one way, recording each
decomposition by an equation. Justify decompositions,
e.g., by using a visual fraction model.

from Grade 3 of whole numbers as fractions. For example, knowing
that 1 � 3

3 , they see
5

3
�

3

3
�

2

3
� 1�

2

3
� 1

2

3
.

Repeated reasoning with examples that gain in complexity leads to a
general method involving the Grade 4 NBT skill of finding quotients
and remainders.4.NBT.6 For example,

4.NBT.6Find whole-number quotients and remainders with up to
four-digit dividends and one-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

47

6
�
p7� 6q � 5

6
�

7� 6

6
�

5

6
� 7�

5

6
� 7

5

6
.

When solving word problems students learn to attend carefully
to the underlying unit quantities. In order to formulate an equation
of the form A�B � C or A�B � C for a word problem, the numbers
A, B, and C must all refer to the same (or equivalent) wholes or unit
amounts.4.NF.3d For example, students understand that the problem

4.NF.3d Understand a fraction a{b with a ¡ 1 as a sum of frac-
tions 1{b.

d Solve word problems involving addition and subtraction
of fractions referring to the same whole and having like
denominators, e.g., by using visual fraction models and
equations to represent the problem.

Bill had 2
3 of a cup of juice. He drank 1

2 of his juice. How
much juice did Bill have left?

cannot be solved by subtracting 2
3 �

1
2 because the 2

3 refers to a cup
of juice, but the 1

2 refers to the amount of juice that Bill had, and not
to a cup of juice. Similarly, in solving

If 1
4 of a garden is planted with daffodils, 1

3 with tulips,
and the rest with vegetables, what fraction of the garden
is planted with flowers?

students understand that the sum 1
3�

1
4 tells them the fraction of the

garden that was planted with flowers, but not the number of flowers
that were planted.
Multiplication of a fraction by a whole number Previously in
Grade 3, students learned that 3�7 can be represented as the num-
ber of objects in 3 groups of 7 objects, and write this as 7 � 7 � 7.
Grade 4 students apply this understanding to fractions, seeing

1

3
�

1

3
�

1

3
�

1

3
�

1

3
as 5�

1

3
.
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In general, they see a fraction as the numerator times the unit frac-
tion with the same denominator,4.NF.4a e.g., 4.NF.4Apply and extend previous understandings of multiplica-

tion to multiply a fraction by a whole number.

a Understand a fraction a{b as a multiple of 1{b.

b Understand a multiple of a{b as a multiple of 1{b, and
use this understanding to multiply a fraction by a whole
number.

c Solve word problems involving multiplication of a fraction
by a whole number, e.g., by using visual fraction models
and equations to represent the problem.

7

5
� 7�

1

5
, 11

3
� 11�

1

3
.

The same thinking, based on the analogy between fractions and
whole numbers, allows students to give meaning to the product of a
whole number and a fraction,4.NF.4b e.g., they see

3�
2

5
as 2

5
�

2

5
�

2

5
�

3� 2

5
�

6

5
.

Students solve word problems involving multiplication of a frac-
tion by a whole number.4.NF.4c

If a bucket holds 2 3
4 gallons and 43 buckets of water fill

a tank, how much does the tank hold?
The answer is 43� 2 3

4 gallons, which is
43�

�
2�

3

4



� 43�

11

4
�

473

4
� 118

1

4
gallons

Decimals Fractions with denominator 10 and 100, called decimal
fractions, arise naturally when student convert between dollars and
cents, and have a more fundamental importance, developed in Grade
5, in the base 10 system. For example, because there are 10 dimes
in a dollar, 3 dimes is 3

10 of a dollar; and it is also 30
100 of a dollar

because it is 30 cents, and there are 100 cents in a dollar. Such
reasoning provides a concrete context for the fraction equivalence

3

10
�

3� 10

10� 10
�

30

100
.

Grade 4 students learn to add decimal fractions by converting them
to fractions with the same denominator, in preparation for general
fraction addition in Grade 5:4.NF.5 4.NF.5Express a fraction with denominator 10 as an equivalent

fraction with denominator 100, and use this technique to add two
fractions with respective denominators 10 and 100.1

3

10
�

27

100
�

30

100
�

27

100
�

57

100
.

They can interpret this as saying that 3 dimes together with 27 cents
make 57 cents.

Fractions with denominators equal to 10, 100, etc., such
27

10
, 27

100
, etc.

can be written by using a decimal point as4.NF.6 4.NF.6Use decimal notation for fractions with denominators 10 or
100.

2.7, 0.27.
The number of digits to the right of the decimal point indicates
the number of zeros in the denominator, so that 2.70 � 270

100 and
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2.7 � 27
10 . Students use their ability to convert fractions to reason

that 2.70 � 2.7 because
2.70 � 270

100
�

10� 27

10� 10
�

27

10
� 2.7.

Students compare decimals using the meaning of a decimal as
a fraction, making sure to compare fractions with the same denomi-
nator. For example, to compare 0.2 and 0.09, students think of them
as 0.20 and 0.09 and see that 0.20 ¡ 0.09 because4.NF.7

4.NF.7Compare two decimals to hundredths by reasoning about
their size. Recognize that comparisons are valid only when the
two decimals refer to the same whole. Record the results of com-
parisons with the symbols¡, =, or , and justify the conclusions,
e.g., by using a visual model.20

100
¡

9

100
.

The argument using the meaning of a decimal as a fraction gener-
Seeing that 0.2 ¡ 0.09 using a visual fraction model3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

The shaded region on the left shows 0.2 of the unit square, since
it is two parts when the square is divided int 10 parts of equal
area. The shaded region on the right shows 0.09 of the unit
square, since it is 9 parts when the unit is divided into 100 parts
of equal area.

alizes to work with decimals in Grade 5 that have more than two
digits, whereas the argument using a visual fraction model, shown
in the margin, does not. So it is useful for Grade 4 students to see
such reasoning.
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Grade 5
Adding and subtracting fractions In Grade 4, students have some
experience calculating sums of fractions with different denominators
in their work with decimals, where they add fractions with denomi-
nators 10 and 100, such as

2

10
�

7

100
�

20

100
�

7

100
�

27

100
.

Note that this is a situation where one denominator is a divisor
of the other, so that only one fraction has to be changed. They
might have encountered other similar situations, for example using
a fraction strip to reason that

Using a fraction strip to show that 1
3 �

1
6 �

1
2 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.
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1
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They understand the process as expressing both summands in terms
of the same unit fraction so that they can be added. Grade 5 stu-
dents extend this reasoning to situations where it is necessary to
re-express both fractions in terms of a new denominator.5.NF.1 For

5.NF.1Add and subtract fractions with unlike denominators (in-
cluding mixed numbers) by replacing given fractions with equiva-
lent fractions in such a way as to produce an equivalent sum or
difference of fractions with like denominators.example, in calculating 2

3 �
5
4 they reason that if each third in 2

3 is
subdivided into fourths, and if each fourth in 5

4 is subdivided into
thirds, then each fraction will be a sum of unit fractions with de-
nominator 3� 4 � 4� 3 � 12:

2

3
�

5

4
�

2� 4

3� 4
�

5� 3

4� 3
�

8

12
�

15

12
�

23

12
.

In general two fractions can be added by subdividing the unit frac-
5.NF.2Solve word problems involving addition and subtraction of
fractions referring to the same whole, including cases of unlike
denominators, e.g., by using visual fraction models or equations
to represent the problem. Use benchmark fractions and number
sense of fractions to estimate mentally and assess the reason-
ableness of answers.

tions in one using the denominator of the other:
a
b �

c
d �

a� d
b� d �

c � b
d� b �

ad� bc
bd .

It is not necessary to find a least common denominator to calculate
sums of fractions, and in fact the effort of finding a least common de-
nominator is a distraction from understanding algorithms for adding
fractions.

Students make sense of fractional quantities when solving word
problems, estimating answers mentally to see if they make sense.5.NF.2
For example in the problem

Ludmilla and Lazarus each have a lemon. They need a
cup of lemon juice to make hummus for a party. Ludmilla
squeezes 1

2 a cup from hers and Lazarus squeezes 2
5 of

a cup from his. How much lemon juice to they have? Is
it enough?

students estimate that there is almost but not quite one cup of lemon
juice, because 2

5  
1
2 . They calculate 1

2 �
2
5 �

9
10 , and see this as

1
10 less than 1, which is probably a small enough shortfall that it
will not ruin the recipe. They detect an incorrect result such as
1
2 �

2
5 �

3
7 by noticing that 3

7  
1
2 .
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Multiplying and dividing fractions In Grade 4 students connected 5.NF.3Interpret a fraction as division of the numerator by the de-
nominator (a{b � a�b). Solve word problems involving division
of whole numbers leading to answers in the form of fractions or
mixed numbers, e.g., by using visual fraction models or equations
to represent the problem.

fractions with addition and multiplication, understanding that

How to share 5 objects equally among 3 shares:
5� 3 � 5� 1

3 �
5
3 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

If you divide 5 objects equally among 3 shares, each of the 5
objects should contribute 1

3 of itself to each share. Thus each
share consists of 5 pieces, each of which is 1

3 of an object, and
so each share is 5� 1

3 �
5
3 of an object.

5

3
�

1

3
�

1

3
�

1

3
�

1

3
�

1

3
� 5�

1

3
.

In Grade 5, they connect fractions with division, understanding that
5� 3 �

5

3
,

or, more generally, ab � a�b for whole numbers a and b, with b not
equal to zero.5.NF.3 They can explain this by working with their un-
derstanding of division as equal sharing (see figure in margin). They
also create story contexts to represent problems involving division
of whole numbers. For example, they see that

If 9 people want to share a 50-pound sack of rice equally
by weight, how many pounds of rice should each person
get?

can be solved in two ways. First, they might partition each pound
among the 9 people, so that each person gets 50� 1

9 �
50
9 pounds.

Second, they might use the equation 9 � 5 � 45 to see that each
person can be given 5 pounds, with 5 pounds remaining. Partitioning
the remainder gives 5 5

9 pounds for each person.
Students have, since Grade 1, been using language such as “third

of” to describe one part when a whole is partitioned into three parts.
5.NF.4a Apply and extend previous understandings of multiplica-
tion to multiply a fraction or whole number by a fraction.

a Interpret the product pa{bq � q as a parts of a partition
of q into b equal parts; equivalently, as the result of a
sequence of operations a� q� b.

With their new understanding of the connection between fractions
and division, students now see that 5

3 is one third of 5, which leads
to the meaning of multiplication by a unit fraction:

1

3
� 5 �

5

3
.

This in turn extends to multiplication of any quantity by a fraction.5.NF.4a

Using a fraction strip to show that 1
3 �

1
2 �

1
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(a) Divide 1
2 into 3

equal parts
(b) Divide the other 1

2
into 3 equal parts

(c) 6 parts make one
whole, so one part is 1

6

1
6

1
3 of 1

2

Using a number line to show that 2
3 �

5
2 �

2�5
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(a) Divide each 1
2 into 3

equal parts, so each part is
1
3 �

1
2 �

1
3�2

(b) Form a segment
from 2 parts, making
2� 1

3�2

(c) There are 5 of the 1
2 s, so

the segments together make
5� p2� 1

3�2 q �
2�5
3�2

2

Just as
1

3
� 5 is one part when 5 is partitioned into 3 parts,

so
4

3
� 5 is 4 parts when 5 is partitioned into 3 parts.

Using this understanding of multiplication by a fraction, students
develop the general formula for the product of two fractions,

a
b �

c
d �

ac
bd,

for whole numbers a, b, c, d, with b, d not zero. Grade 5 students
need not express the formula in this general algebraic form, but
rather reason out many examples using fraction strips and number
line diagrams.
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For more complicated examples, an area model is useful, in which
5.NF.4b Apply and extend previous understandings of multiplica-
tion to multiply a fraction or whole number by a fraction.

b Find the area of a rectangle with fractional side lengths
by tiling it with unit squares of the appropriate unit frac-
tion side lengths, and show that the area is the same as
would be found by multiplying the side lengths. Multiply
fractional side lengths to find areas of rectangles, and rep-
resent fraction products as rectangular areas.

students work with a rectangle that has fractional side lengths, di-
viding it up into rectangles whose sides are the corresponding unit
fractions.

Using an area model to show that 3
4 �

5
3 �

3�5
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Because 4 � 3 rectangles 1
4

wide and 1
3 high fit in a unit

square, 1
4 �

1
3 �

1
4�3 .

1

1
3

1
4

1

5
3

3
4

The rectangle of width 3
4 and height 5

3 is
tiled with 3 � 5 rectangles of area 1

4�3 ,

so has area 3�5
4�3 .

Students also understand fraction multiplication by creating story
contexts. For example, to explain

2

3
� 4 �

8

3
,

they might say
Ron and Hermione have 4 pounds of Bertie Bott’s Every
Flavour Beans. They decide to share them 3 ways, sav-
ing one share for Harry. How many pounds of beans do
Ron and Hermione get?

Using the relationship between division and multiplication, stu-
dents start working with simple fraction division problems. Having
seen that division of a whole number by a whole number, e.g. 5� 3,
is the same as multiplying the number by a unit fraction, 1

3 �5, they
now extend the same reasoning to division of a unit fraction by a
whole number, seeing for example that5.NF.7a

1

6
� 3 �

1

6� 3
�

1

18
.

Also, they reason that since there are 6 portions of 1
6 in 1, there

must be 3� 6 in 3, and so5.NF.7b

3�
1

6
� 3� 6 � 18.

Students use story problems to make sense of division problems:5.NF.7c

How much chocolate will each person get if 3 people
share 1

2 lb of chocolate equally? How many 1
3-cup serv- 5.NF.7abcApply and extend previous understandings of division

to divide unit fractions by whole numbers and whole numbers by
unit fractions.2

a Interpret division of a unit fraction by a non-zero whole
number, and compute such quotients.

b Interpret division of a whole number by a unit fraction, and
compute such quotients.

c Solve real world problems involving division of unit frac-
tions by non-zero whole numbers and division of whole
numbers by unit fractions, e.g., by using visual fraction
models and equations to represent the problem.

ings are in 2 cups of raisins?
Students attend carefully to the underlying unit quantities when
solving problems. For example, if 1

2 of a fund-raiser’s funds were
raised by the 6th grade, and if 1

3 of the 6th grade’s funds were
raised by Ms. Wilkin’s class, then 1

3 �
1
2 gives the fraction of the

fund-raiser’s funds that Ms. Wilkin’s class raised, but it does not tell
us how much money Ms. Wilkin’s class raised.5.NF.6

5.NF.6Solve real world problems involving multiplication of frac-
tions and mixed numbers, e.g., by using visual fraction models or
equations to represent the problem.

Multiplication as scaling In preparation for Grade 6 work in ratios
and proportional reasoning, students learn to see products such as
5� 3 or 1

2 � 3 as expressions that can be interpreted in terms of a
quantity, 3, and a scaling factor, 5 or 1

2 . Thus, in addition to knowing
that 5� 3 � 15, they can also say that 5� 3 is 5 times as big as 3,
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without evaluating the product. Likewise, they see 1
2 � 3 as half the

size of 3.5.NF.5a
5.NF.5a Interpret multiplication as scaling (resizing), by:

a Comparing the size of a product to the size of one factor
on the basis of the size of the other factor, without per-
forming the indicated multiplication.The understanding of multiplication as scaling is an important

opportunity for students to reasonin abstractly (MP2). Previous work
with multiplication by whole numbers enables students to see mul-
tiplication by numbers bigger than 1 as producing a larger quantity,
as when a recipe is doubled, for example. Grade 5 work with mul-
tiplying by unit fractions, and interpreting fractions in terms of divi-
sion, enables students to see that multiplying a quantity by a number
smaller than 1 produces a smaller quantity, as when the budget of
a large state university is multiplied by 1

2 , for example.5.NF.5b

5.NF.5b Interpret multiplication as scaling (resizing), by:
b Explaining why multiplying a given number by a frac-

tion greater than 1 results in a product greater than the
given number (recognizing multiplication by whole num-
bers greater than 1 as a familiar case); explaining why
multiplying a given number by a fraction less than 1 results
in a product smaller than the given number; and relating
the principle of fraction equivalence a{b � pn�aq{pn�bq
to the effect of multiplying a{b by 1.

The special case of multiplying by 1, which leaves a quantity
unchanged, can be related to fraction equivalence by expressing 1
as nn , as explained on page 7.
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6-7, Ratios and
Proportional
Relationships

Overview
The study of ratios and proportional relationships extends students’
work in measurement and in multiplication and division in the el-
ementary grades. Ratios and proportional relationships are foun-
dational for further study in mathematics and science and useful in
everyday life. Students use ratios in geometry and in algebra when
they study similar figures and slopes of lines, and later when they
study sine, cosine, tangent, and other trigonometric ratios in high
school. Students use ratios when they work with situations involv-
ing constant rates of change, and later in calculus when they work
with average and instantaneous rates of change of functions. An
understanding of ratio is essential in the sciences to make sense of
quantities that involve derived attributes such as speed, accelera-
tion, density, surface tension, electric or magnetic field strength, and
to understand percentages and ratios used in describing chemical
solutions. Ratios and percentages are also useful in many situations
in daily life, such as in cooking and in calculating tips, miles per gal-
lon, taxes, and discounts. They also are also involved in a variety
of descriptive statistics, including demographic, economic, medical,
meteorological, and agricultural statistics (e.g., birth rate, per capita
income, body mass index, rain fall, and crop yield) and underlie a va-
riety of measures, for example, in finance (exchange rate), medicine
(dose for a given body weight), and technology (kilobits per second).

Ratios, rates, proportional relationships, and percent Ratios arise
in situations in which two (or more) quantities are related.• Some-

• In the Standards, a quantity involves measurement of an at-
tribute. Quantities may be discrete, e.g., 4 apples, or continuous,
e.g., 4 inches. They may be measurements of physical attributes
such as length, area, volume, weight, or other measurable at-
tributes such as income. Quantities can vary with respect to an-
other quantity. For example, the quantities “distance between the
earth and the sun in miles,” “distance (in meters) that Sharoya
walked,” or “my height in feet” vary with time.

times the quantities have the same units (e.g., 3 cups of apple juice
and 2 cups of grape juice), other times they do not (e.g., 3 meters
and 2 seconds). Some authors distinguish ratios from rates, using
the term “ratio” when units are the same and “rate” when units are
different; others use ratio to encompass both kinds of situations. The
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Standards use ratio in the second sense, applying it to situations
in which units are the same as well as to situations in which units
are different. Relationships of two quantities in such situations may
be described in terms of ratios, rates, percents, or proportional re-
lationships.

A ratio associates two or more quantities. Ratios can be indi-
cated in words as “3 to 2” and “3 for every 2” and “3 out of every 5”
and “3 parts to 2 parts.” This use might include units, e.g., “3 cups
of flour for every 2 eggs” or “3 meters in 2 seconds.” Notation for
ratios can include the use of a colon, as in 3 : 2. The quotient 3

2 is
sometimes called the value of the ratio 3 : 2.•

• In everyday language. the word “ratio” sometimes refers to the
value of a ratio, for example in the phrases “take the ratio of price
to earnings” or “the ratio of circumference to diameter is π.”Ratios have associated rates. For example, the ratio 3 feet for

every 2 seconds has the associated rate 3
2 feet for every 1 second;

the ratio 3 cups apple juice for every 2 cups grape juice has the
associated rate 3

2 cups apple juice for every 1 cup grape juice. In
Grades 6 and 7, students describe rates in terms such as “for each
1,” “for each,” and “per.” The unit rate is the numerical part of the
rate; the “unit” in “unit rate” is often used to highlight the 1 in “for
each 1” or “for every 1.”

Equivalent ratios arise by multiplying each measurement in a
ratio pair by the same positive number. For example, the pairs of
numbers of meters and seconds in the margin are in equivalent ra-
tios. Such pairs are also said to be in the same ratio. Proportional

Representing pairs in a proportional relationship

Sharoya walks 3 meters every 2 seconds. Let d be the number
of meters Sharoya has walked after t seconds. d and t are in a

proportional relationship.

d meters 3 6 9 12 15 3
2 1 2 4

t seconds 2 4 6 8 10 1 2
3

4
3

8
3

d and t are related by the equation d �
�
3
2

�
t. Students

sometimes use the equals sign incorrectly to indicate
proportional relationships, for example, they might write
“3 m = 2 sec” to represent the correspondence between 3
meters and 2 seconds. In fact, 3 meters is not equal to 2
seconds. This relationship can be represented in a table or by
writing “3 m Ñ 2 sec.” Note that the unit rate appears in the pair�
3
2 , 1

�
.

relationships involve collections of pairs of measurements in equiva-
lent ratios. In contrast, a proportion is an equation stating that two
ratios are equivalent. Equivalent ratios have the same unit rate.

The pairs of meters and seconds in the margin show distance and
elapsed time varying together in a proportional relationship. This
situation can be described as “distance traveled and time elapsed
are proportionally related,” or “distance and time are directly pro-
portional,” or simply “distance and time are proportional.” The pro-
portional relationship can be represented with the equation
d �

�
3
2

�
t . The factor 3

2 is the constant unit rate associated with the
different pairs of measurements in the proportional relationship; it
is known as a constant of proportionality.

The word percent means “per 100” (cent is an abbreviation of the
Latin centum “hundred”). If 35 milliliters out of every 100 milliliters
in a juice mixture are orange juice, then the juice mixture is 35%
orange juice (by volume). If a juice mixture is viewed as made of 100
equal parts, of which 35 are orange juice, then the juice mixture is
35% orange juice.

More precise definitions of the terms presented here and a frame-
work for organizing and relating the concepts are presented in the
Appendix.

Recognizing and describing ratios, rates, and proportional rela-
tionships “For each,” “for every,” “per,” and similar terms distin-
guish situations in which two quantities have a proportional rela-
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tionship from other types of situations. For example, without further
information “2 pounds for a dollar” is ambiguous. It may be that
pounds and dollars are proportionally related and every two pounds
costs a dollar. Or it may be that there is a discount on bulk, so
weight and cost do not have a proportional relationship. Thus, rec-
ognizing ratios, rates, and proportional relationships involves look-
ing for structure (MP7). Describing and interpreting descriptions of
ratios, rates, and proportional relationships involves precise use of
language (MP6).

Representing ratios, collections of equivalent ratios, rates, and
proportional relationships Because ratios and rates are different
and rates will often be written using fraction notation in high school,
ratio notation should be distinct from fraction notation.

Equivalent ratios versus equivalent fractions

Together with tables, students can also use tape diagrams and
double number line diagrams to represent collections of equivalent
ratios. Both types of diagrams visually depict the relative sizes of
the quantities.

Tape diagrams are best used when the two quantities have the
same units. They can be used to solve problems and also to highlight
the multiplicative relationship between the quantities.

Double number line diagrams are best used when the quantities
have different units (otherwise the two diagrams will use different
length units to represent the same amount). Double number line
diagrams can help make visible that there are many, even infinitely
many, pairs in the same ratio, including those with rational number
entries. As in tables, unit rates appear paired with 1.

A collection of equivalent ratios can be graphed in the coordinate
plane. The graph represents a proportional relationship. The unit
rate appears in the equation and graph as the slope of the line, and
in the coordinate pair with first coordinate 1.

Representing ratios with tape diagrams

apple juice:

grape juice:

This diagram can be interpreted as representing any mixture of
apple juice and grape juice with a ratio of 3 to 2. The total
amount of juice is represented as partitioned into 5 parts of
equal size, represented by 5 rectangles. For example, if the
diagram represents 5 cups of juice mixture, then each of these
rectangles represents 1 cup. If the total amount of juice mixture
is 1 gallon, then each part represents 1

5 gallon and there are 3
5

gallon of apple juice and 2
5 gallon of grape juice.

Representing ratios with double number line diagrams

On double number line diagrams, if A and B are in the same
ratio, then A and B are located at the same distance from 0 on
their respective lines. Multiplying A and B by a positive number p
results in a pair of numbers whose distance from 0 is p times as
far. So, for example, 3 times the pair 2 and 5 results in the pair 6
and 15 which is located at 3 times the distance from 0.
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Grade 6
Representing and reasoning about ratios and collections of equiv-
alent ratios Because the multiplication table is familiar to sixth
graders, situations that give rise to columns or rows of a multiplica-
tion table can provide good initial contexts when ratios and propor-

6.RP.3a Use ratio and rate reasoning to solve real-world and
mathematical problems, e.g., by reasoning about tables of equiv-
alent ratios, tape diagrams, double number line diagrams, or
equations.

a Make tables of equivalent ratios relating quantities with
whole-number measurements, find missing values in the
tables, and plot the pairs of values on the coordinate
plane. Use tables to compare ratios.

tional relationships are introduced. Pairs of quantities in equivalent
ratios arising from whole number measurements such as “3 lemons
for every $1” or “for every 5 cups grape juice, mix in 2 cups peach
juice” lend themselves to being recorded in a table.6.RP.3a Initially,
when students make tables of quantities in equivalent ratios, they
may focus only on iterating the related quantities by repeated ad-
dition to generate equivalent ratios. 6.RP.1Understand the concept of a ratio and use ratio language

to describe a ratio relationship between two quantities.

6.RP.2Understand the concept of a unit rate a{b associated with
a ratio a : b with b � 0, and use rate language in the context of
a ratio relationship.

As students work with tables of quantities in equivalent ratios
(also called ratio tables), they should practice using and understand-
ing ratio and rate language.6.RP.1,6.RP.2 It is important for students to
focus on the meaning of the terms “for every,” “for each,” “for each
1,” and “per” because these equivalent ways of stating ratios and
rates are at the heart of understanding the structure in these tables,
providing a foundation for learning about proportional relationships
in Grade 7.

Students graph the pairs of values displayed in ratio tables on
coordinate axes. The graph of such a collection of equivalent ratios

6.EE.9Use variables to represent two quantities in a real-world
problem that change in relationship to one another; write an
equation to express one quantity, thought of as the dependent
variable, in terms of the other quantity, thought of as the indepen-
dent variable. Analyze the relationship between the dependent
and independent variables using graphs and tables, and relate
these to the equation.

lies on a line through the origin, and the pattern of increases in
the table can be seen in the graph as coordinated horizontal and
vertical increases.6.EE.9

Showing structure in tables and graphs

Additive Structure Multiplicative Structure

In the tables, equivalent ratios are generated by repeated addition (left) and by scalar multiplication (right). Students might be
asked to identify and explain correspondences between each table and the graph beneath it (MP1).
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By reasoning about ratio tables to compare ratios,6.RP.3a students
can deepen their understanding of what a ratio describes in a con-
text and what quantities in equivalent ratios have in common. For
example, suppose Abby’s orange paint is made by mixing 1 cup red
paint for every 3 cups yellow paint and Zack’s orange paint is made
by mixing 3 cups red for every 5 cups yellow. Students could discuss
that all the mixtures within a single ratio table for one of the paint
mixtures are the same shade of orange because they are multiple
batches of the same mixture. For example, 2 cups red and 6 cups
yellow is two batches of 1 cup red and 3 cups yellow; each batch is
the same color, so when the two batches are combined, the shade of
orange doesn’t change. Therefore, to compare the colors of the two
paint mixtures, any entry within a ratio table for one mixture can be
compared with any entry from the ratio table for the other mixture.

Three ways to compare paint mixtures

Same amount of red Same amount of yellow

Same total
It is important for students to focus on the rows (or columns) of a

ratio table as multiples of each other. If this is not done, a common
error when working with ratios is to make additive comparisons. For
example, students may think incorrectly that the ratios 1 : 3 and 3 : 5
of red to yellow in Abby’s and Zack’s paints are equivalent because
the difference between the number of cups of red and yellow in
both paints is the same, or because Zack’s paint could be made from
Abby’s by adding 2 cups red and 2 cups yellow. The margin shows
several ways students could reason correctly to compare the paint
mixtures.

Strategies for solving problems Although it is traditional to move
students quickly to solving proportions by setting up an equation,
the Standards do not require this method in Grade 6. There are
a number of strategies for solving problems that involve ratios. As
students become familiar with relationships among equivalent ratios,
their strategies become increasingly abbreviated and efficient.

For example, suppose grape juice and peach juice are mixed in
a ratio of 5 to 2 and we want to know how many cups of grape juice
to mix with 12 cups of peach juice so that the mixture will still be in
the same ratio. Students could make a ratio table as shown in the
margin, and they could use the table to find the grape juice entry
that pairs with 12 cups of peach juice in the table. This perspective
allows students to begin to reason about proportions by starting
with their knowledge about multiplication tables and by building on
this knowledge.

Double number line diagrams used for situations with
different units

Double number lines indicate coordinated multiplying and
dividing of quantities. This can also be indicated in tables.

As students generate equivalent ratios and record them in tables,
their attention should be drawn to the important role of multiplica-
tion and division in how entries are related to each other. Initially,
students may fill ratio tables with columns or rows of the multipli-
cation table by skip counting, using only whole number entries, and
placing these entries in numerical order. Gradually, students should
consider entries in ratio tables beyond those they find by skip count-
ing, including larger entries and fraction or decimal entries. Finding
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these other entries will require the explicit use of multiplication and
division, not just repeated addition or skip counting. For example, if
Seth runs 5 meters every 2 seconds, then Seth will run 2.5 meters
in 1 second because in half the time he will go half as far. In other
words, when the elapsed time is divided by 2, the distance traveled
should also be divided by 2. More generally, if the elapsed time is
multiplied (or divided) by N , the distance traveled should also be
multiplied (or divided) by N . Double number lines can be useful in
representing ratios that involve fractions and decimals.

As students become comfortable with fractional and decimal en-
tries in tables of quantities in equivalent ratios, they should learn to
appreciate that unit rates are especially useful for finding entries. A

A progression of strategies for solving a proportion
If 2 pounds of beans cost $5, how much will 15 pounds of
beans cost?

Method 1
pounds 2 4 6 8 10 12 14 1 15
dollars 5 10 15 20 25 30 35 2.50 37.50

“I found 14 pounds costs $35 and then 1 more pound is another
$2.50, so that makes $37.50 in all.”

Method 2

“I found 1 pound first because if I
know how much it costs for each
pound then I can find any number
of pounds by multiplying.”

Method 3

The previous method, done
in one step.

With this perspective, the second column is
seen as the first column times a number. To
solve the proportion one first finds this number.

unit rate gives the number of units of one quantity per 1 unit of the
other quantity. The amount for N units of the other quantity is then
found by multiplying by N . Once students feel comfortable doing so,
they may wish to work with abbreviated tables instead of working
with long tables that have many values. The most abbreviated ta-
bles consist of only two columns or two rows; solving a proportion
is a matter of finding one unknown entry in the table.

Measurement conversion provides other opportunities for stu-
dents to use relationships given by unit rates.6.RP.3d For example,

6.RP.3dUse ratio reasoning to convert measurement units; ma-
nipulate and transform units appropriately when multiplying or di-
viding quantities.

recognizing “12 inches in a foot,” “1000 grams in a kilogram,” or “one
kilometer is 5

8 of a mile” as rates, can help to connect concepts and
methods developed for other contexts with measurement conversion.

Representing a problem with a tape diagram
Slimy Gloopy mixture is made by mixing glue and liquid laundry starch in a
ratio of 3 to 2. How much glue and how much starch is needed to make 85
cups of Slimy Gloopy mixture?

5 parts ÝÑ 85 cups
1 part ÝÑ 85� 5 � 17 cups

3 parts ÝÑ 3 � 17 � 51 cups
2 parts ÝÑ 2 � 17 � 34 cups

51 cups glue and 34 cups starch are needed.

Tape diagrams can be useful aids for solving problems.

Solving a percent problem

If 75% of the budget is $1200, what is the full budget?

“I said 75% is 3 parts and is $1200
25% is 1 part and is $1200� 3 � $400
100% is 4 parts and is 4 � $400 � $1600”

portion 75 3 1200
whole 100 4 1600

75% is 1200
B 75% of B is 1200

75
100 �

1200
B

75
100 � B � 1200

B � 1600

In reasoning about and solving percent problems, students can
use a variety of strategies. Representations such as this, which
is a blend between a tape diagram and a double number line
diagram, can support sense-making and reasoning about
percent.

Representing a multi-step problem with two pairs of tape diagrams
Yellow and blue paint were mixed in a ratio of 5 to 3 to make green paint. After
14 liters of blue paint were added, the amount of yellow and blue paint in the
mixture was equal. How much green paint was in the mixture at first?

At first: Then:

2 parts ÝÑ 14 liters
1 part ÝÑ 14� 2 � 7 liters

(original total) 8 parts ÝÑ 8 � 7 � 56 liters

There was 56 liters of green paint to start with.

This problem can be very challenging for sixth or seventh graders.
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Grade 7
In Grade 7, students extend their reasoning about ratios and pro-
portional relationships in several ways. Students use ratios in cases

7.RP.1Compute unit rates associated with ratios of fractions, in-
cluding ratios of lengths, areas and other quantities measured in
like or different units.that involve pairs of rational number entries, and they compute as-

sociated unit rates. They identify these unit rates in representations
of proportional relationships. They work with equations in two vari-
ables to represent and analyze proportional relationships. They
also solve multi-step ratio and percent problems, such as problems
involving percent increase and decrease.

At this grade, students will also work with ratios specified by
rational numbers, such as 3

4 cups flour for every 1
2 stick butter.7.RP.1

Students continue to use ratio tables, extending this use to finding
unit rates.

Ratio problem specified by rational numbers: Three
approaches

To make Perfect Purple paint mix 1
2 cup blue paint with 1

3 cup
red paint. If you want to mix blue and red paint in the same
ratio to make 20 cups of Perfect Purple paint, how many cups
of blue paint and how many cups of red paint will you need?

Method 1

“I thought about making 6 batches of purple because that is a
whole number of cups of purple. To make 6 batches, I need 6
times as much blue and 6 times as much red too. That was 3
cups blue and 2 cups red and that made 5 cups purple. Then 4
times as much of each makes 20 cups purple.”

Method 2

“I found out what fraction of the paint is blue and what fraction is
red. Then I found those fractions of 20 to find the number of
cups of blue and red in 20 cups.”

Method 3

Like Method 2, but in tabular form, and viewed as multiplicative
comparisons.

Recognizing proportional relationships Students examine situa-
tions carefully, to determine if they describe a proportional relation-
ship.7.RP.2a For example, if Josh is 10 and Reina is 7, how old will

7.RP.2a Recognize and represent proportional relationships be-
tween quantities.

a Decide whether two quantities are in a proportional rela-
tionship, e.g., by testing for equivalent ratios in a table or
graphing on a coordinate plane and observing whether
the graph is a straight line through the origin.

Reina be when Josh is 20? We cannot solve this problem with the
proportion 10

7 � 20
R because it is not the case that for every 10 years

that Josh ages, Reina ages 7 years. Instead, when Josh has aged 10
another years, Reina will as well, and so she will be 17 when Josh
is 20.

For example, if it takes 2 people 5 hours to paint a fence, how
long will it take 4 people to paint a fence of the same size (assuming
all the people work at the same steady rate)? We cannot solve this
problem with the proportion 2

5 � 4
H because it is not the case that

for every 2 people, 5 hours of work are needed to paint the fence.
When more people work, it will take fewer hours. With twice as
many people working, it will take half as long, so it will take only
2.5 hours for 4 people to paint a fence. Students must understand the
structure of the problem, which includes looking for and understand
the roles of “for every,” “for each,” and “per.”

Students recognize that graphs that are not lines through the ori-
gin and tables in which there is not a constant ratio in the entries
do not represent proportional relationships. For example, consider
circular patios that could be made with a range of diameters. For
such patios, the area (and therefore the number of pavers it takes
to make the patio) is not proportionally related to the diameter, al-
though the circumference (and therefore the length of stone border it
takes to encircle the patio) is proportionally related to the diameter.
Note that in the case of the circumference, C , of a circle of diameter
D, the constant of proportionality in C � π � D is the number π ,
which is not a rational number.

Equations for proportional relationships As students work with
proportional relationships, they write equations of the form y � cx ,
where c is a constant of proportionality, i.e., a unit rate.7.RP.2c They

7.RP.2cRepresent proportional relationships by equations.
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see this unit rate as the amount of increase in y as x increases by 1 7.RP.2b Recognize and represent proportional relationships be-
tween quantities.

b Identify the constant of proportionality (unit rate) in tables,
graphs, equations, diagrams, and verbal descriptions of
proportional relationships.

unit in a ratio table and they recognize the unit rate as the vertical
increase in a “unit rate triangle” or “slope triangle” with horizontal
side of length 1 for a graph of a proportional relationship.7.RP.2b

Correspondence among a table, graph, and equation of a proportional relationship

For every 5 cups grape juice, mix in 2 cups peach juice.

On the graph: For each 1 unit you move to the right, move up 2
5 of a unit.

When you go 2 units to the right, you go up 2 � 2
5 units.

When you go 3 units to the right, you go up 3 � 2
5 units.

When you go 4 units to the right, you go up 4 � 2
5 units.

When you go x units to the right, you go up x � 2
5 units.

Starting from p0, 0q, to get to a point px, yq on the graph, go x units to the right, so go up x � 2
5 units.

Therefore y � x � 2
5

Students connect their work with equations to their work with
tables and diagrams. For example, if Seth runs 5 meters every 2 sec-
onds, then how long will it take Seth to run 100 meters at that rate?
The traditional method is to formulate an equation,
5
2 � 100

T , cross-multiply, and solve the resulting equation to solve
the problem. If 5

2 and 100
T are viewed as unit rates obtained from

the equivalent ratios 5 : 2 and 100 : T , then they must be equivalent
fractions because equivalent ratios have the same unit rate. To see
the rationale for cross-multiplying, note that when the fractions are
given the common denominator 2 � T , then the numerators become
5 � T and 2 � 100 respectively. Once the denominators are equal, the
fractions are equal exactly when their numerators are equal, so 5 �T
must equal 2 �100 for the unit rates to be equal. This is why we can
solve the equation 5 � T � 2 � 100 to find the amount of time it will
take for Seth to run 100 meters.

A common error in setting up proportions is placing numbers in
incorrect locations. This is especially easy to do when the order in
which quantities are stated in the problem is switched within the
problem statement. For example, the second of the following two
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problem statements is more difficult than the first because of the
reversal.

“If a factory produces 5 cans of dog food for every 3 cans
of cat food, then when the company produces 600 cans
of dog food, how many cans of cat food will it produce?” 7.RP.3Use proportional relationships to solve multistep ratio and

percent problems.
“If a factory produces 5 cans of dog food for every 3
cans of cat food, then how many cans of cat food will
the company produce when it produces 600 cans of dog
food?”

Such problems can be framed in terms of proportional relation-
ships and the constant of proportionality or unit rate, which is ob-
scured by the traditional method of setting up proportions. For
example, if Seth runs 5 meters every 2 seconds, he runs at a rate
of 2.5 meters per second, so distance d (in meters) and time t (in
seconds) are related by d � 2.5t . If d � 100 then t � 100

2.5 � 40, so
he takes 40 seconds to run 100 meters.

Skateboard problem 1

After a 20% discount,
the price is 80% of the
original price. So 80%
of the original is $140.

“To find 20% I divided by 4.
Then 80% plus 20% is 100%”

percent dollars

100% $175

20% $35

80% $140
� 4 � 4

� 5 � 5 or add
$140+$35or add

80%+20%

x �original price in dollars

percent dollars

discounted
original

80

100
�

140

x

80x � 140 � 100

x � 140 � 100

80

�
p2 � 7 � 2 � 5qp2 � 5 � 10q

2 � 2 � 2 � 10

� 7 � 5 � 5

� 175

80% of the original price is $140.

80

100
� x � 140

4

5
� x � 140

x � 140�
4

5
� 140 �

5

4
�

p2 � 7 � 2 � 5q � 5

4
� 175

Before the discount, the price of the skateboard was $175.

Multistep problems Students extend their work to solving mul-
tistep ratio and percent problems.7.RP.3 Problems involving percent
increase or percent decrease require careful attention to the refer-
ent whole. For example, consider the difference in these two percent
decrease and percent increase problems:

Skateboard problem 1. After a 20% discount, the price
of a SuperSick skateboard is $140. What was the price
before the discount?
Skateboard problem 2. A SuperSick skateboard costs
$140 now, but its price will go up by 20%. What will the
new price be after the increase?

Skateboard problem 2

After a 20% increase,
the price is 120% of the
original price. So the
new price is 120% of
$140.

“To find 20% I divided by 5.
Then 100% plus 20% is 120%”

percent dollars

100% $140

20% $28

100% $168

� 5 � 5

� 6
or add
100%+20%

� 6 or add
$140+$28

x � increased price in dollars

percent dollars

discounted
original

120

100
�

x
140

12

10
�

x
140

x � 140 �
12

10
� 14 � 12� 168

The new, increased price is 120% of $140.

x � 120

100
� 140�

2 � 6 � 10

2 � 5 � 10
� 14 � 2 � 5� 168

The new price after the increase is $168.

The solutions to these two problems are different because the
20% refers to different wholes or 100% amounts. In the first problem,
the 20% is 20% of the larger pre-discount amount, whereas in the
second problem, the 20% is 20% of the smaller pre-increase amount.
Notice that the distributive property is implicitly involved in work-
ing with percent decrease and increase. For example, in the first
problem, if x is the original price of the skateboard (in dollars), then
after the 20% discount, the new price is x � 20% � x . The distributive
property shows that the new price is 80% � x :

x � 20% � x � 100% � x � 20% � x � p100%� 20%qx � 80% � x

Percentages can also be used in making comparisons between two
quantities. Students must attend closely to the wording of such
problems to determine what the whole or 100% amount a percentage
refers to.
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Using percentages in comparisons

There are 25% more seventh graders than sixth graders in
the after-school club. If there are 135 sixth and seventh
graders altogether in the after-school club, how many are
sixth graders and how many are seventh graders?

“25% more seventh graders than sixth graders means that the
number of extra seventh graders is the same as 25% of the sixth
graders.”

Connection to Geometry One new context for proportions at Grade
7 is scale drawings.7.G.1 To compute unknown lengths from known

7.G.1Solve problems involving scale drawings of geometric fig-
ures, including computing actual lengths and areas from a scale
drawing and reproducing a scale drawing at a different scale.

lengths, students can set up proportions in tables or equations, or
they can reason about how lengths compare multiplicatively. Stu-
dents can use two kinds of multiplicative comparisons. They can
apply a scale factor that relates lengths in two different figures, or
they can consider the ratio of two lengths within one figure, find
a multiplicative relationship between those lengths, and apply that
relationship to the ratio of the corresponding lengths in the other
figure. When working with areas, students should be aware that
areas do not scale by the same factor that relates lengths. (Areas
scale by the square of the scale factor that relates lengths, if area
is measured in the unit of measurement derived from that used for
length.)

Connection to Statistics and Probability Another new context for
proportions at Grade 7 is to drawing inferences about a population
from a random sample.7.SP.1 Because random samples can be ex-
pected to be approximately representative of the full population, one
can imagine selecting many samples of that same size until the full
population is exhausted, each with approximately the same charac-
teristics. Therefore the ratio of the size of a portion having a certain
characteristic to the size of the whole should be approximately the
same for the sample as for the full population.

7.SP.1Understand that statistics can be used to gain information
about a population by examining a sample of the population; gen-
eralizations about a population from a sample are valid only if
the sample is representative of that population. Understand that
random sampling tends to produce representative samples and
support valid inferences.Where the Ratios and Proportional Relationships

Progression is heading
The study of proportional relationships is a foundation for the study
of functions, which continues through High School and beyond. Lin-
ear functions are characterized by having a constant rate of change
(the change in the outputs is a constant multiple of the change in
the corresponding inputs). Proportional relationships are a major
type of linear function; they are those linear functions that have a
positive rate of change and take 0 to 0.

Students extend their understanding of quantity. They write
rates concisely in terms of derived units such as mi/hr rather than
expressing them in terms such as “ 32 miles in every 1 hour.” They
encounter a wider variety of derived units and situations in which
they must conceive units that measure attributes of interest.
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Connection to geometry

If the two rectangles are similar, then how wide is the larger rectangle?

Use a scale factor: Find the scale factor from the small rectangle to the
larger one:

Use an internal comparison: Compare the width to the height in the small
rectangle. The ratio of the width to height is the same in the large rectangle.

Connection to statistics and probability

There are 150 tiles in a bin. Some of the tiles are blue and the rest
are yellow. A random sample of 10 tiles was selected. Of the 10 tiles, 3
were yellow and 7 were blue. What are the best estimates for how many
blue tiles are in the bin and how many yellow tiles are in the bin?

Student 1

yellow: 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
blue: 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105
total: 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

“I figured if you keep picking out samples of 10 they should all be about the
same, so I got this ratio table. Out of 150 tiles, about 45 should be yellow
and about 105 should be blue.”

Student 2

“I also made a ratio table. I said that if there are 15 times as many tiles in
the bin as in the sample, then there should be about 15 times as many
yellow tiles and 15 times as many blue tiles. 15 � 3 � 45, so 45 yellow tiles.
15 � 7 � 105, so 105 blue tiles.”

Student 3

30% yellow tiles 30% � 150 �
3 � 10

10 � 10
� 150 �

3

10
� 15 � 10 � 45

70% blue tiles 70% � 150 �
7 � 10

10 � 10
� 150 �

7

10
� 15 � 10 � 105

“I used percentages. 3 out of 10 is 30% yellow and 7 out of 10 is 70% blue.
The percentages in the whole bin should be about the same as the
percentages in the sample.”
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Appendix: A framework for ratio, rate, and
proportional relationships
This section presents definitions of the terms ratio, rate, and pro-
portional relationship that are consistent with the Standards and
it briefly summarizes some of the essential characteristics of these
concepts. It also provides an organizing framework for these con-
cepts. Because many different authors have used ratio and rate
terminology in widely differing ways, there is a need to standardize
the terminology for use with the Standards and to have a com-
mon framework for curriculum developers, professional development
providers, and other education professionals to discuss the concepts.
This section does not describe how the concepts should be presented
to students in Grades 6 and 7.

Definitions and essential characteristics of ratios,
rates, and proportional relationships
A ratio is a pair of non-negative numbers, A : B, which are not both
0.

When there are A units of one quantity for every B units of
another quantity, a rate associated with the ratio A : B is A

B units of
the first quantity per 1 unit of the second quantity. (Note that the
two quantities may have different units.) The associated unit rate is
A
B . The term unit rate is the numerical part of the rate; the “unit” is
used to highlight the 1 in “per 1 unit of the second quantity.” Unit
rates should not be confused with unit fractions (which have a 1 in
the numerator).

A rate is expressed in terms of a unit that is derived from the
units of the two quantities (such as m/s, which is derived from meters
and seconds). In high school and beyond, a rate is usually written
as

A
B

units
units

where the two different fonts highlight the possibility that the quan-
tities may have different units. In practice, when working with a
ratio A : B, the rate A

B units per 1 unit and the rate B
A units per 1

unit are both useful.
The value of a ratio A : B is the quotient A

B (if B is not 0). Note
that the value of a ratio may be expressed as a decimal, percent,
fraction, or mixed number. The value of the ratio A : B tells how A
and B compare multiplicatively; specifically, it tells how many times
as big A is as B. In practice, when working with a ratio A : B, the
value A

B as well as the value B
A , associated with the ratio B : A, are

both useful. These values of each ratio are viewed as unit rates in
some contexts (see Perspective 1 in the next section).

Two ratios A : B and C : D are equivalent if there is a positive
number, c, such that C � cA and D � cB. To check that two ratios
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are equivalent one can check that they have the same value (because
cA
cB � A

B ), or one can “cross-multiply” and check that A � D � B � C
(because A � cB � B � cA). Equivalent ratios have the same unit rate.

A proportional relationship is a collection of pairs of numbers
that are in equivalent ratios. A ratio A : B determines a proportional
relationship, namely the collection of pairs pcA, cBq, for c positive.
A proportional relationship is described by an equation of the form
y � kx , where k is a positive constant, often called a constant of
proportionality. The constant of proportionality, k , is equal to the
value B

A . The graph of a proportional relationship lies on a ray with
endpoint at the origin.

Two perspectives on ratios and their associated rates
in quantitative contexts
Although ratios, rates, and proportional relationships can be de-
scribed in purely numerical terms, these concepts are most often
used with quantities.

Ratios are often described as comparisons by division, especially
when focusing on an associated rate or value of the ratio. There are
also two broad categories of basic ratio situations. Some division
situations, notably those involving area, can fit into either category
of division. Many ratio situations can be viewed profitably from
within either category of ratio. For this reason, the two categories

Two perspectives on ratio

1) There are 3 cups of apple juice for every 2 cups of grape juice
in the mixture.

This way uses a composed unit: 3 cups apple juice and 2 cups
grape juice. Any mixture that is made from some number of the
composed unit is in the ratio 3 to 2.

In each of these mixtures, apple juice and grape juice are mixed
in a ratio of 3 to 2:

2) The mixture is made from 3 parts apple juice and 2 parts
grape juice, where all parts are the same size, but can be
any size.

If 1 part is : 1 cup 2 cups 5 liters 3 quarts
amt of apple juice: 3 cups 6 cups 15 liters 9 quarts
amt of grape juice: 2 cups 4 cups 10 liters 6 quarts

for ratio will be described as perspectives on ratio.

First perspective: Ratio as a composed unit or batch Two quan-
tities are in a ratio of A to B if for every A units present of the first
quantity there are B units present of the second quantity. In other
words, two quantities are in a ratio of A to B if there is a positive
number c (which could be a rational number), such that there are
c � A units of the first quantity and c � B units of the second quan-
tity. With this perspective, the two quantities can have the same or
different units.

With this perspective, a ratio is specified by a composed unit or
“batch,” such as “3 feet in 2 seconds,” and the unit or batch can be
repeated or subdivided to create new pairs of amounts that are in
the same ratio. For example, 12 feet in 8 seconds is in the ratio 3
to 2 because for every 3 feet, there are 2 seconds. Also, 12 feet in
8 seconds can be viewed as a 4 repetitions of the unit “3 feet in 2
seconds.” Similarly, 3

2 feet in 1 second is 1
2 of the unit “3 feet in 2

seconds.”
With this perspective, quantities that are in a ratio A to B give

rise to a rate of A
B units of the first quantity for every 1 unit of the

second quantity (as well as to the rate of B
A units of the second

quantity for every 1 unit of the first quantity). For example, the ratio
3 feet in 2 seconds gives rise to the rate 3

2 feet for every 1 second.
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With this perspective, if the relationship of the two quantities is
represented by an equation y � cx , the constant of proportionality,
c, can be viewed as the numerical part of a rate associated with the
ratio A : B.

Second perspective: Ratio as fixed numbers of parts Two quan-
tities which have the same units, are in a ratio of A to B if there is
a part of some size such that there are A parts present of the first
quantity and B parts present of the second quantity. In other words,
two quantities are in a ratio of A to B if there is a positive number
c (which could be a rational number), such that there are A � c units
of the first quantity and B � c units of the second quantity.

With this perspective, one thinks of a ratio as two pieces. One
piece is constituted of A parts, the other of B parts. To create pairs
of measurements in the same ratio, one specifies an amount and
fills each part with that amount. For example, in a ratio of 3 parts
sand to 2 parts cement, each part could be filled with 5 cubic yards,
so that there are 15 cubic yards of sand and 10 cubic yards of
cement; or each part could be filled with 10 cubic meters, so that
there are 30 cubic meters of sand and 20 cubic meters of cement.
When describing a ratio from this perspective, the units need not
be explicitly stated, as in “mix sand and cement in a ratio of 3 to
2.” However, the type of quantity must be understood or stated
explicitly, as in “by volume” or “by weight.”

With this perspective, a ratio A : B has an associated value, A
B ,

which describes how the two quantities are related multiplicatively.
Specifically, A

B is the factor that tells how many times as much of
the first quantity there is as of the second quantity. (Similarly, the
factor B

A associated with the ratio B : A, tells how many times as
much of the second quantity there is as of the first quantity.) For
example, if sand and cement are mixed in a ratio of 3 to 2, then there
is 3

2 times as much sand as cement and there is 2
3 times as much

cement as sand.
With this second perspective, if the relationship of the two quan-

tities is represented by an equation y � cx , the constant of propor-
tionality, c, can be considered a factor that does not have a unit.
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6–8, Expressions and
Equations

Overview
An expression expresses something. Facial expressions express emo-
tions. Mathematical expressions express calculations with numbers.
Some of the numbers might be given explicitly, like 2 or 3

4 . Other
numbers in the expression might be represented by letters, such as
x , y, P , or n. The calculation an expression represents might use
only a single operation, as in 4� 3 or 3x , or it might use a series of
nested or parallel operations, as in 3pa � 9q � 9{b. An expression
can consist of just a single number, even 0.

Letters standing for numbers in an expression are called vari-
ables. In good practice, including in student writing, the meaning
of a variable is specified by the surrounding text; an expression by
itself gives no intrinsic meaning to the variables in it. Depending on
the context, a variable might stand for a specific number, for exam-
ple the solution to a word problem; it might be used in a universal
statement true for all numbers, for example when we say that that
a�b � b�a for all numbers a and b; or it might stand for a range
of numbers, for example when we say that

?
x2 � x for x ¡ 0. In

choosing variables to represent quantities, students specify a unit;
rather than saying “let G be gasoline,” they say “let G be the number
of gallons of gasoline”.MP6 MP6 Be precise in defining variables.

An expression is a phrase in a sentence about a mathematical
or real-world situation. As with a facial expression, however, you
can read a lot from an algebraic expression (an expression with
variables in it) without knowing the story behind it, and it is a goal
of this progression for students to see expressions as objects in their
own right, and to read the general appearance and fine details of
algebraic expressions.

An equation is a statement that two expressions are equal, such
as 10 � 0.02n � 20, or 3 � x � 4 � x , or 2pa � 1q � 2a � 2. It
is an important aspect of equations that the two expressions on
either side of the equal sign might not actually always be equal;
that is, the equation might be a true statement for some values
of the variable(s) and a false statement for others. For example,
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10 � 0.02n � 20 is true only if n � 500; and 3 � x � 4 � x is
not true for any number x ; and 2pa � 1q � 2a � 2 is true for all
numbers a. A solution to an equation is a number that makes the
equation true when substituted for the variable (or, if there is more
than one variable, it is a number for each variable). An equation
may have no solutions (e.g., 3� x � 4� x has no solutions because,
no matter what number x is, it is not true that adding 3 to x yields
the same answer as adding 4 to x). An equation may also have
every number for a solution (e.g., 2pa � 1q � 2a � 2). An equation
that is true no matter what number the variable represents is called
an identity, and the expressions on each side of the equation are
said to be equivalent expressions. For example 2pa� 1q and 2a� 2
are equivalent expressions. In Grades 6–8, students start to use
properties of operations to manipulate algebraic expressions and
produce different but equivalent expressions for different purposes.
This work builds on their extensive experience in K–5 working with
the properties of operations in the context of operations with whole
numbers, decimals and fractions.
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Grade 6
Apply and extend previous understandings of arithmetic to alge-
braic expressions Students have been writing numerical expres-
sions since Kindergarten, such as

2� 3 7� 6� 3 4� p2� 3q

8� 5� 8� 2
1

3
p8� 7� 3q 3

1
2

.

In Grade 5 they used whole number exponents to express powers of
10, and in Grade 6 they start to incorporate whole number exponents
into numerical expressions, for example when they describe a square
with side length 50 feet as having an area of 502 square feet.6.EE.1 6.EE.1Write and evaluate numerical expressions involving

whole-number exponents.Students have also been using letters to represent an unknown
quantity in word problems since Grade 3. In Grade 6 they begin to
work systematically with algebraic expressions. They express the
calculation “Subtract y from 5” as 5 � y, and write expressions for
repeated numerical calculations.MP8 For example, students might be

MP8 Look for regularity in a repeated calculation and express it
with a general formula.asked to write a numerical expression for the change from a $10 bill

after buying a book at various prices:
Price of book ($) 5.00 6.49 7.15
Change from $10 10� 5 10� 6.49 10� 7.15

Abstracting the pattern they write 10 � p for a book costing
p dollars, thus summarizing a calculation that can be carried out
repeatedly with different numbers.6.EE.2a Such work also helps stu-

6.EE.2a Write, read, and evaluate expressions in which letters
stand for numbers.

a Write expressions that record operations with numbers
and with letters standing for numbers.dents interpret expressions. For example, if there are 3 loose apples

and 2 bags of A apples each, students relate quantities in the situ-
ation to the terms in the expression 3� 2A.

As they start to solve word problems algebraically, students also
use more complex expressions. For example, in solving the word
problem

Daniel went to visit his grandmother, who gave him
$5.50. Then he bought a book costing $9.20. If he has
$2.30 left, how much money did he have before visiting
his grandmother?

students might obtain the expression x�5.50�9.20 by following the
story forward, and then solve the equation x � 5.50� 9.20 � 2.30.•

• Notice that in this problem, like many problems, a quantity,
“money left,” is expressed in two distinct ways:

1. starting amount� amount from grandma� amount spent

2. $2.30
Because these two expressions refer to the same quantity in the
problem situation, they are equal to each other. The equation
formed by representing their equality can then be solved to find
the unknown value (that is, the value of the variable that makes
the equation fit the situation).

Students may need explicit guidance in order to develop the strategy
of working forwards, rather than working backwards from the 2.30
and calculating 2.30� 9.20� 5.50.6.EE.7 As word problems get more

6.EE.7Solve real-world and mathematical problems by writing
and solving equations of the form x � p � q and px � q for
cases in which p, q and x are all nonnegative rational numbers.

complex, students find greater benefit in representing the problem
algebraically by choosing variables to represent quantities, rather
than attempting a direct numerical solution, since the former ap-
proach provides general methods and relieves demands on working
memory.
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Students in Grade 5 began to move from viewing expressions as
actions describing a calculation to viewing them as objects in their
own right;5.OA.2 in Grade 6 this work continues and becomes more

5.OA.2Write simple expressions that record calculations with
numbers, and interpret numerical expressions without evaluating
them.sophisticated. They describe the structure of an expression, seeing

2p8�7q for example as a product of two factors the second of which,
p8�7q, can be viewed as both a single entity and a sum of two terms.
They interpret the structure of an expression in terms of a context: if
a runner is 7t miles from her starting point after t hours, what is the
meaning of the 7?MP7 If a, b, and c are the heights of three students

MP7 Looking for structure in expressions by parsing them into a
sequence of operations; making use of the structure to interpret
the expression’s meaning in terms of the quantities represented
by the variables.in inches, they recognize that the coefficient 1

3 in 1
3 pa� b� cq has

the effect of reducing the size of the sum, and they also interpret
multiplying by 1

3 as dividing by 3.6.EE.2b Both interpretations are 6.EE.2b Write, read, and evaluate expressions in which letters
stand for numbers.

b Identify parts of an expression using mathematical terms
(sum, term, product, factor, quotient, coefficient); view
one or more parts of an expression as a single entity.

useful in connection with understanding the expression as the mean
of a, b, and c. 6.SP.3

6.SP.3 Recognize that a measure of center for a numerical data
set summarizes all of its values with a single number, while a
measure of variation describes how its values vary with a single
number.

In the work on number and operations in Grades K–5, students
have been using properties of operations to write expressions in
different ways. For example, students in grades K–5 write 2 � 3 �
3�2 and 8�5�8�2 � 8�p5�2q and recognize these as instances
of general properties which they can describe. They use the “any
order, any grouping” property• to see the expression 7 � 6 � 3 as

• The “any order, any grouping” property is a combination of the
commutative and associative properties. It says that sequence of
additions and subtractions may be calculated in any order, and
that terms may be grouped together any way.

p7 � 3q � 6, allowing them to quickly evaluate it. The properties
are powerful tools that students use to accomplish what they want
when working with expressions and equations. They can be used at
any time, in any order, whenever they serve a purpose.

Work with numerical expressions prepares students for work with
algebraic expressions. During the transition, it can be helpful for
them to solve numerical problems in which it is more efficient to
hold numerical expressions unevaluated at intermediate steps. For
example, the problem

Fred and George Weasley make 150 “Deflagration
Deluxe” boxes of Weasleys’ Wildfire Whiz-bangs at a
cost of 17 Galleons each, and sell them for 20 Galleons
each. What is their profit?

is more easily solved by leaving unevaluated the total cost, 150�17
Galleons, and the total revenue 150 � 20 Galleons, until the sub-
traction step, where the distributive law can be used to calculate
the answer as 150 � 20 � 150 � 17 � 150 � 3 � 450 Galleons. A
later algebraic version of the problem might ask for the sale price
that will yield a given profit, with the sale price represented by a
letter such as p. The habit of leaving numerical expressions uneval-
uated prepares students for constructing the appropriate algebraic
equation to solve such a problem.

As students move from numerical to algebraic work the multipli-
cation and division symbols � and � are replaced by the conven-
tions of algebraic notation. Students learn to use either a dot for
multiplication, e.g., 1 �2 �3 instead of 1�2�3, or simple juxtaposition,
e.g., 3x instead of 3 � x (during the transition, students may indi-
cate all multiplications with a dot, writing 3 � x for 3x). A firm grasp

Some common student difficulties

• Failure to see juxtaposition as indicating multiplication,
e.g., evaluating 3x as 35 when x � 5, or rewriting 8� 2a
as 6a

• Failure to see hidden 1s, rewriting 4C �C as 4 instead of
seeing 4C � C as 4 � C � 1 � C which is 3 � C .Draft, 4/22/2011, comment at commoncoretools.wordpress.com .
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on variables as numbers helps students extend their work with the
properties of operations from arithmetic to algebra.MP2 For exam- MP2 Connect abstract symbols to their numerical referents.
ple, students who are accustomed to mentally calculating 5� 37 as
5 � p30 � 7q � 150 � 35 can now see that 5p3a � 7q � 15a � 35
for all numbers a. They apply the distributive property to the ex-
pression 3p2 � xq to produce the equivalent expression 6 � 3x and
to the expression 24x � 18y to produce the equivalent expression
6p4x � 3yq.6.EE.3 6.EE.3Apply the properties of operations to generate equivalent

expressions.Students evaluate expressions that arise from formulas used in
real-world problems, such as the formulas V � s3 and A � 6s2
for the volume and surface area of a cube. In addition to using
the properties of operations, students use conventions about the or-
der in which arithmetic operations are performed in the absence of
parentheses.6.EE.2c It is important to distinguish between such con-

6.EE.2c Write, read, and evaluate expressions in which letters
stand for numbers.

c Evaluate expressions at specific values of their variables.
Include expressions that arise from formulas used in real-
world problems. Perform arithmetic operations, including
those involving whole-number exponents, in the conven-
tional order when there are no parentheses to specify a
particular order (Order of Operations).

ventions, which are notational conveniences that allow for algebraic
expressions to be written with fewer parentheses, and properties of
operations, which are fundamental properties of the number system
and undergird all work with expressions. In particular, the mnemonic
PEMDAS• can mislead students into thinking, for example, that ad-

• PEMDAS stands for Parentheses, Exponents, Multiplication, Di-
vision, Addition, Subtraction, specifying the order in which oper-
ations are performed in interpreting or evaluating numerical ex-
pressions.

dition must always take precedence over subtraction because the A
comes before the S, rather than the correct convention that addition
and subtraction proceed from left to right (as do multiplication and
division). This can lead students to make mistakes such as simpli-
fying n� 2� 5 as n� 7 (instead of the correct n� 3) because they
add the 2 and the 5 before subtracting from n.6.EE.4

6.EE.4Identify when two expressions are equivalent (i.e., when
the two expressions name the same number regardless of which
value is substituted into them).The order of operations tells us how to interpret expressions, but

does not necessarily dictate how to calculate them. For example,
the P in PEMDAS indicates that the expression 8 � p5 � 1q is to
be interpreted as 8 times a number which is the sum of 5 and 1.
However, it does not dictate the expression must be calculated this
way. A student might well see it, through an implicit use of the
distributive law, as 8� 5� 8� 1 � 40� 8 � 48.

The distributive law is of fundamental importance. Collecting
like terms, e.g., 5b � 3b � p5 � 3qb � 8b, should be seen as an
application of the distributive law, not as a separate method.

Reason about and solve one-variable equations and inequalities
In Grades K–5 students have been writing numerical equations and
simple equations involving one operation with a variable. In Grade
6 they start the systematic study of equations and inequalities and
methods of solving them. Solving is a process of reasoning to find the
numbers which make an equation true, which can include checking
if a given number is a solution.6.EE.5 Although the process of reason-

6.EE.5Understand solving an equation or inequality as a process
of answering a question: which values from a specified set, if
any, make the equation or inequality true? Use substitution to
determine whether a given number in a specified set makes an
equation or inequality true.

ing will eventually lead to standard methods for solving equations,
students should study examples where looking for structure pays off,
such as in 4x � 3x � 3x � 20, where they can see that 4x must be
20 to make the two sides equal.

This understanding can be reinforced by comparing arithmetic
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and algebraic solutions to simple word problems. For example, how
many 44-cent stamps can you buy with $11? Students are ac-
customed to solving such problems by division; now they see the
parallel with representing the problem algebraically as 0.44n � 11,
from which they use the same reasoning as in the numerical solution
to conclude that n � 11�0.44.6.EE.7• They explore methods such as

6.EE.7Solve real-world and mathematical problems by writing
and solving equations of the form x � p � q and px � q for
cases in which p, q and x are all nonnegative rational numbers.

• In Grade 7, where students learn about complex fractions, this
problem can be expressed in cents as well as dollars to help stu-
dents understand equivalences such as

11

0.44 �
1100

44
.

dividing both sides by the same non-zero number. As word problems
grow more complex in Grades 6 and 7, analogous arithmetical and
algebraic solutions show the connection between the procedures of
solving equations and the reasoning behind those procedures.

Analogous arithmetical and algebraic solutions

J. bought three packs of balloons. He opened them and counted
12 balloons. How many balloons are in a pack?

Arithmetical solution
If three packs have twelve balloons, then one pack has
12� 3 � 4 balloons.

Algebraic solution
Defining the variable: Let b be the number of balloons in a pack.
Writing the equation:

3b � 12

Solving (mirrors the reasoning of the numerical solution):

3b � 12Ñ 3b
3
� 12

3
b � 4.

When students start studying equations in one variable, it is
important for them to understand every occurrence of of a given
variable has the same value in the expression and throughout a
solution procedure: if x is assumed to be the number satisfying the
equation 4x�3x � 3x�20 at the beginning of a solution procedure,
it remains that number throughout.

As with all their work with variables, it is important for students
to state precisely the meaning of variables they use when setting
up equations (MP6). This includes specifying whether the variable
refers to a specific number, or to all numbers in some range. For ex-
ample, in the equation 0.44n � 11 the variable n refers to a specific
number (the number of stamps you can buy for $11); however, if the
expression 0.44n is presented as a general formula for calculating
the price in dollars of n stamps, then n refers to all numbers in some
domain.6.EE.6 That domain might be specified by inequalities, such

6.EE.6Use variables to represent numbers and write expressions
when solving a real-world or mathematical problem; understand
that a variable can represent an unknown number, or, depending
on the purpose at hand, any number in a specified set.

as n ¡ 0.6.EE.8

6.EE.8Write an inequality of the form x ¡ c or x   c to represent
a constraint or condition in a real-world or mathematical problem.
Recognize that inequalities of the form x ¡ c or x   c have
infinitely many solutions; represent solutions of such inequalities
on number line diagrams.

Represent and analyze quantitative relationships between depen-
dent and independent variables In addition to constructing and
solving equations in one variable, students use equations in two
variables to express relationships between two quantities that vary
together. When they construct an expression like 10�p to represent
a quantity such as on page 4, students can choose a variable such
as C to represent the calculated quantity and write C � 10 � p
to represent the relationship. This prepares students for work with
functions in later grades.6.EE.9 The variable p is the natural choice 6.EE.9Use variables to represent two quantities in a real-world

problem that change in relationship to one another; write an
equation to express one quantity, thought of as the dependent
variable, in terms of the other quantity, thought of as the indepen-
dent variable. Analyze the relationship between the dependent
and independent variables using graphs and tables, and relate
these to the equation.

for the independent variable in this situation, with C the dependent
variable. In a situation where the price, p, is to be calculated from
the change, C , it might be the other way around.

As they work with such equations students begin to develop
a dynamic understanding of variables, an appreciation that they
can stand for any number from some domain. This use of variables • n 1 2 3 4 5

0.44n 0.44 0.88 1.32 1.75 2.20arises when students study expressions such as 0.44n, discussed
earlier, or equations in two variables such as d � 5� 5t describing
relationship between distance in miles, d, and time in hours, t , for a
person starting 5 miles from home and walking away at 5 miles per
hour. Students can use tabular• and graphical• representations to •

1.1 FUNCTIONS AND FUNCTION NOTATION 9

26. (a) Ten inches of snow is equivalent to about one inch
of rain.2 Write an equation for the amount of precip-
itation, measured in inches of rain, r = f(s), as a
function of the number of inches of snow, s.

(b) Evaluate and interpret f(5).
(c) Find s such that f(s) = 5 and interpret your result.

27. An 8-foot tall cylindrical water tank has a base of diam-
eter 6 feet.

(a) How much water can the tank hold?
(b) How much water is in the tank if the water is 5 feet

deep?
(c) Write a formula for the volume of water as a func-

tion of its depth in the tank.

28. Match each story about a bike ride to one of the graphs
(i)–(v), where d represents distance from home and t is
time in hours since the start of the ride. (A graph may be
used more than once.)

(a) Starts 5 miles from home and rides 5 miles per hour
away from home.

(b) Starts 5 miles from home and rides 10 miles per hour
away from home.

(c) Starts 10 miles from home and arrives home one
hour later.

(d) Starts 10 miles from home and is halfway home after
one hour.

(e) Starts 5 miles from home and is 10 miles from home
after one hour.

21

5

10

15

t

d(i)

21

5

10

15

t

d(ii)

21

5

10

15

t

d(iii)

21

5

10

15

t

d(iv)

21

5

10

15

t

d(v)

29. Table 1.7 shows the daily low temperature for a one-week
period in New York City during July.

(a) What was the low temperature on July 19?
(b) When was the low temperature 73◦F?
(c) Is the daily low temperature a function of the date?
(d) Is the date a function of the daily low temperature?

Table 1.7

Date 17 18 19 20 21 22 23

Low temp (◦F) 73 77 69 73 75 75 70

30. Use the data from Table 1.3 on page 5.

(a) Plot R on the vertical axis and t on the horizontal
axis. Use this graph to explain why you believe that
R is a function of t.

(b) Plot F on the vertical axis and t on the horizontal
axis. Use this graph to explain why you believe that
F is a function of t.

(c) Plot F on the vertical axis and R on the horizontal
axis. From this graph show that F is not a function
of R.

(d) Plot R on the vertical axis and F on the horizontal
axis. From this graph show that R is not a function
of F .

31. Since Roger Bannister broke the 4-minute mile on May
6, 1954, the record has been lowered by over sixteen sec-
onds. Table 1.8 shows the year and times (as min:sec) of
new world records for the one-mile run.3 The last time
the record was broken was in 1999.

(a) Is the time a function of the year? Explain.
(b) Is the year a function of the time? Explain.
(c) Let y(r) be the year in which the world record, r,

was set. Explain what is meant by the statement
y(3 :47.33) = 1981.

(d) Evaluate and interpret y(3 :51.1).

Table 1.8

Year Time Year Time Year Time

1954 3:59.4 1966 3:51.3 1981 3:48.53

1954 3:58.0 1967 3:51.1 1981 3:48.40

1957 3:57.2 1975 3:51.0 1981 3:47.33

1958 3:54.5 1975 3:49.4 1985 3:46.32

1962 3:54.4 1979 3:49.0 1993 3:44.39

1964 3:54.1 1980 3:48.8 1999 3:43.13

1965 3:53.6

2http://mo.water.usgs.gov/outreach/rain, accessed May 7, 2006.
3www.infoplease.com/ipsa/A0112924.html, accessed January 15, 2006.

develop an appreciation of varying quantities.
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Grade 7
Use properties of operations to generate equivalent expressions
In Grade 7 students start to simplify general linear expressions•

• A general linear expression in the variable x is a sum of terms
which are either rational numbers, or rational numbers times x,
e.g., � 1

2 � 2x � 5
8 � 3x.with rational coefficients. Building on work in Grade 6, where stu-

dents used conventions about the order of operations to parse, and
properties of operations to transform, simple expressions such as
2p3 � 8xq or 10 � 2p, students now encounter linear expressions
with more operations and whose transformation may require an un-
derstanding of the rules for multiplying negative numbers, such as
7� 2p3� 8xq.7.EE.1

7.EE.1Apply properties of operations as strategies to add, sub-
tract, factor, and expand linear expressions with rational coeffi-
cients.In simplifying this expression students might come up with an-

swers such as

• 5p3� 8xq, mistakenly detaching the 2 from the indicated mul-
tiplication

• 7 � 2p�5xq, through a determination to perform the compu-
tation in parentheses first, even though no simplification is
possible

• 7�6�16x , through an imperfect understanding of the way the
distributive law works or of the rules for multiplying negative
numbers.

Writing expressions in different forms

Problem 1.1

1.1

Since 2(L + W) and 2L + 2W represent the same quantity (the perimeter
of a rectangle), they are This investigation
explores situations in which a quantity is described with several different,
but equivalent, expressions. The question is:

How can we determine if two expressions are equivalent?

Tiling Pools

In-ground pools are often surrounded by borders of tiles.
The Custom Pool Company gets orders for square pools of 
different sizes. For example, the pool at the right has side 
lengths of 5 feet and is surrounded by square border tiles.
All Custom Pool border tiles measure 1 foot on each side.

• How many border tiles do you need to surround 
a square pool?

Writing Equivalent Expressions

In order to calculate the number of tiles needed for a project, the Custom
Pool manager wants an equation relating the number of border tiles to the
size of the pool.

A. 1. Write an expression for the number of border tiles 
N based on the side length s of a square pool.

2. Write a different but equivalent expression for the 
number of tiles N needed to surround such a 
square pool.

3. Explain why your two expressions for the number 
of border tiles are equivalent.

B. 1. Use each expression in Question A to write an equation for the
number of border tiles N. Make a table and a graph for each
equation.

2. Based on your table and graph, are the two expressions for the
number of border tiles in Question A equivalent? Explain.

C. Is the relationship between the side length of the pool and the number
of border tiles linear, exponential, quadratic, or none of these? Explain.

Homework starts on page 12.

equivalent expressions.

6 Say It With Symbols

s

s

1 ft

1 ft
border tile

8cmp06se_SI1.qxd  6/8/06  8:09 AM  Page 6

In expressing the number of tiles needed to border a square pool
with side length s feet (where s is a whole number), students
might write 4ps� 1q, s� s� s� s� 4, or 2s� 2ps� 2q, each
indicating a different way of breaking up the border in order to
perform the calculation. They should see all these expressions
as equivalent.

In contrast with the simple linear expressions they see in Grade
6, the more complex expressions students seen in Grade 7 afford
shifts of perspective, particularly because of their experience with
negative numbers: for example, students might see 7� 2p3� 8xq as
7� p2p3� 8xqq or as 7� p�2qp3� p�8qxq (MP7).

As students gain experience with multiple ways of writing an ex-
pression, they also learn that different ways of writing expressions
can serve different purposes and provide different ways of seeing
a problem. For example, a � 0.05a � 1.05a means that “increase
by 5%” is the same as “multiply by 1.05.”7.EE.2 In the example on

7.EE.2Understand that rewriting an expression in different forms
in a problem context can shed light on the problem and how the
quantities in it are related.the right, the connection between the expressions and the figure

emphasize that they all represent the same number, and the con-
nection between the structure of each expression and a method of
calculation emphasize the fact that expressions are built up from
operations on numbers.

Solve real-life and mathematical problems using numerical and
algebraic expressions and equations By Grade 7 students start
to see whole numbers, integers, and positive and negative fractions
as belonging to a single system of rational numbers, and they solve
multi-step problems involving rational numbers presented in various
forms.7.EE.3 7.EE.3 Solve multi-step real-life and mathematical problems

posed with positive and negative rational numbers in any form
(whole numbers, fractions, and decimals), using tools strategi-
cally. . . .

Students use mental computation and estimation to assess the
reasonableness of their solutions. For example, the following state-
ment appeared in an article about the annual migration of the Bar-
tailed Godwit from Alaska to New Zealand:
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She had flown for eight days—nonstop—covering
approximately 7,250 miles at an average speed of nearly
35 miles per hour.

Students can make the rough mental estimate

8� 24� 35 � 8� 12� 70   100� 70 � 7000

to recognize that although this astonishing statement is in the right
ballpark, the average speed is in fact greater than 35 miles per
hour, suggesting that one of the numbers in the article must be
wrong.7.EE.3 7.EE.3 . . . Apply properties of operations to calculate with num-

bers in any form; convert between forms as appropriate; and as-
sess the reasonableness of answers using mental computation
and estimation strategies.

As they build a systematic approach to solving equations in one
variable, students continue to compare arithmetical and algebraic
solutions to word problems. For example they solve the problem

The perimeter of a rectangle is 54 cm. Its length is 6
cm. What is its width?

by subtracting 2 � 6 from 54 and dividing by 2, and also by setting
up the equation

2w � 2 � 6 � 54.

The steps in solving the equation mirror the steps in the numerical
solution. As problems get more complex, algebraic methods become
more valuable. For example, in the cyclist problem in the margin,

Looking for structure in word problems (MP7)

Two cyclists are riding toward each other along
a road (each at a constant speed). At 8 am, they
are 63 miles apart. They meet at 11 am. If one
cyclist rides at 12.5 miles per hour, what is the
speed of the other cyclist?

First solution: The first cyclist travels 3� 12.5 � 37.5 miles. The
second travels 63� 37.5 � 25.5 miles, so goes 25.5

3 � 8.5
miles per hour. Another solution uses a key hidden quantity, the
speed at which the cyclists are approaching each other, to
simplify the calculations: since 63

3 � 21, the cyclists are
approaching each other at 21 miles per hour, so the other cyclist
is traveling at 21� 12.5 � 8.5 miles per hour.

the numerical solution requires some insight in order to keep the
cognitive load of the calculations in check. By contrast, choosing the
letter s to stand for the unknown speed, students build an equation
by adding the distances travelled in three hours (3s and 3 �12.5) and
setting them equal to 63 to get

3s� 3 � 12.5 � 63.

It is worthwhile exploring two different possible next steps in the
solution of this equation:

3s� 37.5 � 64 and 3ps� 12.5q � 63.

The first is suggested by a standard approach to solving linear equa-
tions; the second is suggested by a comparison with the numerical
solution described earlier.7.EE.4a

7.EE.4a Use variables to represent quantities in a real-world
or mathematical problem, and construct simple equations and
inequalities to solve problems by reasoning about the quanti-
ties.

a Solve word problems leading to equations of the form
px � q � r and ppx � qq � r, where p, q, and r are
specific rational numbers. Solve equations of these forms
fluently. Compare an algebraic solution to an arithmetic
solution, identifying the sequence of the operations used
in each approach.

Students also set up and solve inequalities, recognizing the ways
in which the process of solving them is similar to the process of
solving linear equations:

As a salesperson, you are paid $50 per week plus
$3 per sale. This week you want your pay to be at least
$100. Write an inequality for the number of sales you
need to make, and describe the solution.
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Students also recognize one important new consideration in solving
inequalities: multiplying or dividing both sides of an inequality by a
negative number reverses the order of the comparison it represents.
It is useful to present contexts that allows students to make sense
of this. For example,

If the price of a ticket to a school concert is p dollars
then the attendance is 1000�50p. What range of prices
ensures that at least 600 people attend?

Students recognize that the requirement of at least 600 people leads
to the inequality 1000 � 50p ¥ 600. Before solving the inequality,
they use common sense to anticipate that that answer will be of
the form p ¤ ?, since higher prices result in lower attendance.7.EE.4b

7.EE.4b Use variables to represent quantities in a real-world
or mathematical problem, and construct simple equations and
inequalities to solve problems by reasoning about the quanti-
ties.

b Solve word problems leading to inequalities of the form
px � q ¡ r or px � q   r, where p, q, and r are specific
rational numbers. Graph the solution set of the inequality
and interpret it in the context of the problem.

(Note that inequalities using ¤ and ¥ are included in this standard,
in addition to ¡ and  .)
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Grade 8
Work with radicals and integer exponents In Grade 8 students
add the properties of integer exponents to their repertoire of rules
for transforming expressions.• Students have been denoting whole • Properties of Integer Exponents

For any nonzero rational numbers a and b
and integers n and m:

1. anam � an�m

2. panqm � anm

3. anbn � pabqn
4. a0 � 1

5. a�n � 1{an

number powers of 10 with exponential notation since Grade 5, and
they have seen the pattern in the number of zeros when powers of
10 are multiplied. They express this as 10a10b � 10a�b for whole
numbers a and b. Requiring this rule to hold when a and b are
integers leads to the definition of the meaning of powers with 0
and negative exponents. For example, we define 100 � 1 because
we want 10a100 � 10a�0 � 10a, so 100 must equal 1. Students
extend these rules to other bases, and learn other properties of
exponents.8.EE.1

8.EE.1Know and apply the properties of integer exponents to
generate equivalent numerical expressions.Notice that students do not learn the properties of rational ex-

ponents until high school. However, they prepare in Grade 8 by
starting to work systematically with the square root and cube root
symbols, writing, for example,

?
64 �

?
82 � 8 and p 3

?
5q3 � 5.

Since ?p is defined to mean the positive solution to the equation
x2 � p (when it exists), it is not correct to say (as is common)
that

?
64 � �8. On the other hand, in describing the solutions

to x2 � 64, students can write x � �?64 � �8.8.EE.2 Students

8.EE.2Use square root and cube root symbols to represent solu-
tions to equations of the form x2 � p and x3 � p, where p is a
positive rational number. Evaluate square roots of small perfect
squares and cube roots of small perfect cubes. Know that

?
2 is

irrational.
in Grade 8 are not in a position to prove that these are the only
solutions, but rather use informal methods such as guess and check.

Students gain experience with the properties of exponents by
working with estimates of very large and very small quantities. For
example, they estimate the population of the United States as 3�108

and the population of the world as 7� 109, and determine that the
world population is more than 20 times larger.8.EE.3 They express

8.EE.3Use numbers expressed in the form of a single digit times
a whole-number power of 10 to estimate very large or very small
quantities, and to express how many times as much one is than
the other.and perform calculations with very large numbers using scientific

notation. For example, given that we breathe about 6 liters of air
per minute, they estimate that there are 60� 24 � 6� 2.4� 102 �
1.5 � 103 minutes in a day, and that we therefore breath about
6�1.5�103 � 104 liters in a day. In a lifetime of 75 years there are
about 365�75 � 3�104 days, and so we breath about 3�104�104 �
3� 108 liters of air in a lifetime.8.EE.4

8.EE.4Perform operations with numbers expressed in scientific
notation, including problems where both decimal and scientific
notation are used. Use scientific notation and choose units of
appropriate size for measurements of very large or very small
quantities (e.g., use millimeters per year for seafloor spreading).
Interpret scientific notation that has been generated by technol-
ogy.Understand the connections between proportional relationships,

lines, and linear equations As students in Grade 8 move towards
an understanding of the idea of a function, they begin to tie together
a number of notions that have been developing over the last few
grades:

1. An expression in one variable defines a general calculation
in which the variable can represent a range of numbers—an
input-output machine with the variable representing the input
and the expression calculating the output. For example, 60t is
the distance traveled in t hours by a car traveling at a constant
speed of 60 miles per hour.
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2. Choosing a variable to represent the output leads to an equa-
tion in two variables describing the relation between two
quantities. For example, choosing d to represent the distance
traveled by the car traveling at 65 miles per hour yields the
equation d � 65t . Reading the expression on the right (multi-
plication of the variable by a constant) reveals the relationship
(a rate relationship in which distance is proportional to time).

3. Tabulating values of the expression is the same as tabulating
solution pairs of the corresponding equation.• This gives in- • t (hours) 1 2 3 4 5 6

60t (miles) 60 120 180 240 300 360sight into the nature of the relationship; for example, that the
distance increases by the same amount for the same increase
in the time (the ratio between the two being the speed).

4. Plotting points on the coordinate plane, in which each axis is
marked with a scale representing one quantity, affords a visual
representation of the relationship between two quantities.• •

      1 3 5 7 9

700

   
100

300

500

Time t (hours)

D
is

ta
nc

e 
d 

(m
ile

s)

d = 65t

Proportional relationships provide a fruitful first ground in which
these notions can grow together. The constant of proportionality is
visible in each; as the multiplicative factor in the expression, as the
slope of the line, and as an increment in the table (if the dependent
variable goes up by 1 unit in each entry).• As students start to build

• In the Grade 8 Functions domain, students see the relationship
between the graph of a proportional relationship and its equation
y � mx as a special case of the relationship between a line and
its equation y � mx � b, with b � 0.a unified notion of the concept of function they are able to compare

proportional relationships presented in different ways. For example,
the table shows 300 miles in 5 hours, whereas the graph shows more
than 300 miles in the same time.8.EE.5

8.EE.5Graph proportional relationships, interpreting the unit rate
as the slope of the graph. Compare two different proportional
relationships represented in different ways.The connection between the unit rate in a proportional relation-

ship and the slope of its graph depends on a connection with the
geometry of similar triangles. The fact that a line has a well-defined
slope—that the ratio between the rise and run for any two points
on the line is always the same—depends on similar triangles.8.EE.6

Why lines have constant slope

The green triangle is
similar to the blue tri-
angle because corre-
sponding angles are
equal, so the ratio
of rise to run is the
same in each.

8.EE.6Use similar triangles to explain why the slope m is the
same between any two distinct points on a non-vertical line in the
coordinate plane; derive the equation y � mx for a line through
the origin and the equation y � mx�b for a line intercepting the
vertical axis at b.

The fact that the slope is constant between any two points on a
line leads to the derivation of an equation for the line. For a line
through the origin, the right triangle whose hypotenuse is the line
segment from p0, 0q to a point px, yq on the line is similar to the
right triangle from p0, 0q to the point p1, mq on the line, and so

y
x � m

1
, or y � mx.

The equation for a line not through the origin can be derived in a
similar way, starting from the y-intercept p0, bq instead of the origin.

Analyze and solve linear equations and pairs of simultaneous lin-
ear equations By Grade 8 students have the tools to solve an
equation which has a general linear expression on each side of the
equal sign,8.EE.7 for example: 8.EE.7Solve linear equations in one variable.

If a bar of soap balances 3
4 of a bar of soap and 3

4 of
a pound, how much does the bar of soap weigh?
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This is an example where choosing a letter, say b, to represent the
weight of the bar of soap and solving the equation

b � 3

4
b� 3

4

is probably easier for students than reasoning through a numerical
solution. Linear equations also arise in problems where two linear
functions are compared. For example

Henry and Jose are gaining weight for football. Henry
weighs 205 pounds and is gaining 2 pounds per week.
Jose weighs 195 pounds and is gaining 3 pounds per
week. When will they weigh the same?

Students in Grade 8 also start to solve problems that lead to
simultaneous equations,8.EE.8 for example 8.EE.8Analyze and solve pairs of simultaneous linear equations.

Tickets for the class show are $3 for students and
$10 for adults. The auditorium holds 450 people. The
show was sold out and the class raised $2750 in ticket
sales. How many students bought tickets?

This problem involves two variables, the number S of student tickets
sold and the number A of adult tickets sold, and imposes two con-
straints on those variables: the number of tickets sold is 450 and
the dollar value of tickets sold is 2750.
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6–8 Statistics and
Probability

Overview
In Grade 6, students build on the knowledge and experiences in data
analysis developed in earlier grades (see K-3 Categorical Data Pro-
gression and Grades 2-5 Measurement Progression). They develop
a deeper understanding of variability and more precise descriptions
of data distributions, using numerical measures of center and spread,
and terms such as cluster, peak, gap, symmetry, skew, and outlier.
They begin to use histograms and box plots to represent and ana-
lyze data distributions. As in earlier grades, students view statistical
reasoning as a four-step investigative process:


 Formulate questions that can be answered with data

 Design and use a plan to collect relevant data

 Analyze the data with appropriate methods

 Interpret results and draw valid conclusions from the data that

relate to the questions posed.

Such investigations involve making sense of practical problems
by turning them into statistical investigations (MP1); moving from
context to abstraction and back to context (MP2); repeating the pro-
cess of statistical reasoning in a variety of contexts (MP8).

In Grade 7, students move from concentrating on analysis of data
to production of data, understanding that good answers to statistical
questions depend upon a good plan for collecting data relevant to
the questions of interest. Because statistically sound data produc-
tion is based on random sampling, a probabilistic concept, students
must develop some knowledge of probability before launching into
sampling. Their introduction to probability is based on seeing prob-
abilities of chance events as long-run relative frequencies of their
occurrence, and many opportunities to develop the connection be-
tween theoretical probability models and empirical probability ap-
proximations. This connection forms the basis of statistical inference.

With random sampling as the key to collecting good data, stu-
dents begin to differentiate between the variability in a sample and
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the variability inherent in a statistic computed from a sample when
samples are repeatedly selected from the same population. This
understanding of variability allows them to make rational decisions,
say, about how different a proportion of “successes” in a sample is
likely to be from the proportion of “successes” in the population or
whether medians of samples from two populations provide convinc-
ing evidence that the medians of the two populations also differ.

Until Grade 8, almost all of students’ statistical topics and inves-
tigations have dealt with univariate data, e.g., collections of counts or
measurements of one characteristic. Eighth graders apply their ex-
perience with the coordinate plane and linear functions in the study
of association between two variables related to a question of inter-
est. As in the univariate case, analysis of bivariate measurement
data graphed on a scatterplot proceeds by describing shape, center,
and spread. But now “shape” refers to a cloud of points on a plane,
“center” refers to a line drawn through the cloud that captures the
essence of its shape, and “spread” refers to how far the data points
stray from this central line. Students extend their understanding of
“cluster” and “outlier” from univariate data to bivariate data. They
summarize bivariate categorical data using two-way tables of counts
and/or proportions, and examine these for patterns of association.
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Grade 6 6.SP.1Recognize a statistical question as one that anticipates
variability in the data related to the question and accounts for
it in the answers.Develop understanding of statistical variability Statistical inves-

tigations begin with a question, and students now see that answers
to such questions always involve variability in the data collected
to answer them.6.SP.1 Variability may seem large, as in the selling
prices of houses, or small, as in repeated measurements on the di-
ameter of a tennis ball, but it is important to interpret variability in
terms of the situation under study, the question being asked, and
other aspects of the data distribution (MP2). A collection of test
scores that vary only about three percentage points from 90% as
compared to scores that vary ten points from 70% lead to quite dif-
ferent interpretations by the teacher. Test scores varying by only
three points is often a good situation. But what about the same
phenomenon in a different context: percentage of active ingredient
in a prescription drug varying by three percentage points from order
to order?

Dot plots: Skewed left, symmetric, skewed right

Students distinguish between dot plots showing distributions
which are skewed left (skewed toward smaller values),
approximately symmetric, and skewed right (skewed toward
larger values). The plots show scores on a math exam, heights
of 1,000 females with ages from 18 to 24, ages of 100 pennies in
a sample collected from students.

Working with counts or measurements, students display data
with the dot plots (sometimes called line plots) that they used in
earlier grades. New at Grade 6 is the use of histograms, which are
especially appropriate for large data sets.

Students extend their knowledge of symmetric shapes,4.G.3 to

4.G.3Recognize a line of symmetry for a two-dimensional figure
as a line across the figure such that the figure can be folded along
the line into matching parts. Identify line-symmetric figures and
draw lines of symmetry.

describe data displayed in dot plots and histograms in terms of
symmetry. They identify clusters, peaks, and gaps, recognizing com-
mon shapes6.SP.2 and patterns in these displays of data distributions

6.SP.2Understand that a set of data collected to answer a sta-
tistical question has a distribution which can be described by its
center, spread, and overall shape.

(MP7).
A major focus of Grade 6 is characterization of data distributions

by measures of center and spread.6.SP.2,6.SP.3 To be useful, center
and spread must have well-defined numerical descriptions that are
commonly understood by those using the results of a statistical in-
vestigation. The simpler ones to calculate and interpret are those
based on counting. In that spirit, center is measured by the median,
a number arrived at by counting to the middle of an ordered array of

Box plot

For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 30}, the median is
11 (from the average of the two middle values 10 and 12), the
interquartile range is 15� 6 � 9, and the extreme values are 1
and 30.

numerical data. When the number of data points is odd, the median
is the middle value. When the number of data points is even, the
median is the average of the two middle values. Quartiles, the medi-
ans of the lower and upper halves of the ordered data values, mark
off the middle 50% of the data values and, thus, provide information
on the spread of the data.1 The distance between the first and third
quartiles, the interquartile range (IQR), is a single number summary
that serves as a very useful measure of variability.6.SP.3

Plotting the extreme values, the quartiles, and the median (the
five-number summary) on a number line diagram, leads to the box
plot, a concise way of representing the main features of a data dis-

1Different methods for computing quartiles are in use. The Standards uses the
method which excludes the median to create two halves when the number of data
points is odd. See Langford, “Quartiles in Elementary Statistics,” Journal of Statistics
Education, 2006, for a description of the different methods used by statisticians and
statistical software.
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tribution.• Box plots are particularly well suited for comparing two 6.SP.3Recognize that a measure of center for a numerical data
set summarizes all of its values with a single number, while a
measure of variation describes how its values vary with a single
number.

• “Box plot” is also sometimes written “boxplot.” Because of the
different methods for computing quartiles and other different con-
ventions, there are different kinds of box plots in use. Box plots
created from the five-number summary do not show points de-
tached from the remainder of the diagram. However, box plots
generated with statistical software may display these features.

or more data sets, such as the lengths of mung bean sprouts for
plants with no direct sunlight versus the lengths for plants with four
hours of direct sunlight per day.6.SP.4

6.SP.4Display numerical data in plots on a number line, including
dot plots, histograms, and box plots.

Comparing distributions with box plots

In Grade 6, box plots can be used to analyze the data from
Example 2 of the Measurement Data Progression. Sixth graders
can give more precise answers in terms of center and spread to
questions asked at earlier grades. “Describe the key differences
between the heights of these two age groups. What would you
choose as the typical height of an eight-year-old? A
ten-year-old? What would you say is the typical number of
inches of growth from age eight to age ten?”

Students use their knowledge6.NS.2,6.NS.3 of division, fractions,

6.NS.2Fluently divide multi-digit numbers using the standard al-
gorithm.

6.NS.3Fluently add, subtract, multiply, and divide multi-digit dec-
imals using the standard algorithm for each operation.

and decimals in computing a new measure of center—the arithmetic
mean, often simply called the mean. They see the mean as a “lev-
eling out” of the data in the sense of a unit rate (see Ratio and
Proportion Progression). In this “leveling out” interpretation, the
mean is often called the “average” and can be considered in terms
of “fair share.” For example, if it costs a total of $40 for five stu-
dents to go to lunch together and they decide to pay equal shares
of the cost, then each student’s share is $8.00. Students recognize

Average as a “leveling out”

average

As mentioned in the Grades 2-5 Measurement Data
Progression, students in Grade 5 might find the amount of liquid
each cylinder would contain if the total amount in all the
cylinders were redistributed equally. In Grade 6, students are
able to view the amount in each cylinder after redistribution as
equal to the mean of the five original amounts.

the mean as a convenient summary statistic that is used extensively
in the world around them, such as average score on an exam, mean
temperature for the day, average height and weight of a person of
their age, and so on.

Students also learn some of the subtleties of working with the
mean, such as its sensitivity to changes in data values and its ten-
dency to be pulled toward an extreme value, much more so than the
median. Students gain experience in deciding whether the mean
or the median is the better measure of center in the context of the
question posed. Which measure will tend to be closer to where the
data on prices of a new pair of jeans actually cluster? Why does
your teacher report the mean score on the last exam? Why does
your science teacher say, “Take three measurements and report the
average?”

For distributions in which the mean is the better measure of
center, variation is commonly measured in terms of how far the data
values deviate from the mean. Students calculate how far each value
is above or below the mean, and these deviations from the mean are
the first step in building a measure of variation based on spread
to either side of center. The average of the deviations is always
zero, but averaging the absolute values of the deviations leads to
a measure of variation that is useful in characterizing the spread
of a data distribution and in comparing distributions. This measure
is called the mean absolute deviation, or MAD. Exploring variation
with the MAD sets the stage for introducing the standard deviation
in high school.

Summarize and describe distributions “How many text messages
do middle school students send in a typical day?” Data obtained

Middle School Texting

from a sample of students may have a distribution with a few very
large values, showing a “long tail” in the direction of the larger
values. Students realize that the mean may not represent the largest
cluster of data points, and that the median is a more useful measure
of center. In like fashion, the IQR is a more useful measure of spread,
giving the spread of the middle 50% of the data points.
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The 37 animal speeds shown in the margin can be used to illus-
trate summarizing a distribution.6.SP.5a-c According to the source,

6.SP.5a Summarize numerical data sets in relation to their con-
text, such as by:

a Reporting the number of observations.

6.SP.5b Summarize numerical data sets in relation to their con-
text, such as by:

b Describing the nature of the attribute under investigation,
including how it was measured and its units of measure-
ment.

6.SP.5c Summarize numerical data sets in relation to their con-
text, such as by:

c Giving quantitative measures of center (median and/or
mean) and variability (interquartile range and/or mean ab-
solute deviation), as well as describing any overall pattern
and any striking deviations from the overall pattern with
reference to the context in which the data were gathered.

Table of 37 animal speeds

Animal Speed (mph)
Cheetah 70.00
Pronghorn antelope 61.00
Lion 50.00
Thomson’s gazelle 50.00
Wildebeest 50.00
Quarter horse 47.50
Cape hunting dog 45.00
Elk 45.00
Coyote 43.00
Gray fox 42.00
Hyena 40.00
Ostrich 40.00
Zebra 40.00
Mongolian wild ass 40.00
Greyhound 39.35
Whippet 35.50
Jackal 35.00
Mule deer 35.00
Rabbit (domestic) 35.00
Giraffe 32.00
Reindeer 32.00
Cat (domestic) 30.00
Kangaroo 30.00
Grizzly bear 30.00
Wart hog 30.00
White-tailed deer 30.00
Human 27.89
Elephant 25.00
Black mamba snake 20.00
Six-lined race runner 18.00
Squirrel 12.00
Pig (domestic) 11.00
Chicken 9.00
House mouse 8.00
Spider (Tegenearia atrica) 1.17
Giant tortoise 0.17
Three-toed sloth 0.15

Source: factmonster.com/ipka/A0004737.html

“Most of the following measurements are for maximum speeds over
approximate quarter-mile distances. Exceptions—which are included
to give a wide range of animals—are the lion and elephant, whose
speeds were clocked in the act of charging; the whippet, which was
timed over a 200-yard course; the cheetah over a 100-yard distance;
humans for a 15-yard segment of a 100-yard run; and the black
mamba snake, six-lined race runner, spider, giant tortoise, three-
toed sloth, . . . , which were measured over various small distances.”
Understanding that it is difficult to measure speeds of wild animals,
does this description raise any questions about whether or not this
is a fair comparison of the speeds?

Moving ahead with the analysis, students will notice that the
distribution is not symmetric, but the lack of symmetry is mild. It is
most appropriate to measure center with the median of 35 mph and
spread with the IQR of 42 � 25 � 17. That makes the cheetah an
outlier with respect to speed, but notice again the description of how
this speed was measured. If the garden snail with a speed of 0.03
mph is added to the data set, then cheetah is no longer considered
an outlier. Why is that?

Because the lack of symmetry is not severe, the mean (32.15 mph)
is close to the median and the MAD (12.56 mph) is a reasonable
measure of typical variation from the mean, as about 57% of the
data values lie within one MAD of the mean, an interval from about
19.6 mph to 44.7 mph.

Box plot and histogram of 37 animal speeds

Note that the isolated point (the extreme value of 70 mph) has been generated by the
software used to produce the box plot. The mild lack of symmetry can be seen in the
box plot in the median (slightly off-center in the box) and in the slightly different lengths
of the “whiskers.” The geometric shape made by the histogram also shows mild lack of
symmetry.
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Grade 7
Chance processes and probability models In Grade 7, students
build their understanding of probability on a relative frequency view
of the subject, examining the proportion of “successes” in a chance
process—one involving repeated observations of random outcomes
of a given event, such as a series of coin tosses. “What is my chance
of getting the correct answer to the next multiple choice question?”
is not a probability question in the relative frequency sense. “What
is my chance of getting the correct answer to the next multiple
choice question if I make a random guess among the four choices? ”
is a probability question because the student could set up an ex-
periment of multiple trials to approximate the relative frequency of
the outcome.• And two students doing the same experiment will get

• Note the connection with MP6. Including the stipulation “if I
make a random guess among the four choices” makes the ques-
tion precise enough to be answered with the methods discussed
for this grade.nearly the same approximation. These important points are often

overlooked in discussions of probability.7.SP.5
7.SP.5Understand that the probability of a chance event is a num-
ber between 0 and 1 that expresses the likelihood of the event oc-
curring. Larger numbers indicate greater likelihood. A probability
near 0 indicates an unlikely event, a probability around 1/2 indi-
cates an event that is neither unlikely nor likely, and a probability
near 1 indicates a likely event.

Students begin by relating probability to the long-run (more than
five or ten trials) relative frequency of a chance event, using coins,
number cubes, cards, spinners, bead bags, and so on. Hands-on ac-
tivities with students collecting the data on probability experiments
are critically important, but once the connection between observed
relative frequency and theoretical probability is clear, they can move
to simulating probability experiments via technology (graphing cal-
culators or computers).

It must be understood that the connection between relative fre-
quency and probability goes two ways. If you know the structure of
the generating mechanism (e.g., a bag with known numbers of red
and white chips), you can anticipate the relative frequencies of a
series of random selections (with replacement) from the bag. If you
do not know the structure (e.g., the bag has unknown numbers of
red and white chips), you can approximate it by making a series of
random selections and recording the relative frequencies.7.SP.6 This

7.SP.6Approximate the probability of a chance event by collecting
data on the chance process that produces it and observing its
long-run relative frequency, and predict the approximate relative
frequency given the probability.simple idea, obvious to the experienced, is essential and not obvious

at all to the novice.• The first type of situation, in which the structure
• Examples of student strategies for generalizing from the rela-
tive frequency in the simplest case (one sample) to the relative
frequency in the whole population are given in the Ratio and Pro-
portional Relationship Progression, p. 11.

is known, leads to “probability”; the second, in which the structure
is unknown, leads to “statistics.”

A probability model provides a probability for each possible non-
overlapping outcome for a chance process so that the total proba-
bility over all such outcomes is unity. The collection of all possible
individual outcomes is known as the sample space for the model.
For example, the sample space for the toss of two coins (fair or not)
is often written as {TT, HT, TH, HH}. The probabilities of the model

Different representations of a sample space

HH
HT
TH
TT

H T
H HH HT
T TH TT

All the possible outcomes of the toss of two coins can be
represented as an organized list, table, or tree diagram. The
sample space becomes a probability model when a probability
for each simple event is specified.

can be either theoretical (based on the structure of the process and
its outcomes) or empirical (based on observed data generated by the
process). In the toss of two balanced coins, the four outcomes of the
sample space are given equal theoretical probabilities of 1

4 because
of the symmetry of the process—because the coins are balanced, an
outcome of heads is just as likely as an outcome of tails. Randomly
selecting a name from a list of ten students also leads to equally
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likely outcomes with probability 0.10 that a given student’s name
will be selected.7.SP.7a If there are exactly four seventh graders on

7.SP.7a Develop a probability model and use it to find proba-
bilities of events. Compare probabilities from a model to ob-
served frequencies; if the agreement is not good, explain possible
sources of the discrepancy.

a Develop a uniform probability model by assigning equal
probability to all outcomes, and use the model to deter-
mine probabilities of events.

the list, the chance of selecting a seventh grader’s name is 0.40. On
the other hand, the probability of a tossed thumbtack landing point
up is not necessarily 1

2 just because there are two possible out-
comes; these outcomes may not be equally likely and an empirical
answer must be found be tossing the tack and collecting data.7.SP.7b

7.SP.7b Develop a probability model and use it to find proba-
bilities of events. Compare probabilities from a model to ob-
served frequencies; if the agreement is not good, explain possible
sources of the discrepancy.

b Develop a probability model (which may not be uni-
form) by observing frequencies in data generated from a
chance process.

The product rule for counting outcomes for chance events should
be used in finite situations like tossing two or three coins or rolling
two number cubes. There is no need to go to more formal rules for
permutations and combinations at this level. Students should gain
experience in the use of diagrams, especially trees and tables, as
the basis for organized counting of possible outcomes from chance
processes.7.SP.8 For example, the 36 equally likely (theoretical prob- 7.SP.8Find probabilities of compound events using organized

lists, tables, tree diagrams, and simulation.
ability) outcomes from the toss of a pair of number cubes are most
easily listed on a two-way table. An archived table of census data
can be used to approximate the (empirical) probability that a ran-
domly selected Florida resident will be Hispanic.

After the basics of probability are understood, students should
experience setting up a model and using simulation (by hand or
with technology) to collect data and estimate probabilities for a real
situation that is sufficiently complex that the theoretical probabilities
are not obvious. For example, suppose, over many years of records,
a river generates a spring flood about 40% of the time. Based on
these records, what is the chance that it will flood for at least three
years in a row sometime during the next five years?7.SP.8c

7.SP.8c Find probabilities of compound events using organized
lists, tables, tree diagrams, and simulation.

c Design and use a simulation to generate frequencies for
compound events.

Random sampling In earlier grades students have been using data,
both categorical and measurement, to answer simple statistical ques-
tions, but have paid little attention to how the data were selected.
A primary focus for Grade 7 is the process of selecting a random
sample, and the value of doing so. If three students are to be se-
lected from the class for a special project, students recognize that a
fair way to make the selection is to put all the student names in a
box, mix them up, and draw out three names “at random.” Individual
students realize that they may not get selected, but that each stu-
dent has the same chance of being selected. In other words, random
sampling is a fair way to select a subset (a sample) of the set of
interest (the population). A statistic computed from a random sam-
ple, such as the mean of the sample, can be used as an estimate
of that same characteristic of the population from which the sample
was selected. This estimate must be viewed with some degree of
caution because of the variability in both the population and sample
data. A basic tenet of statistical reasoning, then, is that random
sampling allows results from a sample to be generalized to a much
larger body of data, namely, the population from which the sample
was selected.7.SP.1

7.SP.1Understand that statistics can be used to gain information
about a population by examining a sample of the population; gen-
eralizations about a population from a sample are valid only if
the sample is representative of that population. Understand that
random sampling tends to produce representative samples and
support valid inferences.

“What proportion of students in the seventh grade of your school
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choose football as their favorite sport?” Students realize that they
do not have the time and energy to interview all seventh graders,
so the next best way to get an answer is to select a random sample
of seventh graders and interview them on this issue. The sample
proportion is the best estimate of the population proportion, but
students realize that the two are not the same and a different sam-
ple will give a slightly different estimate. In short, students realize
that conclusions drawn from random samples generalize beyond the
sample to the population from which the sample was selected, but
a sample statistic is only an estimate of a corresponding popula-
tion parameter and there will be some discrepancy between the
two. Understanding variability in sampling allows the investigator
to gauge the expected size of that discrepancy.

The variability in samples can be studied by means of simulation.7.SP.2
7.SP.2Use data from a random sample to draw inferences about
a population with an unknown characteristic of interest. Gener-
ate multiple samples (or simulated samples) of the same size to
gauge the variation in estimates or predictions.Students are to take a random sample of 50 seventh graders from a

large population of seventh graders to estimate the proportion hav-
ing football as their favorite sport. Suppose, for the moment, that the
true proportion is 60%, or 0.60. How much variation can be expected
among the sample proportions? The scenario of selecting samples
from this population can be simulated by constructing a “popula-
tion” that has 60% red chips and 40% blue chips, taking a sample
of 50 chips from that population, recording the number of red chips,
replacing the sample in the population, and repeating the sampling
process. (This can be done by hand or with the aid of technology,
or by a combination of the two.) Record the proportion of red chips
in each sample and plot the results.

The dot plots in the margin shows results for 200 such random
samples of size 50 each. Note that the sample proportions pile up

Results of simulations

Proportions of red chips in 200 random samples of size 50 from
a population in which 60% of the chips are red.

Proportions of red chips in 200 random samples of size 50 from
a population in which 50% of the chips are red.

Proportions of red chips in 200 random samples of size 50 from
a population in which 40% of the chips are red.

around 0.60, but it is not too rare to see a sample proportion down
around 0.45 or up around .0.75. Thus, we might expect a variation
of close to 15 percentage points in either direction. Interestingly,
about that same amount of variation persists for true proportions of
50% and 40%, as shown in the dot plots.

Students can now reason that random samples of size 50 are
likely to produce sample proportions that are within about 15 per-
centage points of the true population value. They should now con-
jecture as to what will happen of the sample size is doubled or
halved, and then check out the conjectures with further simulations.
Why are sample sizes in public opinion polls generally around 1000
or more, rather than as small as 50?

Informal comparative inference To estimate a population mean or
median, the best practice is to select a random sample from that
population and use the sample mean or median as the estimate, just
as with proportions. But, many of the practical problems dealing
with measures of center are comparative in nature, as in comparing
average scores on the first and second exam or comparing aver-
age salaries between female and male employees of a firm. Such
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comparisons may involve making conjectures about population pa-
rameters and constructing arguments based on data to support the
conjectures (MP3).

If all measurements in a population are known, no sampling is
necessary and data comparisons involve the calculated measures
of center. Even then, students should consider variability.7.SP.3 The

7.SP.3Informally assess the degree of visual overlap of two nu-
merical data distributions with similar variabilities, measuring the
difference between the centers by expressing it as a multiple of a
measure of variability.figures in the margin show the female life expectancies for countries

of Africa and Europe. It is clear that Europe tends to have the
Female life expectancies in African and European countrieshigher life expectancies and a much higher median, but some African

countries are comparable to some of those in Europe. The mean and
MAD for Africa are 53.6 and 9.5 years, respectively, whereas those for
Europe are 79.3 and 2.8 years. In Africa, it would not be rare to see
a country in which female life expectancy is about ten years away
from the mean for the continent, but in Europe the life expectancy
in most countries is within three years of the mean.

For random samples, students should understand that medians
and means computed from samples will vary from sample to sample
and that making informed decisions based on such sample statistics
requires some knowledge of the amount of variation to expect. Just
as for proportions, a good way to gain this knowledge is through
simulation, beginning with a population of known structure.

The following examples are based on data compiled from nearly
200 middle school students in the Washington, DC area participating
in the Census at Schools Project. Responses to the question, “How
many hours per week do you usually spend on homework?,” from
a random sample of 10 female students and another of 10 male
students from this population gave the results plotted in the margin.

Hours spent on homework per week

Two random samples of size 10

Distribution of medians from 100 samples of size 10

Distribution of means from 100 samples of size 10

Source: Census at Schools Project,
amstat.org/censusatschool/

Females have a slightly higher median, but students should re-
alize that there is too much variation in the sample data to conclude
that, in this population, females have a higher median homework
time. An idea of how much variation to expect in samples of size 10
is needed.

Simulation to the rescue! Students can take multiple samples
of size 10 from the Census of Schools data to see how much the
sample medians themselves tend to vary.7.SP.4 The sample medians

7.SP.4Use measures of center and measures of variability for nu-
merical data from random samples to draw informal comparative
inferences about two populations.

for 100 random samples of size 10 each, with 100 samples of males
and 100 samples of females, is shown in the margin. This plot shows
that the sample medians vary much less than the homework hours
themselves and provides more convincing evidence that the female
median homework hours is larger than that for males. Half of the
female sample medians are within one hour of 4 while half of the
male sample medians are within half hour of 3, although there is
still overlap between the two groups.

A similar analysis based on sample means gave the results seen
in the margin. Here, the overlap of the two distributions is more
severe and the evidence weaker for declaring that the females have
higher mean study hours than males.
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Grade 8 8.F.3Interpret the equation y � mx �b as defining a linear func-
tion, whose graph is a straight line; give examples of functions
that are not linear.

8.F.4Construct a function to model a linear relationship between
two quantities. Determine the rate of change and initial value of
the function from a description of a relationship or from two px, yq
values, including reading these from a table or from a graph. In-
terpret the rate of change and initial value of a linear function in
terms of the situation it models, and in terms of its graph or a
table of values.

8.F.5Describe qualitatively the functional relationship between
two quantities by analyzing a graph (e.g., where the function is
increasing or decreasing, linear or nonlinear). Sketch a graph
that exhibits the qualitative features of a function that has been
described verbally.

Investigating patterns of association in bivariate data Students
now have enough experience with coordinate geometry and linear
functions8.F.3,8.F.4,8.F.5 to plot bivariate data as points on a plane and
to make use of the equation of a line in analyzing the relationship
between two paired variables. They build statistical models to ex-
plore the relationship between two variables (MP4); looking for and
making use of structure to describe possible association in bivariate
data (MP7).

8.SP.1Construct and interpret scatter plots for bivariate measure-
ment data to investigate patterns of association between two
quantities. Describe patterns such as clustering, outliers, positive
or negative association, linear association, and nonlinear associ-
ation.

Working with paired measurement variables that might be as-
sociated linearly or in a more subtle fashion, students construct a
scatter plot, describing the pattern in terms of clusters, gaps, and
unusual data points (much as in the univariate situation). Then, they
look for an overall positive or negative trend in the cloud of points,
a linear or nonlinear (curved) pattern, and strong or weak associa-
tion between the two variables, using these terms in describing the
nature of the observed association between the variables.8.SP.1

8.SP.2Know that straight lines are widely used to model relation-
ships between two quantitative variables. For scatter plots that
suggest a linear association, informally fit a straight line, and in-
formally assess the model fit by judging the closeness of the data
points to the line.

For a data showing a linear pattern, students sketch a line
through the “center” of the cloud of points that captures the essential
nature of the trend, at first by use of an informal fitting procedure,
perhaps as informal as laying a stick of spaghetti on the plot. How
well the line “fits” the cloud of points is judged by how closely the
points are packed around the line, considering that one or more
outliers might have tremendous influence on the positioning of the
line.8.SP.2

After a line is fit through the data, the slope of the line is ap-
proximated and interpreted as a rate of change, in the context of
the problem.8.F.4 The slope has important practical interpretations
for most statistical investigations of this type (MP2). On the Exam 1

Scores on Exam 1 and Exam 2

The least squares line fitted to the points has a positive slope
and the points are closely clustered about the line, thus, the
scores said to show strong positive association. Students with
high scores on one exam tend to have high scores on the other.
Students with low scores on one exam tend to have low scores
on the other.

Letters in first and last names of students

The line fitted to the points is horizontal. The number of letters in
a student’s first name shows no association with the number of
letters in a student’s last name.

versus Exam 2 plot, what does the slope of 0.6 tell you about the re-
lationship between these two sets of scores? Which students tend to
do better on the second exam and which tend to do worse?8.SP.3 Note

8.SP.3Use the equation of a linear model to solve problems in
the context of bivariate measurement data, interpreting the slope
and intercept.

that the negative linear trend in mammal life spans versus speed is
due entirely to three long-lived, slow animals (hippo, elephant, and
grizzly bear) and one short-lived, fast one (cheetah). Students with
good geometry skills might explain why it would be unreasonable to
expect that alligator lengths and weights would be linearly related.

Building on experience with decimals and percent, and the ideas
of association between measurement variables, students now take
a more careful look at possible association between categorical
variables.8.SP.4 “Is there a difference between sixth graders and eighth
graders with regard to their preference for rock, rap, or country mu-
sic?” Data from a random sample of sixth graders and another ran-
dom sample of eighth graders are summarized by frequency counts
in each cell in a two-way table of preferred music type by grade.
The proportions of favored music type for the sixth graders are then
compared to the proportions for eighth graders. If the two propor-
tions for each music type are about the same, there is little or no
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association between the grade and music preference because both
grades have about the same preferences. If the two proportions dif-
fer, there is some evidence of association because grade level seems
to make a difference in music preferences. The nature of the asso-
ciation should then be described in more detail.

High school graduation and poverty percentages for states

The line fitted to the data has a negative slope and data points
are not all tightly clustered about the line. The percentage of a
state’s population in poverty shows a moderate negative
association with the percentage of a state’s high school
graduates.

Average life span and speeds of mammals

The negative trend is due to a few outliers. This as can be seen
by examining the effect of removing those points.

Weight versus length of Florida alligators

Source: http://www.factmonster.com/ipka/A0004737.html

A nonlinear association.

Table schemes for comparing frequencies and row
proportions

Rock Rap Country Total
6th graders a b c d
8th graders e f g h

Rock Rap Country Total
6th graders a/d b/d c/d d
8th graders e/h f/h g/h h

Each letter represents a frequency count.

Obesity risk percentages

Age Category
Obesity

Not At Risk At Risk Row Total
Age 18 to 24 57.3 42.7 100
Age 25 to 44 38.6 61.4 100

Source: Behavioral Risk Factor Surveillance System of the
Center for Disease Control

The table in the margin shows percentages of U.S. residents who
have health risks due to obesity, by age category. Students should
be able to explain what the cell percentages represent and provide
a clear description of the nature of the association between the
variables obesity risk and age. Can you tell, from this table alone,
what percentage of those over the age of 18 are at risk from obesity?
Such questions provide a practical mechanism for reinforcing the
need for clear understanding of proportions and percentages.
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Where the Statistics and Probability
Progression is heading
In high school, students build on their experience from the middle
grades with data exploration and summarization, randomization as
the basis of statistical inference, and simulation as a tool to under-
stand statistical methods.

Just as Grade 6 students deepen the understanding of univariate
data initially developed in elementary school, high school students
deepen their understanding of bivariate data, initially developed in
middle school. Strong and weak association is expressed more pre-
cisely in terms of correlation coefficients, and students become fa-
miliar with an expanded array of functions in high school that they
use in modeling association between two variables.

They gain further familiarity with probability distributions gen-
erated by theory or data, and use these distributions to build an em-
pirical understanding of the normal distribution, which is the main
distribution used in measuring sampling error. For statistical meth-
ods related to the normal distribution, variation from the mean is
measured by standard deviation.

Students extend their knowledge of probability, learning about
conditional probability, and using probability distributions to solve
problems involving expected value.
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The Number System, 6–8

Overview

In Grades 6–8, students build on two important conceptions which
have developed throughout K–5, in order to understand the rational
numbers as a number system. The first is the representation of
whole numbers and fractions as points on the number line, and the
second is a firm understanding of the properties of operations on
whole numbers and fractions.

Representing numbers on the number line In early grades, stu-
dents see whole numbers as counting numbers, Later, they also
understand whole numbers as corresponding to points on the num-
ber line. Just as the 6 on a ruler measures 6 inches from the 0
mark, so the number 6 on the number line measures 6 units from
the origin. Interpreting numbers as points on the number line brings
fractions into the family as well; fractions are seen as measurements
with new units, creating by partitioning the whole number unit into
equal pieces. Just as on a ruler we might measure in tenths of an
inch, on the number line we have halves, thirds, fifths, sevenths; the
number line is a sort of ruler with every denominator. The denom-
inators 10, 100, etc. play a special role, partioning the number line
into tenths, hundredths, etc., just as a metric ruler is partioned into
centimeters and millimeters.

Starting in Grade 2 students see addition as concatenation of
lengths on the number line.2.MD.6 By Grade 4 they are using the

2.MD.6Represent whole numbers as lengths from 0 on a num-
ber line diagram with equally spaced points corresponding to the
numbers 0, 1, 2, . . . , and represent whole-number sums and dif-
ferences within 100 on a number line diagram.same model to represent the sum of fractions with the same denom-

inator: 3
5

7
5 is seen as putting together a length that is 3 units of

one fifth long with a length that is 7 units of one fifth long, making
10 units of one fifths in all. Since there are five fifths in 1 (that’s
what it means to be a fifth), and 10 is 2 fives, we get 3

5
7
5 2.

Representing 3
5 and 7

5 on the number line

0 1 2

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

10
5

7
5

place a length of 7
5 next

to a length of 3
5

Two fractions with different denominators are added by representing
them in terms of a common unit.

Representing sums as concatenated lengths on the number line
is important because it gives students a way to think about addition
that makes sense independently of how numbers are represented
symbolically. Although addition calculations may look different for
numbers represented in base ten and as fractions, addition is the
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NS, 6–8 3

same operation in each case. Furthermore, the concatenation model
of addition extends naturally to negative numbers in Grade 7.

Properties of operations The number line provides a represen-
tation that can be used to building understanding of sums and
differences of rational numbers. However, building understanding
of multiplication and division of rational numbers relies on a firm
understanding of properties of operations. Although students have

Properties of Operations on Rational Numbers

Properties of Addition

1. Commutative Property. For any two rational numbers �
and �, � � � �.

2. Associative Property. For any three rational numbers �,
� and �, � � � � � � .

3. Existence of Identity. The number 0 satisfies
0 � � � 0.

4. Existence of Additive Inverse. For any rational number �,
there is a number � such that � � 0.

Properties of Multiplication

1. Commutative Property. For any two rational numbers �
and �, � � � �.

2. Associative Property. For any three rational numbers �,
� and �, � � � � � � .

3. Existence of Identity. The number 1 satisfies
1 � � � 1.

4. Existence of Multiplicative Inverse. For every non-zero
rational number �, there is a rational number 1

� such that
� 1

� 1.

The Distributive Property

For rational numbers �, � and �, one has
� � � � � � �.

not necessarily been taught formal names for these properties, they
have used them repeatedly in elementary school and have been with
reasoning with them. The commutative and associative properties
of addition and mutiplication have, in particular, been their constant
friends in working with strategies for addition and multiplication.1.OA.3, 3.OA.5

1.OA.3Apply properties of operations as strategies to add and
subtract.1

3.OA.5Apply properties of operations as strategies to multiply
and divide.2

The existence of the multiplicative identity (1) and multiplicative
inverses start to play important roles as students learn about frac-
tions. They might see fraction equivalence as confirming the identity
rule for fractions. In Grade 4 they learn about fraction equivalence

� �
� �

�
�

and in Grade 5 they relate this to multiplication by 1

� �
� �

�
�

�
� 1

�
� �

thus confirming that the identity rule

1
�
�

�
�

works for fractions.5.NF.5 5.NF.5Interpret multiplication as scaling (resizing), by:

a . . .

b . . . and relating the principle of fraction equivalence �
�

� �
� � to the effect of multiplying �

� by 1.

As another example, the commutative property for multiplication
plays an important role in understanding multiplication with frac-
tions. For example, although

5
1

2

5

2

can be made sense of using previous understandings of whole num-
ber multiplication as repeated addition, the other way around,

1

2
5

5

2
�

seems to come from a different source, from the meaning of phrases
such as “half of” and a mysterious acceptance that “of” must mean
multiplication. A more reasoned approach would be to observe that
if we want the commutative property to continue to hold, then we
must have

1

2
5 5

1

2

5

2
�
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and that 5
2 is indeed “half of five,” as we have understood in Grade

5.5.NF.3

5.NF.3Interpret a fraction as division of the numerator by the de-
nominator (� � � �). Solve word problems involving division
of whole numbers leading to answers in the form of fractions or
mixed numbers, e.g., by using visual fraction models or equations
to represent the problem.

When students extend their conception of multiplication to in-
clude negative rational numbers, the properties of operations become
crucial. The rule that the product of negative numbers is positive,
often seen as mysterious, is the result of extending the properties of
operations (particularly the distributive property) to rational num-
bers.
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Grade 6

As Grade 6 dawns, students have a firm understanding of place
value and the properties of operations. On this foundation they
are ready to start using the properties of operations as tools of
exploration, deploying them confidently to build new understandings
of operations with fractions and negative numbers. They are also
ready to complete their growing fluency with algorithms for the four
operations.

Apply and extend previous understandings of multiplication and
division to divide fractions by fractions In Grade 6 students con-
clude the work with operations on fractions, started in Grade 4, by
computing quotients of fractions.6.NS.1 In Grade 5 students divided

6.NS.1Interpret and compute quotients of fractions, and solve
word problems involving division of fractions by fractions, e.g.,
by using visual fraction models and equations to represent the
problem.unit fractions by whole numbers and whole numbers by unit frac-

tions, two special cases of fraction division that are relatively easy
to conceptualize and visualize.5.NF.7ab Dividing a whole number by 5.NF.7Apply and extend previous understandings of division to

divide unit fractions by whole numbers and whole numbers by
unit fractions.

a Interpret division of a unit fraction by a non-zero whole
number, and compute such quotients.

b Interpret division of a whole number by a unit fraction, and
compute such quotients.

a unit fraction can be conceptualized in terms of the measurement
interpretation of division, which conceptualizes � � as the the
measure of of � by units of length � on the number line, that is,
the solution to the multiplication equation � ? �. Dividing a
unit fraction by a whole number can be interpreted in terms of the
sharing interpretation of division, which conceptualizes � � as the
size of a share when � is divided into � equal shares, that is, the
solution to the multiplication equation � � ?. Visual models for division of whole numbers by unit

fractions and unit fractions by whole numbers

0 1 2 3 4

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

11
3

12
3

Reasoning on a number line using the measurement
interpretation of division: there are 3 parts of length 1

3 in the unit
interval, therefore there are 4 3 parts of length 1

3 in the
interval from 0 to 4, so the number of times 1

3 goes into 4 is 12,
that is 4 1

3 4 3 12.

1
6

Reasoning with a fraction strip using the sharing interpretation of
division: the strip is the whole and the shaded area is 1

2 of the
whole. If the shaded area is divided into 3 equal parts, then
2 3 of those parts make up the whole, so 1

2 3 1
2 3

1
6 .

Now in Grade 6 students develop a general understanding of
fraction division. They can use story contexts and visual models to
develop this understanding, but also begin to move towards using
the relation between division and multiplication.

For example, they might use the measurement interpretation of
division to see that 8

3
2
3 4, because 4 is 4 is how many 2

3 there
are in 8

3 . At the same time they can see that this latter statement
also says that 4 2

3
8
3 . This multiplication equation can be used

to obtain the division equation directly, using the relation between
multiplication and division.

Quotients of fractions that are whole number answers are par-
ticularly suited to the measurement interpretation of division. When
this interpretation is used for quotients of fractions that are not
whole numbers, it can be rephrased from “how many times does this
go into that?” to “how much of this is in that?” For example,

2

3

3

4

can be interpreted as how many 3
4-cup servings are in 2

3 of a cup
of yogurt, or as how much of a 3

4-cup serving is in 2
3 of a cup of

yogurt. Although linguistically different the two questions are math-

Visual model for 2
3

3
4 and 2

3 ? 3
4

2
3

3
4

We find a common unit for comparing 2
3 and 3

4 by dividing each
1
3 into 4 parts and each 1

4 into 3 parts. Then 2
3 is 8 parts when

3
4 is divided into 9 equal parts, so 2

3
8
9

3
4 , which is the

same as saying that 2
3

3
4

8
9 .

ematically the same. Both can be visualized as in the margin and
expressed using a multiplication equation with an unknown for the
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first factor:
2

3
? 3

4
�

The same division problem can be interpreted using the sharing
interpretation of division: how many cups are in a full container of
yogurt when 2

3 of a cup fills 3
4 of the container. In other words, 3

4
of what amount is equal to 2

3 cups? In this case, 2
3

3
4 is seen as

the solution to a multiplication equation with an unknown as the
second factor:

Visual model for 2
3

3
4 and 3

4 ? 2
3

2
3 of a cup of yogurt

How many cups of yogurt?

The shaded area is 3
4 of the entire strip. So it is 3 parts of a

division of the strip into 4 equal parts. Another way of seeing this
is that the strip is 4 parts of a division of the shaded area into 3
equal parts. That is, the strip is 4

3 times the shaded part. So
? 4

3
2
3

8
9 .

3

4
? 2

3
�

There is a close connection between the reasoning shown in the
margin and reasoning about ratios; if two quantities are in the ratio
3 : 4, then there is a common unit so that the first quantity is 3 units
and the second quantity is 4 units. The corresponding unit rate is 3

4 ,
and the first quantity is 3

4 times the second quantity. Viewing the
situation the other way around, with the roles of the two quantities
interchanged, the same reasoning shows that the second quantity
is 4

3 times the first quantity. Notice that this leads us directly to
the invert-and-multiply for fraction division: we have just reasoned
that the ? in the equation above must be equal to 4

3
2
3 , which is

exactly what the rules gives us for 2
3

4
3 .6.NS.1

6.NS.1Interpret and compute quotients of fractions, and solve
word problems involving division of fractions by fractions, e.g.,
by using visual fraction models and equations to represent the
problem.The invert-and-multiply rule can also be understood algebraically

as a consequence of the general rule for multiplication of fractions.
If �

�
�
� is is defined to be the missing factor in the multiplication

equation
? �

�
�
�

then the fraction that does the job is

? ��
�� �

as we can verify by putting it into the multiplication equation and
using the already known rules of fraction multiplication and the
properties of operations:

��
��

�
�

�� �
�� �

� ��
� ��

�
�

��
��

�
� �

Compute fluently with multi-digit numbers and find common fac-
tors and multiples In Grade 6 students consolidate the work of
earlier grades on operations with whole numbers and decimals by
becoming fluent in the four operations on these numbers.6.NS.2, 6.NS.3 6.NS.2Fluently divide multi-digit numbers using the standard al-

gorithm.

6.NS.3Fluently add, subtract, multiply, and divide multi-digit dec-
imals using the standard algorithm for each operation.

Much of the foundation for this fluency has been laid in earlier
grades. They have known since Grade 3 that whole numbers are
fractions3.NF.3c and since Grade 4 that decimal notation is a way of

3.NF.3cExpress whole numbers as fractions, and recognize frac-
tions that are equivalent to whole numbers.

writing fractions with denominator equal to a power of 10;4.NF.6 by

4.NF.6Use decimal notation for fractions with denominators 10 or
100.

Grade 6 they start to see whole numbers, decimals and fractions
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not as wholly different types of numbers but as as part of the same
number system, represented by the number line.

In many traditional treatments of fractions greatest common fac-
tors occur in reducing a fraction to lowest terms, and least com-
mon multiples occur in adding fractions. As explained in the Frac-
tions Progression, neither of these activities is treated as a separate
topic in the standards. Indeed, insisting that finding a least com-
mon multiple is an essential part of adding fractions can get in the
way of understanding the operation, and the excursion into prime
factorization and factor trees that is often entailed in these top-
ics can be time-consuming and distract from the focus of K–5. In
Grade 6, however, students experience a modest introduction to the
concepts6.NS.4 and put the idea of greatest common factor to use in

6.NS.4Find the greatest common factor of two whole numbers
less than or equal to 100 and the least common multiple of two
whole numbers less than or equal to 12. Use the distributive
property to express a sum of two whole numbers 1–100 with a
common factor as a multiple of a sum of two whole numbers with
no common factor.

a rehearsal for algebra, where they will need to see, for example,
that 3�2 6� 3� � 2 .

Apply and extend previous understandings of numbers to the sys-
tem of rational numbers In Grade 6 the number line is extended
to include negative numbers. Students initially encounter negative
numbers in contexts where it is natural to describe both the magni-
tude of the quantity, e.g. vertical distance from sea level in meters,
and the direction of the quantity (above or below sea level).6.NS.5 In

6.NS.5Understand that positive and negative numbers are used
together to describe quantities having opposite directions or val-
ues (e.g., temperature above/below zero, elevation above/below
sea level, credits/debits, positive/negative electric charge); use
positive and negative numbers to represent quantities in real-
world contexts, explaining the meaning of 0 in each situation.

some cases 0 has an essential meaning, for example that you are
at sea level; in other cases the choice of 0 is merely a convention,
for example the temperature designated as 0 in Farenheit or Cel-
sius. Although negative integers might be commonly used as initial
examples of negative numbers, the Standards do not introduce the

6.NS.6Understand a rational number as a point on the number
line. Extend number line diagrams and coordinate axes familiar
from previous grades to represent points on the line and in the
plane with negative number coordinates.

a Recognize opposite signs of numbers as indicating loca-
tions on opposite sides of 0 on the number line; recognize
that the opposite of the opposite of a number is the num-
ber itself, e.g., 3 3, and that 0 is its own opposite.

integers separately from the entire system of rational numbers, and
examples of negative fractions or decimals can be included from the
beginning.

Directed measurement scales for temperature and elevation pro-
vide a basis for understanding positive and negative numbers as
having a positive or negative direction on the number line.6.NS.6a

Previous understanding of numbers on the number line related the
position of the number to measurement: the number 5 is located at
the endpoint of an line segment 5 units long whose other endpoint is
at 0. Now the line segments acquire direction; starting at 0 they can

Representation of rational numbers on the number line

0 1 2 3 4 5

5 represented by an interval

5 4 3 2 1 0 1 2 3 4 5

5 represented by an arrow

5 4 3 2 1 0 1 2 3 4 5

5 represented by an arrow

go in either the positive or the negative direction. These directed
numbers can be represented by putting arrows at the endpoints of
the line segments.

Students come to see � as the opposite of �, located an equal
distance from 0 in the opposite direction. In order to avoid the com-

Showing � 0 on the number line

0 �

0�

0 � �

mon misconception later in algebra that any symbol with a negative
sign in front of it should be a negative number, it is useful for stu-
dents to see examples where � is a positive number, for example
if � 3 then � 3 3. Students come to see the op-
eration of putting a negative sign in front of a number as flipping
the direction of the number from positive to negative or negative to
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positive. Students generalize this understanding of the meaning of
the negative sign to the coordinate plane, and can use it in locating
numbers on the number line and ordered pairs in the coordinate
plane.6.NS.6bc b Understand signs of numbers in ordered pairs as indicat-

ing locations in quadrants of the coordinate plane; recog-
nize that when two ordered pairs differ only by signs, the
locations of the points are related by reflections across
one or both axes.

c Find and position integers and other rational numbers on
a horizontal or vertical number line diagram; find and po-
sition pairs of integers and other rational numbers on a
coordinate plane.

With the introduction of negative numbers, students gain a new
sense of ordering on the number line. Whereas statements like
5 7 could be understood in terms of having more of or less of a
certain quantity—“I have 5 apples and you have 7, so I have fewer
than you”—comparing negative numbers requires closer attention
to the relative positions of the numbers on the number line rather
than their magnitudes.6.MS.7a Comparisons such as 7 5 can

6.NS.7Understand ordering and absolute value of rational num-
bers.

a Interpret statements of inequality as statements about the
relative position of two numbers on a number line dia-
gram.

b Write, interpret, and explain statements of order for ratio-
nal numbers in real-world contexts.

initially be confusing to students, because 7 is further away from
0 than 5, and is therefore larger in magnitude. Referring back to
contexts in which negative numbers were introduced can be helpful:
7 meters below sea level is lower than 5 meters below sea level,
and 7 F is colder than 5 F. Students are used to thinking of
colder temperatures as lower than hotter temperatures, and so the
mathematically correct statement also makes sense in terms of the
context.6.NS.7b

At the same time, the prior notion of distance from 0 as a measure
of size is still present in the notion of absolute value. To avoid con-
fusion it can help to present students with contexts where it makes
sense both to compare the order of two rational numbers and to
compare their absolute value, and where these two comparisons run
in different directions. For example, someone with a balance of $100
in their bank account has more money than someone with a balance
of $1000, because 100 1000. But the second person’s debt is
much larger than the first person’s credit 1000 100 .6.NS.7cd c Understand the absolute value of a rational number as

its distance from 0 on the number line; interpret absolute
value as magnitude for a positive or negative quantity in a
real-world situation.

d Distinguish comparisons of absolute value from state-
ments about order.

This understanding is reinforced by extension to the coordinate
plane.6.NS.8

6.NS.8Solve real-world and mathematical problems by graphing
points in all four quadrants of the coordinate plane. Include use of
coordinates and absolute value to find distances between points
with the same first coordinate or the same second coordinate.
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Grade 7

Addition and subtraction of rational numbers In Grade 6 students
learned to locate rational numbers on the number line; in Grade 7
they extend their understanding of operations with fractions to op-
erations with rational numbers. Whereas previously addition was

Showing 5 3 2 and 3 5 2 on the number line

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

5 4 3 2 1 0 1 2 3 4 5

The number 5 is represented by the blue arrow pointing right
from 0, and the number 3 is represented by the red arrow
pointing left from 0. To add 5 3 we place the arrow for 5
down first then attach the arrow for 3 to its endpoint. To add

3 5 we place the arrow for 3 down first then attach the
arrow for 5 to its endpoint.

represented by concatenating the line segments together, now the
the line segments have directions, and therefore a beginning and an
end. When concatenating these directed line segments, we start the
second line segment at the end of the first one. If the second line
segment is going in the opposite direction to the first, it can back-
track over the first, effectively cancelling part or all of it out.7.NS.1b

Showing � � 0, and � � 0 on the number line

0 �

0�

0 �
� � 0

0�

� � 0

Later in high school, if students encounter vectors, they will be able
to see this as one-dimensional vector addition.

A fundamental fact about addition of rational numbers is that
� � 0 for any rational number �; in fact, this is a new
property of operations that comes into play when negative numbers
are introduced. This property can be introduced using situations in
which the equation makes sense in a context.7.NS.1a For example,

7.NS.1Apply and extend previous understandings of addition and
subtraction to add and subtract rational numbers; represent ad-
dition and subtraction on a horizontal or vertical number line dia-
gram.

a Describe situations in which opposite quantities combine
to make 0.

b Understand � � as the number located a distance �
from �, in the positive or negative direction depending on
whether � is positive or negative. Show that a number and
its opposite have a sum of 0 (are additive inverses). In-
terpret sums of rational numbers by describing real-world
contexts.

d Apply properties of operations as strategies to add and
subtract rational numbers.

the operation of adding an integer could be modeled by an elevator
moving up or down a certain number of floors. It can also be shown
using the directed line segment model of addition on the number, as
shown in the margin.7.NS.1b

It is common to use colored chips to represent integers, with
one color representing positive integers and another representing
negative integers, subject to the rule that chips of different colors
cancel each other out; thus, a number is not changed if you take
away or add such a pair. This is rather a different representation
than the number line. On the number line, the equation � � 0
follows from the definition of addition using directed line segments.
With integer chips, the equation � � 0 is true by definition
since it it is encoded in the rules for manipulating the chips. Also
implicit in the use of chips is that the commutative and associative
properties extend to addition of integers, since combining chips can
be done in any order.

However, the integer chips are not suited to representing ratio-
nal numbers that are not integers. Whether such chips are used
or not, the Standards require that students eventually understand
location and addition of rational numbers on the number line. With
the number line model, showing that the properties of operations
extend to rational numbers requires some reasoning. Although it is
not appropriate in Grade 6 to insist that all the properties be proved
proved to hold in the number line or chips model, experimenting with
them in these models is a good venue for reasoning (MP.2).7.NS.1d

Subtraction of rational numbers is defined the same way as for
positive rational numbers: � � is defined to be the missing addend
in � ? �. For example, in earlier grades, students understand
5 3 as the missing addend in 3 ? 5. On the number line, it
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is represented as the distance from 3 to 5. Or, with our newfound
emphasis on direction on the number line, we might say that it is
how you get from 3 from 5; by going two units to the right (that is,
by adding 2).

Showing 5 3 2 on the number line.

5 4 3 2 1 0 1 2 3 4 5

2 units to the right

You get from 3 to 5 by adding 2, so 5 3 2.
In Grade 6 students apply the same understanding to 5

3 . It is the missing addend in 3 ? 5, or how you get
from 3 to 5. Since 5 is two units to the left of 3 on the number
line, the missing addend is 2. Showing 5 3 2 on the number line.

5 4 3 2 1 0 1 2 3 4 5

2 units to the left
You get from 3 to 5 by adding 2, so 5 3 2

With the introduction of direction on the number line, there is a
distinction between the distance from � and � and how you get from
� to �. The distance from 3 to 5 is 2 units, but the instructions
how to get from 3 to 5 are “go two units to the left.” The distance
is a positive number, 2, wherease “how to get there” is a negative
number 2. In Grade 6 we introduce the idea of absolute value to
talk about the size of a number, regardless of its sign. It is always a
positive number or zero. If � is positive, then its absolute value �
is just �; if � is negative then � �. With this interpretation we
can say that the absolute value of � � is just the distance from �
to �, regardless of direction.7.NS.1c

7.NS.1c Apply and extend previous understandings of addition
and subtraction to add and subtract rational numbers; represent
addition and subtraction on a horizontal or vertical number line
diagram.

c Understand subtraction of rational numbers as adding the
additive inverse, � � � � . Show that the dis-
tance between two rational numbers on the number line is
the absolute value of their difference, and apply this prin-
ciple in real-world contexts.

Understanding � � as a missing addend also helps us see that
� � � �.7.NS.1c Indeed, � � is the missing number in

� ? �

and � � satisfies the description of being that missing, number:

� � � � � � � 0 ��

The figure in the margin illustrates this in the case where � and �
are positive and � �.

Showing � � � � on the number line
�0

� 0

0

The point
� �

This interval
is � � units
long

This interval
is � units
long

The red directed interval representing � is � units long, so the
remaining part of the blue directed interval representing � is
� � units long.

Multiplication and division of rational numbers Hitherto we have
been able to come up with visual models to represent rational num-
bers, and the operations of addition and subtraction on them. This
starts to break down with multiplication and division, and students
must rely increasingly on the properties of operations to build the
necessary bridges from their previous understandings to situations
where one or more of the numbers might be negative.

For example, multiplication of a negative number by a positive
whole number can still be understood as before; just as 5 2 can be
understood as 2 2 2 2 2 10, so 5 2 can be understood
as 2 2 2 2 2 10. We think of 5 2
as five jumps to the right on the number line, starting at 0, and we
think of 5 2 as five jumps to the left.

But what about 3
4 2, or 5 2? Perhaps the former can

be undersood as going 3
4 of the way from 0 to 2, that is 3

2 . For
the latter, teachers sometimes come up with metaphors involving
going backwards in time or repaying debts. But in the end these
metaphors do not explain why 5 2 10. In fact, this is a
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choice we make, not something we can justify by appeals to real
world situations.

Why do we make the choice of saying that a negative times a
negative is positive? Because we want to extend the operation of
multiplication to rational number is such a way that all of the prop-
erties of operations are satisfied.7.NS.2a In particular, the property

7.NS.2a Apply and extend previous understandings of multipli-
cation and division and of fractions to multiply and divide rational
numbers.

a Understand that multiplication is extended from fractions
to rational numbers by requiring that operations con-
tinue to satisfy the properties of operations, particularly
the distributive property, leading to products such as

1 1 1 and the rules for multiplying signed num-
bers. Interpret products of rational numbers by describing
real-world contexts.

that really makes a difference here is the distributive property. If
you want to be able to say that

4 5 2 4 5 4 2 �

you have to say that 4 2 8, because the number on the left
is 12 and the first addend on the right is 20. This leads to the rules

positive negative negative and negative positive negative�

If you want to be able to say that

4 5 2 4 5 4 2 �

then you have to say that 4 2 8, since now we know that
the number on the left is 12 and the first addend on the right is

20. This leads to the rule

negative negative positive�

Why is it important to maintain the distributive property? Because
when students get to algebra, they use it all the time. They must be
able to say 3� 6� 3 � 2� without worrying about whether
� and � are positive or negative.

The rules about moving negative signs around in a product re-
sult from the rules about multiplying negative and positive numbers.
Think about the various possibilities for � and � in

� � � � ���

If � and � are both positive, then this just a restatement of the
rules above. But it still works if, for example, � is negative and � is
positive. In that case it says

negative negative positive positive positive�

Just as the relationship between addition and subtraction helps
students understand subtraction of rational numbers, so the rela-
tionship between multiplication and division helps them understand
division. To calculate 8 4, students recall that 2 4 8,
and so 8 4 2. By the same reasoning,

8 5
8

5
because 8

5
5 8�
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This means it makes sense to write

8 5 as 8

5
�

Until this point students have not seen fractions where the numer-
ator or denominator could be a negative integer. But working with
the corresponding multiplication equations allows students to make
sense of such fractions. In general, they see that7.NS.2b

7.NS.2b Apply and extend previous understandings of multipli-
cation and division and of fractions to multiply and divide rational
numbers.

b Understand that integers can be divided, provided that the
divisor is not zero, and every quotient of integers (with
non-zero divisor) is a rational number. If � and � are inte-
gers, then � � � � � � . Interpret quo-
tients of rational numbers by describing real-world con-
texts.

�
�

�
�

�
�

for any integers � and �, with � 0.
Again, using multiplication as a guide, students can extend divi-

sion to rational numbers that are not integers.7.NS.2c For example c Apply properties of operations as strategies to multiply
and divide rational numbers.

2

3

1

2

4

3
because 4

3

1

2

2

3
�

And again it makes sense to write this division as a fraction:

2
3
1
2

4

3
because 4

3

1

2

2

3
�

Note that this is an extension of the fraction notation to a situation
it was not originally designed for. There is no sense in which we
can think of

2
3
1
2

as 2
3 parts where one part is obtained by dividing the line segment

from 0 to 1 into 1
2 equal parts! But the fact that the properties of

operations extend to rational numbers means that calculations with
fractions extend to these so-called complex fractions �

� , where � and 7.NS.3Solve real-world and mathematical problems involving the
four operations with rational numbers.� could be rational numbers, not only integers. By the end of Grade

7, students are solving problems involving complex fractions.7.NS.3

Decimals are special fractions, those with denominator 10, 100,
1000, etc. But they can also be seen as a special sort of measurement
on the number line, namely one that you get by partitioning into 10
equal pieces. In Grade 7 students begin to see this as a possibly

Zooming in on 0.635

0�1 0�2 0�3 0�4 0�5 0�6 0�7 0�8 0�9 10

�60 �61 �62 �63 �64 �65 �66 �67 �68 �69 �70

�630 �631 �632 �633 �634 �635 �636 �637 �638 �639 �640

The finite decimal 0�635 can eventually be found sitting one of
the tick marks at the thousandths level.

infinite process. The number line is marked off into tenths, each of
which is marked off into 10 hundreths, each of which is marked off
into 10 thousandths, and so on ad infinitum. These finer and finer
partitions constitute a sort of address system for numbers on the
number line: 0�635 is, first, in the neighborhood betweeen 0�6 and
0�7, then in part of that neighborhood between 0�63 and 0�64, then
exactly at 0�635.

The finite decimals are the rational numbers that eventually
come to fall exactly on one of the tick marks in this decimal ad-
dress system. But there are numbers that never come to rest, no
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matter how far down you go. For example, 1
3 is always sitting one

third of the way along the third subdivision. It is 0�33 plus one-third

Zooming in on 1
3

0�1 0�2 0�3 0�4 0�5 0�6 0�7 0�8 0�9 10

�30 �31 �32 �33 �34 �35 �36 �37 �38 �39 �70

�330 �331 �332 �333 �334 �335 �336 �337 �338 �339 �640

The fraction 1
3 is never eventually on one of the tick marks. It is

always one third the way along the third subdivision.

of a thousandth, and 0�333 plus one-third of a ten thousandth, and
so on. The decimals 0�33, 0�333, 0�3333 are successively closer and
closer approximations to 1

3 . We summarize this situation by saying
that 1

3 has an infinite decimal expansion consisting entirely of 3s

1

3
0�3333 � � � 0�3�

where the bar over the 3 indicates that it repeats indefinitely. Al-
though a rigorous treatment of this mysterious infinite expansion
is not available in middle school, students in Grade 7 start to de-
velop an intuitive understanding of decimals as a (possibly) infinite
address system through simple examples such as this.7.NS.2d

7.NS.2d Apply and extend previous understandings of multipli-
cation and division and of fractions to multiply and divide rational
numbers.

d Convert a rational number to a decimal using long divi-
sion; know that the decimal form of a rational number ter-
minates in 0s or eventually repeats.

For those rational numbers that have finite decimal expansions,
students can find those expansions using long division. Saying that
a rational number has a finite decimal expansion is the same as
saying that it can be expressed as a fraction whose numerator is a
base-ten unit (10, 100, 1000, etc.). So if �

� is a fraction with a finite
Division of 8 into 3 times a base-ten unit

3
8 30

24

6

37
8 300

240

60
56

4

375
8 3000

2400

600
560

40
40

0

Notice that it is not really necessary to restart the division for
each new base-ten unit, since the steps from the previous
calculation carry over to the next one.

expansion, then

�
�

�
10

or �
100

or �
1000

or � � � �

for some whole number �. If this is the case, then

10�
� � or 100�

� � or 1000�
� � or � � � �

So we can find the whole number � by dividing � successively into
10�, 100�, 1000�, and so on until there is no remainder.7.NS.2d The
margin illustrates this process for 3

8 , where we find that there is no
remainder for the division into 3000, so

3000 8 375�

which means that
3

8

375

1000
0�375�
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Grade 8

Know that there are numbers that are not rational, and approxi-
mate them by rational numbers In Grade 7 students encountered
infinitely repeating decimals, such as 1

3 0�3. In Grade 8 they un-
derstand why this phenomenon occurs, a good exercise in expressing
regularity in repeated reasoning (MP8).8.NS.1 Taking the case of 1

3 ,

8.NS.1Know that numbers that are not rational are called irra-
tional. Understand informally that every number has a decimal
expansion; for rational numbers show that the decimal expansion
repeats eventually, and convert a decimal expansion which re-
peats eventually into a rational number.

for example, we can try to express it as a finite decimal using the
same process we used for 3

8 in Grade 7. We successively divide 3
into 10, 100, 1000, hoping to find a point at which the remainder is
zero. But this never happens; there is always a remainder of 1. After

Division of 3 into 100, 1000, and 10�000

33
3 100

90

10
9

1

333
3 1000

900

100
90

10
9

1

3333
3 10000

9000

1000
900

100
90

10
9

1

Repeated division of 3 into larger and larger base ten units
shows the same pattern.

a few tries it is clear that the long division will always go the same
way, because the individual steps always work the same way: the
next digit in the quotient is always 3 resulting in a reduction of the
dividend from one base-unit to the next smaller one (see margin).
Once we have seen this regularity, we see that 1

3 can never be a
whole number of decimal base-ten units, no matter how small they
are.

A similar investigation with other fractions leads to the insight
that there must always eventually be a repeating pattern, because
there are only so many ways a step in the algorithm can go. For
example, considering the possibility that 2

7 might be a finite decimal
with, we try dividing 7 into 20, 200, 2000, etc., hoping to find a
point where the remainder is zero. But something happens when

Division of 7 into multiples of 2 times larger and larger
base-ten units

285714
7 2000000

1400000

600000
560000

40000
35000

5000
4900

100
70

30
28

2

2857142
7 20000000

14000000

6000000
5600000

400000
350000

50000
49000

1000
700

300
280

20
14

6

28571428
7 200000000

140000000

60000000
56000000

4000000
3500000

500000
490000

10000
7000

3000
2800

200
140

60
56

4

The remainder at each step is always a single digit multiple of a
base-ten unit so eventually the algorithm has to cycle back to the
same situation as some earlier step. From then on the algorithm
produces the same sequence of digits as from the earlier step,
ad infinitum.

we get to dividing 7 into 2�000�000, the left-most division in the
margin. We find ourselves with a remainder of 2. Since we started
with a numerator of 2, the algorithm is going to start repeating the
sequence of digits from this point on. So we are never going to get a
remainder of 0. All is not in vain, however. Each calculation gives us
a decimal approximation of 2

7 . For example, the left-most calculation
in the margin tells us that

2

7

1

1000000

2000000

7
0�285714

2

7
0�0000001�

and the next two show that
2

7
0�2857142

6

7
0�00000001

2

7
0�28571428

4

7
0�000000001�

Noticing the emergence of the repeating pattern 285714 in the digits,
we say that

2

7
0�285714�

The possibility of infinite repeating decimals raises the possibil-
ity of infinite decimals that do not ever repeat. From the point of
view of the decimal address system, there is no reason why such
number should not correspond to a point on the number line. For
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example, the number π lives between 3 and 4, and between 3�1 and
3�2, and between 3�14 and 3�15, and so on, with each successive
decimal digit narrowing its possible location by a factor of 10.

Numbers like π , which do not have a repeating decimal expan-
sion and therefore are not rational numbers, are called irrational.8.NS.1

8.NS.1Know that numbers that are not rational are called irra-
tional. Understand informally that every number has a decimal
expansion; for rational numbers show that the decimal expansion
repeats eventually, and convert a decimal expansion which re-
peats eventually into a rational number.

Although we can calculate the decimal expansion of π to any de-
sired accuracy, we cannot describe the entire expansion because
it is infinitely long, and because there is no pattern (as far as we
know). However, because of the way in which the decimal address

Zooming in on π

0 1 2 3 4 5 6 7 8 9 10

3�0 3�1 3�2 3�3 3�4 3�5 3�6 3�7 3�8 3�9 4�0

3�10 3�11 3�12 3�13 3�14 3�15 3�16 3�17 3�18 3�19 3�20

The number π has an infinite non-repeating decimal expansion
which determines each successive sub-interval to zoom in on.

system narrows down the interval in which a number lives, we can
use the first few digits of the decimal expansion to come up with
good decimal approximations of π , or any other irrational number.
For example, the fact that π is between 3 and 4 tells us that π2 is
between 9 and 16; the fact that π is between 3�1 and 3�2 tells us
that π2 is between 9�6 and 10�3, and so on.8.NS.2

8.NS.2Use rational approximations of irrational numbers to com-
pare the size of irrational numbers, locate them approximately on
a number line diagram, and estimate the value of expressions
(e.g., π2).
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High School, Number*

The Real Number System
Extend the properties of exponents to rational exponents In Grades
6–8 students began to widen the possible types of number they can
conceptualize on the number line. In Grade 8 they glimpse the exis-
tence of irrational numbers such as 2. In high school, they start a
systematic study of functions that can take on irrational values, such
as exponential, logarithmic, and power functions. The first step in
this direction is the understanding of numerical expressions in which
the exponent is not a whole number. Functions such as � � �2,
or more generally polynomial functions, have the property that if the
input � is a rational number, then so is the output. This is because
their output values are computed by basic arithmetic operations on
their input values. But a function such as � � � does not nec-
essarily have rational output values for every rational input value.
For example, � 2 2 is irrational even though 2 is rational.

The study of such functions brings with it a need for an extended
understanding of the meaning of an exponent. Exponent notation is a
remarkable success story in the expansion of mathematical ideas. It
is not obvious at first that a number such as 2 can be represented
as a power of 2. But reflecting that

2
2

2

and thinking about the properties of exponents, it is natural to define

2
1
2 2

since if we follow the rule �� � ��� then

2
1
2

2
2

1
2 2 21 2�

Similar reasoning leads to a general definition of the meaning of ��

whenever � and � are rational numbers.N-RN.1 It should be noted
N-RN.1 Explain how the definition of the meaning of rational ex-
ponents follows from extending the properties of integer expo-
nents to those values, allowing for a notation for radicals in terms
of rational exponents.high school mathematics does not develop the mathematical ideas

necessary to prove that numbers such as 2 and 3
1
5 actually exist;

*This progression concerns Number and Quantity standards related to number.
The remaining standards are discussed in the Quantity Progression.
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in fact all of high school mathematics depends on the fundamental
assumption that properties of rational numbers extend to irrational
numbers. This is not unreasonable, since the number line is popu-
lated densely with rational numbers, and a conception of number as
a point on the number line gives reassurance from intuitions about
measurement that irrational numbers are not going to behave in a
strangely different way from rational numbers.

Because rational exponents have been introduced in such a way
as to preserve the laws of exponents, students can now use those
laws in a wider variety of situations. For example, they can rewrite
the formula for the volume of a sphere of radius � ,

V 4

3
π�3�

to express the radius in terms of the volume,N-RN.2 N-RN.2 Rewrite expressions involving radicals and rational ex-
ponents using the properties of exponents.

� 3

4

V
π

1
3

�

Use properties of rational and irrational numbers An important
difference between rational and irrational numbers is that rational
numbers form a number system. If you add, subtract, multiply, or
divide two rational numbers, you get another rational number (pro-
vided the divisor is not 0 in the last case). The same is not true
of irrational numbers. For example, if you multiply the irrational
number 2 by itself, you get the rational number 2. Irrational num-
bers are defined by not being rational, and this definition can be
exploited to generate many examples of irrational numbers from just
a few.N-RN.3 For example, because 2 is irrational it follows that

N-RN.3 Explain why the sum or product of two rational numbers
is rational; that the sum of a rational number and an irrational
number is irrational; and that the product of a nonzero rational
number and an irrational number is irrational.3 2 and 5 2 are also irrational. Indeed, if 3 2 were an irra-

tional number, call it � , say, then from 3 2 � we would deduce
2 � 3. This would imply 2 is rational, since it is obtained by

subtracting the rational number 3 from the rational number � . But
it is not rational, so neither is 3 2.

Although in applications of mathematics the distinction between
rational and irrational numbers is irrelevant, since we always deal
with finite decimal approximations (and therefore with rational num-
bers), thinking about the properties of rational and irrational num-
bers is good practice for mathematical reasoning habits such as
constructing viable arguments and attending to precisions (MP.3,
MP.6).
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Complex Numbers

That complex numbers have a practical application is surprising to
many. But it turns out that many phenomena involving real numbers
become simpler when the real numbers are viewed as a subsytem of
the complex numbers. For example, complex solutions of differential
equations can give a unified picture of the behavior of real solutions.
Students get a glimpse of this when they study complex solutions of
quadratic equations. When complex numbers are brought into the
picture, every quadratic polynomial can be expressed as a product
of linear factors:

��2 �� � � � � � � �

The roots � and � are given by the quadratic formula:

� � �2 4��
2� � � � �2 4��

2� �

When students first apply the quadratic formula to quadratic equa-
tions with real coefficients, the square root is a problem if the quan-
tity �2 4�� is negative. Complex numbers solve that problem
by introducing a new number, �, with the property that �2 1,
which enables students to express the solutions of any quadratic
equation.N-CN.7 N-CN.7 Solve quadratic equations with real coefficients that have

complex solutions.One remarkable fact about introducing the number � is that it
works: the set of numbers of the form � ��, where �2 1 and �
and � are real numbers, forms a number system. That is, you can
add, subtract, multiply and divide two numbers of this form and get
another number of the same form as the result. We call this the
system of complex numbers.N-CN.1 N-CN.1 Know there is a complex number � such that �2 1,

and every complex number has the form � �� with � and � real.All you need to perform operations on complex numbers is the
fact that �2 1 and the properties of operations.N-CN.2 For exam- N-CN.2 Use the relation �2 1 and the commutative, asso-

ciative, and distributive properties to add, subtract, and multiply
complex numbers.

ple, to add 3 2� and 1 4� we write

3 2� 1 4� 3 1 2� 4� 2 6��

using the associative and commutative properties of addition, and the
distributive property to pull the � out, resulting in another complex
number. Multiplication requires using the fact that �2 1:

3 2� 1 4� 3 10� 8�2 3 10� 8 11 10��

Division of complex numbers is a little tricker, but with the dis-+

covery of the complex conjugate � �� we find that every non-zero+

complex number has a multiplicative inverse.N-CN.3 If at least one of
N-CN.3(+) Find the conjugate of a complex number; use conju-
gates to find moduli and quotients of complex numbers.

+

� and � is not zero, then+

� �� 1 1

�2 �2
� ��

because+

� �� � �� �2 �� 2 �2 �2�
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Students who continue to study geometric representations of com-+

plex numbers in the complex plane use both rectangular and po-+

lar coordinates which leads to a useful geometric interpretation of+

the operations.N-CN.4, N-CN.5 The restriction of these geometric in-
N-CN.4(+) Represent complex numbers on the complex plane
in rectangular and polar form (including real and imaginary num-
bers), and explain why the rectangular and polar forms of a given
complex number represent the same number.

N-CN.5(+) Represent addition, subtraction, multiplication, and
conjugation of complex numbers geometrically on the complex
plane; use properties of this representation for computation.

+

terpretations to the real numbers yields and interpretation of these+

operations on the number line.+

One of the great theorems of modern mathematics is the Fun-+

damental Theorem of Algebra, which says that every polynomial+

equation has a solution in the complex numbers. To put this into+

perspective, recall that we formed the complex numbers by creat-+

ing a solution, �, to just one special polynomial equation, �2 1.+

With the addition of this one solution, it turns out that every poly-+

nomial equation, for example �4 �2 1, also acquires a solu-+

tion. Students have already seen this phenomenon for quadratic+

equations.N-CN.9 N-CN.9(+) Know the Fundamental Theorem of Algebra; show
that it is true for quadratic polynomials.

+

Although much of the study of complex numbers goes beyond the+

college and career ready threshold, as indicated by the (+) on many+

of the standards, it is a rewarding area of exploration for advanced+

students.+
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Grade 8, High School,
Functions*
Overview
Functions describe situations in which one quantity is determined
by another. The area of a circle, for example, is a function of its ra-
dius. When describing relationships between quantities, the defin-
ing characteristic of a function is that the input value determines the
output value or, equivalently, that the output value depends upon the
input value.

The mathematical meaning of function is quite different from
some common uses of the word, as in, “One function of the liver
is to remove toxins from the body,” or “The party will be held in the
function room at the community center.” The mathematical meaning
of function is close, however, to some uses in everyday language.
For example, a teacher might say, “Your grade in this class is a
function of the effort you put into it.” A doctor might say, “Some ill-
nesses are a function of stress.” Or a meteorologist might say, “After
a volcano eruption, the path of the ash plume is a function of wind
and weather.” In these examples, the meaning of “function” is close
to its mathematical meaning.

In some situations where two quantities are related, each can
be viewed as a function of the other. For example, in the context of
rectangles of fixed perimeter, the length can be viewed as depending
upon the width or vice versa. In some of these cases, a problem
context may suggest which one quantity to choose as the input
variable.

*The study of functions occupies a large part of a student’s high school career,
and this document does not treat in detail all of the material studied. Rather it
gives some general guidance about ways to treat the material and ways to tie it
together. It notes key connections among standards, points out cognitive difficulties
and pedagogical solutions, and gives more detail on particularly knotty areas of the
mathematics.

The high school standards specify the mathematics that all students should study
in order to be college and career ready. Additional material corresponding to (+)
standards, mathematics that students should learn in order to take advanced courses
such as calculus, advanced statistics, or discrete mathematics, is indicated by plus
signs in the left margin.
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Undergraduate mathematics may involve functions of more than
one variable. The area of a rectangle, for example, can be viewed as
a function of two variables: its width and length. But in high school
mathematics the study of functions focuses primarily on real-valued
functions of a single real variable, which is to say that both the
input and output values are real numbers. One exception is in high
school geometry, where geometric transformations are considered to
be functions.• For example, a translation T, which moves the plane • G-CO.2 . . . [D]escribe transformations as functions that take

points in the plane as inputs and give other points as outputs. . . .3 units to the right and 2 units up might be represented by T :
px, yq ÞÑ px � 3, y� 2q.
Sequences and functions Patterns are sequences, and sequences
are functions with a domain consisting of whole numbers. How-
ever, in many elementary patterning activities, the input values are
not given explicitly. In high school, students learn to use an index

The problem with patterns3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Students are asked to continue the pattern 2, 4, 6, 8, . . . . Here
are some legitimate responses:

• Cody: I am thinking of a “plus 2 pattern,” so it continues
10, 12, 14, 16, . . . .

• Ali: I am thinking of a repeating pattern, so it continues 2,
4, 6, 8, 2, 4, 6, 8, . . . .

• Suri: I am thinking of the units digit in the multiples of 2,
so it continues 0, 2, 4, 6, 8, 0, 2, . . . .

• Erica: If gpnq is any polynomial, then
fpnq � 2n� pn� 1qpn� 2qpn� 3qpn� 4qgpnq
describes a continuation of this sequence.

• Zach: I am thinking of that high school cheer, “Who do
we appreciate?”

Because the task provides no structure, all of these answers
must be considered correct. Without any structure, continuing
the pattern is simply speculation—a guessing game. Because
there are infinitely many ways to continue a sequence,
patterning problems should provide enough structure so that the
sequence is well defined.

to indicate which term is being discussed. In the example in the
margin, Erica handles this issue by deciding that the term 2 would
correspond to an index value of 1. Then the terms 4, 6, and 8 would
correspond to input values of 2, 3, and 4, respectively. Erica could
have decided that the term 2 would correspond to a different index
value, such as 0. The resulting formula would have been different,
but the (unindexed) sequence would have been the same.
Functions and Modeling In modeling situations, knowledge of the
context and statistics are sometimes used together to find a func-
tion defined by an algebraic expression that best fits an observed
relationship between quantities. (Here “best” is assessed informally,
see the Modeling Progression and high school Statistics and Prob-
ability Progression for further discussion and examples.) Then the
algebraic expressions can be used to interpolate (i.e., approximate
or predict function values between and among the collected data
values) and to extrapolate (i.e., to approximate or predict function
values beyond the collected data values). One must always ask
whether such approximations are reasonable in the context.

In school mathematics, functional relationships are often given
by algebraic expressions. For example, f pnq � n2 for n ¥ 1 gives
the nth square number. But in many modeling situations, such as
the temperature at Boston’s Logan Airport as a function of time,
algebraic expressions may not be suitable.
Functions and Algebra See the Algebra Progression for a discus-
sion of the connection and distinctions between functions, on the one
hand, and algebra and equation solving, on the other. Perhaps the
most productive connection is that solving equations can be seen as
finding the intersections of graphs of functions.A-REI.11

A-REI.11 Explain why the x-coordinates of the points where the
graphs of the equations y � fpxq and y � gpxq intersect are the
solutions of the equation fpxq � gpxq; find the solutions approx-
imately, e.g., using technology to graph the functions, make ta-
bles of values, or find successive approximations. Include cases
where fpxq and/or gpxq are linear, polynomial, rational, absolute
value, exponential, and logarithmic functions.K–7 foundations for functions Before they learn the term “func-

tion,” students begin to gain experience with functions in elementary
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grades. In Kindergarten, they use patterns with numbers such as
the 5� n pattern to learn particular additions and subtractions.

A trickle of pattern standards in Grades 4 and 5 continues the
preparation for functions.4.OA.5, 5.OA.3 Note that in both these stan-

4.OA.5Generate a number or shape pattern that follows a given
rule. Identify apparent features of the pattern that were not ex-
plicit in the rule itself.

5.OA.3Generate two numerical patterns using two given rules.
Identify apparent relationships between corresponding terms.
Form ordered pairs consisting of corresponding terms from the
two patterns, and graph the ordered pairs on a coordinate plane.

dards a rule is explicitly given. Traditional pattern activities, where
students are asked to continue a pattern through observation, are
not a mathematical topic, and do not appear in the Standards in
their own right.1

The Grade 4–5 pattern standards expand to the domain of Ratios
Experiences with functions before Grade 83Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Kindergarten Operations and Algebraic Thinking

fpnq � 5� n
Grade 3 Operations and Algebraic Thinking

1� 9 � 9

2� 9 � 2� p10� 1q � p2� 10q � p2� 1q � 20� 2 � 18

3� 9 � 3� p10� 1q � p3� 10q � p3� 1q � 30� 3 � 27,
fpnq � 9� n � 10� n� n

Grade 4 Geometric Measurement
feet 0 1 2 3

inches 0 12 24
fptq � 12t

Grade 6 Ratios and Proportional Relationships

d meters 3 6 9 12 15 3
2 1 2 4

t seconds 2 4 6 8 10 1 2
3

4
3

8
3fptq � 3

2 t

and Proportional Relationships in Grades 6–7. In Grade 6, as they
work with collections of equivalent ratios, students gain experience
with tables and graphs, and correspondences between them. They
attend to numerical regularities in table entries and corresponding
geometrical regularities in their graphical representations as plotted
points.MP.8 In Grade 7, students recognize and represent an impor-

MP.8 “Mathematically proficient students notice if calculations are
repeated, and look both for general methods and for shortcuts.”

tant type of regularity in these numerical tables—the multiplicative
relationship between each pair of values—by equations of the form
y � cx , identifying c as the constant of proportionality in equations
and other representations7.RP.2 (see the Ratios and Proportional Re-
lationships Progression).

The notion of a function is introduced in Grade 8. Linear functions
are a major focus, but note that students are also expected to give
examples of functions that are not linear.8.F.3 In high school, students
deepen their understanding of the notion of function, expanding their
repertoire to include quadratic and exponential functions, and in-
creasing their understanding of correspondences between geomet-
ric transformations of graphs of functions and algebraic transforma-
tions of the associated equations.F-BF.3 The trigonometric functions

F-BF.3 Identify the effect on the graph of replacing fpxq by fpxq�
k , kfpxq, fpkxq, and fpx�kq for specific values of k (both positive
and negative); find the value of k given the graphs. Experiment
with cases and illustrate an explanation of the effects on the graph
using technology.

are another important class of functions. In high school, students
study trigonometric ratios in right triangles.G-SRT.6 Understanding

G-SRT.6 Understand that by similarity, side ratios in right trian-
gles are properties of the angles in the triangle, leading to defini-
tions of trigonometric ratios for acute angles.

radian measure of an angle as arc length on the unit circle enables
students to build on their understanding of trigonometric ratios as-
sociated with acute angles, and to explain how these ratios extend
to trigonometric functions whose domains are included in the real
numbers.

The (+) standards for the conceptual categories of Geometry and
Functions detail further trigonometry addressed to students who
intend to take advanced mathematics courses such as calculus. This
includes the Law of Sines and Law of Cosines, as well as further
study of the values and properties of trigonometric functions.

1This does not exclude activities where patterns are used to support other stan-
dards, as long as the case can be made that they do so.
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Grade 8
Define, evaluate, and compare functions Since the elementary
grades, students have been describing patterns and expressing re-

8.F.1Understand that a function is a rule that assigns to each
input exactly one output. The graph of a function is the set of
ordered pairs consisting of an input and the corresponding out-
put.Function notation is not required in Grade 8.

8.F.2Compare properties of two functions each represented in a
different way (algebraically, graphically, numerically in tables, or
by verbal descriptions).

MP.1 “Mathematically proficient students can explain correspon-
dences between equations, verbal descriptions, tables, and
graphs or draw diagrams of important features and relationships,
graph data, and search for regularity or trends.”

lationships between quantities. These ideas become semi-formal in
Grade 8 with the introduction of the concept of function: a rule that
assigns to each input exactly one output.8.F.1 Formal language, such
as domain and range, and function notation may be postponed until
high school.

Building on their earlier experiences with graphs and tables in
Grades 6 and 7, students a routine of exploring functional relation-
ships algebraically, graphically, numerically in tables, and through
verbal descriptions.8.F.2 They explain correspondences between equa-
tions, verbal descriptions, tables, and graphs (MP.1). Repeated rea-
soning about entries in tables or points on graphs results in equa-
tions for functional relationships (MP.8). To develop flexibility in
interpreting and translating among these various representations,
students compare two functions represented in different ways, as
illustrated by “Battery Charging” in the margin.

Battery Charging 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Sam wants to take his MP3 player and his video game player on
a car trip. An hour before they plan to leave, he realized that he
forgot to charge the batteries last night. At that point, he plugged
in both devices so they can charge as long as possible before
they leave.

Sam knows that his MP3 player has 40% of its battery life left
and that the battery charges by an additional 12 percentage
points every 15 minutes.

His video game player is new, so Sam doesn’t know how fast it is
charging but he recorded the battery charge for the first 30
minutes after he plugged it in.

time charging in minutes 0 10 20 30
percent player battery charged 20 32 44 56

1. If Sam’s family leaves as planned, what percent of the
battery will be charged for each of the two devices when
they leave?

2. How much time would Sam need to charge the battery
100% on both devices?

Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/641.

The main focus in Grade 8 is linear functions, those of the form
y � mx � b, where m and b are constants.8.F.3 Students learn to

8.F.3Interpret the equation y � mx�b as defining a linear func-
tion, whose graph is a straight line; give examples of functions
that are not linear.

recognize linearity in a table: when constant differences between
input values produce constant differences between output values.
And they can use the constant rate of change appropriately in a
verbal description of a context.

The proof that y � mx � b is also the equation of a line, and
hence that the graph of a linear function is a line, is an important
piece of reasoning connecting algebra with geometry in Grade 8.
See the Expressions and Equations Progression.
Connection to Algebra and Geometry In high school, after stu-
dents have become fluent with geometric transformations and have
worked with similarity, another connection between algebra and
geometry can be made in the context of linear functions.

The figure in the margin shows a “slope triangle” with one red
side formed by the vertical intercept and the point on the line with
x-coordinate equal to 1. The larger triangle is formed from the inter- Dilation of a “slope triangle”3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

b
p1, b�mq

px, b�mxq

1

m
x

mx

cept and a point with arbitrary x-coordinate. A dilation with center
at the vertical intercept and scale factor x takes the slope triangle
to the larger triangle, because it takes lines to parallel lines.G-SRT.1a

G-SRT.1a A dilation takes a line not passing through the center
of the dilation to a parallel line, and leaves a line passing through
the center unchanged.

Thus the larger triangle is similar to the slope triangle,G-SRT.2 and

G-SRT.2 Given two figures, use the definition of similarity in
terms of similarity transformations to decide if they are similar;
explain using similarity transformations the meaning of similarity
for triangles as the equality of all corresponding pairs of angles
and the proportionality of all corresponding pairs of sides.

so the height of the larger triangle is mx , and the coordinates of the
general point on the triangle are px, b�mxq. Which is to say that
the point satisfies the equation y � b�mx .
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Use functions to model relationships between quantities When
using functions to model a linear relationship between quantities,
students learn to determine the rate of change of the function, which
is the slope of the line that is its graph. They can read (or compute
or approximate) the rate of change from a table or a graph, and they
can interpret the rate of change in context.8.F.4

8.F.4Construct a function to model a linear relationship between
two quantities. Determine the rate of change and initial value of
the function from a description of a relationship or from two px, yq
values, including reading these from a table or from a graph. In-
terpret the rate of change and initial value of a linear function in
terms of the situation it models, and in terms of its graph or a
table of values.

Graphs are ubiquitous in the study of functions, but it is impor-
tant to distinguish a function from its graph. For example, a linear
function does not have a slope but the graph of a non-vertical line
has a slope.• • The slope of a vertical line is undefined and the slope of a

horizontal line is 0. Either of these cases might be considered “no
slope.” Thus, the phrase “no slope” should be avoided because it
is ambiguous and “non-existent slope” and “slope of 0” should be
distinguished from each other.

Within the class of linear functions, students learn that some are
proportional relationships and some are not. Functions of the form
y � mx � b are proportional relationships exactly when b � 0,
so that y is proportional to x . Graphically, a linear function is a
proportional relationship if its graph goes through the origin.

To understand relationships between quantities, it is often help-
ful to describe the relationships qualitatively, paying attention to
the general shape of the graph without concern for specific numer-
ical values.8.F.5 The standard approach proceeds from left to right,

8.F.5Describe qualitatively the functional relationship between
two quantities by analyzing a graph (e.g., where the function is
increasing or decreasing, linear or nonlinear). Sketch a graph
that exhibits the qualitative features of a function that has been
described verbally.

describing what happens to the output as the input value increases.
For example, pianist Chris Donnelly describes the relationship be-
tween creativity and structure via a graph.•

•

The qualitative description might be as follows: “As the input
value (structure) increases, the output (creativity) increases quickly
at first and gradually slowing down. As input (structure) continues to
increase, the output (creativity) reaches a maximum and then starts
decreasing, slowly at first, and gradually faster.” Thus, from the
graph alone, one can infer Donnelly’s point that there is an optimal
amount of structure that produces maximum creativity. With little
structure or with too much structure, in contrast, creativity is low.
Connection to Statistics and Probability In Grade 8, students plot
bivariate data in the coordinate plane (by hand or electronically)
and use linear functions to analyze the relationship between two
paired variables.8.SP.2 See the Grades 6–8 Statistics and Probability

8.SP.2Know that straight lines are widely used to model relation-
ships between two quantitative variables. For scatter plots that
suggest a linear association, informally fit a straight line, and in-
formally assess the model fit by judging the closeness of the data
points to the line.

Progression.
In high school, students take a deeper look at bivariate data,

making use of their expanded repertoire of functions in modeling
associations between two variables. See the sections on bivariate
data and interpreting linear models in the High School Statistics
and Probability Progression.
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High School
The high school standards on functions are organized into four groups:
Interpreting Functions (F-IF); Building Functions (F-BF); Linear, Qua-
dratic and Exponential Models (F-LE); and Trigonometric Functions
(F-TF). The organization of the first two groups under mathemati-
cal practices rather than types of function is an important aspect
of the Standards: students should develop ways of thinking that
are general and allow them to approach any type of function, work
with it, and understand how it behaves, rather than see each func-
tion as a completely different animal in the bestiary. For example,
they should see linear and exponential functions as arising out of
structurally similar growth principles; they should see quadratic,
polynomial, and rational functions as belonging to the same sys-
tem (helped along by the unified study in the Algebra category of
Arithmetic with Polynomials and Rational Expressions).
Interpreting Functions
Understand the concept of a function and use function notation
Building on semi-formal notions of functions from Grade 8, students
in high school begin to use formal notation and language for func-
tions. Now the input/output relationship is a correspondence be-
tween two sets: the domain and the range.F-IF.1 The domain is the

F-IF.1 Understand that a function from one set (called the do-
main) to another set (called the range) assigns to each element
of the domain exactly one element of the range. If f is a function
and x is an element of its domain, then fpxq denotes the output
of f corresponding to the input x. The graph of f is the graph of
the equation y � fpxq.

set of input values, and the range is the set of output values. A key
advantage of function notation is that the correspondence is built
into the notation. For example, f p5q is shorthand for “the output
value of f when the input value is 5.”

Students sometimes interpret the parentheses in function no-
tation as indicating multiplication. Because they might have seen

Interpreting the Graph3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Use the graph (for example, by marking specific points) to
illustrate the statements in (a)–(d). If possible, label the
coordinates of any points you draw.

(a) fp0q � 2

(b) fp�3q � fp3q � fp9q � 0

(c) fp2q � gp2q
(d) gpxq ¡ fpxq for x ¡ 2

Task from Illustrative Mathematics. For solutions and discussion,
see at illustrativemathematics.org/illustrations/636.

numerical expressions like 3p4q, meaning 3 times 4, students can in-
terpret f pxq as f times x . This can lead to false generalizations of the
distributive property, such replacing f px� 3q with f pxq� f p3q. Work
with correspondences between values of the function represented in
function notation and their location on the graph of f can help stu-

MP.1 “Mathematically proficient students can explain correspon-
dences between equations, verbal descriptions, tables, and
graphs. . . .”

dents avoid this misinterpretation of the symbols (see “Interpreting
the Graph” in margin).

Although it is common to say “the function f pxq,” the notation
f pxq refers to a single output value when the input value is x . To
talk about the function as a whole, write f , or perhaps “the function f ,
where f pxq � 3x�4.” The x is merely a placeholder, so f ptq � 3t�4
describes exactly the same function.

Later, students can make interpretations like those in the follow-
ing table:

Expression Interpretation
fpa� 2q The output when the input is 2 greater than a
fpaq � 3 3 more than the output when the input is a
2fpxq � 5 5 more than twice the output of f when the input is x
fpbq � fpaq The change in output when the input changes from a to b
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Notice that a common preoccupation of high school mathematics, The square root function3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Since the equation x2 � 9 has two solutions, x � �3, students
might think incorrectly that

?
9 � �3. However, if we want

?x
to be a function of x, we need to choose one of these square
roots. The square root function, gpxq � ?x, is defined to be the
positive square root of x for any positive x.

distinguishing functions from relations, is not in the Standards. Time
normally spent on exercises involving the vertical line test, or search-
ing lists of ordered pairs to find two with the same x-coordinate
and different y-coordinate, can be reallocated elsewhere. Indeed,
the vertical line test is problematic, because it makes it difficult to
discuss questions such as “Is x a function of y?” (an important ques-
tion for students thinking about inverse functions) using a graph
in which x-coordinates are on the horizontal axis. The essential
question when investigating functions is: “Does each element of the
domain correspond to exactly one element in the range?” The mar-
gin shows a discussion of the square root function oriented around
this question.

To promote fluency with function notation, students interpret
function notation in contexts.F-IF.2 For example, if h is a function F-IF.2 Use function notation, evaluate functions for inputs in their

domains, and interpret statements that use function notation in
terms of a context.

MP.2 “Mathematically proficient students . . . [have] the ability to
contextualize, to pause as needed during the manipulation pro-
cess in order to probe into the referents for the symbols involved.”

Cell Phones3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Let fptq be the number of people, in millions, who own cell
phones t years after 1990. Explain the meaning of the following
statements.

(a) fp10q � 100.3
(b) fpaq � 20

(c) fp20q � b
(d) n � fptq
Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/634.

that relates Kristin’s height in inches to her age in years, then the
statement hp7q � 49 means, “When Kristin was 7 years old, she was
49 inches tall.” The value of hp12q is the answer to “How tall was
Kristin when she was 12 years old.” And the solution of hpxq � 60
is the answer to “How old was Kristin when she was 60 inches tall?”
See also “Cell Phones” in the margin.

Sometimes, especially in real-world contexts, there is no expres-
sion (or closed formula) for a function. In those cases, it is common to
use a graph or a table of values to (partially) represent the function.

A sequence is a function whose domain is a subset of the integers.F-IF.3

Sequences as functions3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

n fpnq
1 4
2 7
3 10
4 13
5 16
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n

F-IF.3 Recognize that sequences are functions, sometimes de-
fined recursively, whose domain is a subset of the integers.

In fact, many patterns explored in grades K–8 can be considered se-
quences. For example, the sequence 4, 7, 10, 13, 16, . . . might be de-
scribed as a “plus 3 pattern” because terms are computed by adding
3 to the previous term. To show how the sequence can be consid-
ered a function, we need an index that indicates which term of the
sequence we are talking about, and which serves as an input value
to the function. Deciding that the 4 corresponds to an index value of
1, we make a table showing the correspondence, as in the margin.
The sequence can be described recursively by the rule f p1q � 4,
f pn � 1q � f pnq � 3 for n ¥ 2. Notice that the recursive definition
requires both a starting value and a rule for computing subsequent
terms. The sequence can also be described with the closed formula
f pnq � 3n � 1, for integers n ¥ 1. Notice that the domain is in-
cluded as part of the description. A graph of the sequence consists
of discrete points, because the specification does not indicate what
happens “between the dots.”

In courses that address material corresponding to the plus stan-+
dards, students may use subscript notation for sequences.+

Interpret functions that arise in applications in terms of the con-
text Functions are often described and understood in terms of their
behavior.F-IF.4 Over what input values is it increasing, decreasing, F-IF.4 For a function that models a relationship between two

quantities, interpret key features of graphs and tables in terms
of the quantities, and sketch graphs showing key features given
a verbal description of the relationship.

or constant? For what input values is the output value positive,
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negative, or 0? What happens to the output when the input value F-IF.5 Relate the domain of a function to its graph and, where
applicable, to the quantitative relationship it describes.gets very large in magnitude? Graphs become very useful represen-

tations for understanding and comparing functions because these
“behaviors” are often easy to see in the graphs of functions (see
“Warming and Cooling” in the margin). Graphs and contexts are op-

Warming and Cooling3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

The figure shows the graph of T , the temperature (in degrees
Fahrenheit) over one particular 20-hour period in Santa Elena as
a function of time t.

(a) Estimate T p14q.
(b) If t � 0 corresponds to midnight, interpret what we mean by

T p14q in words.

(c) Estimate the highest temperature during this period from the
graph.

(d) When was the temperature decreasing?

(e) If Anya wants to go for a two-hour hike and return before the
temperature gets over 80 degrees, when should she leave?

Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/639.

portunities to talk about the notion of the domain of a function (for an
illustration, go to illustrativemathematics.org/illustrations/631).F-IF.5

Graphs help us reason about rates of change. Students learned
in Grade 8 that the rate of change of a linear function is equal to the
slope of the line that is its graph.8.EE.5 And because the slope of a line

8.EE.5Graph proportional relationships, interpreting the unit rate
as the slope of the graph. Compare two different proportional
relationships represented in different ways.

is constant, that is, between any two points it is the same8.EE.6 (see

8.EE.6Use similar triangles to explain why the slope m is the
same between any two distinct points on a non-vertical line in the
coordinate plane; derive the equation y � mx for a line through
the origin and the equation y � mx�b for a line intercepting the
vertical axis at b.

the Expressions and Equations Progression), “the rate of change”
has an unambiguous meaning for a linear function. For nonlinear
functions, however, rates of change are not constant, and so we talk
about average rates of change over an interval.F-IF.6

F-IF.6 Calculate and interpret the average rate of change of a
function (presented symbolically or as a table) over a specified
interval. Estimate the rate of change from a graph.

For example, for the function gpxq � x2, the average rate of
change from x � 2 to x � 5 is

gp5q � gp2q
5� 2

� 25� 4

5� 2
� 21

3
� 7.

This is the slope of the line from p2, 4q to p5, 25q on the graph of g.
And if g is interpreted as returning the area of a square of side x ,
then this calculation means that over this interval the area changes,
on average, 7 square units for each unit increase in the side length
of the square.

F-IF.7 Graph functions expressed symbolically and show key fea-
tures of the graph, by hand in simple cases and using technology
for more complicated cases.

a Graph linear and quadratic functions and show intercepts,
maxima, and minima.

b Graph square root, cube root, and piecewise-defined
functions, including step functions and absolute value
functions.

c Graph polynomial functions, identifying zeros when suit-
able factorizations are available, and showing end behav-
ior.

d (+) Graph rational functions, identifying zeros and asymp-
totes when suitable factorizations are available, and
showing end behavior.

e Graph exponential and logarithmic functions, showing in-
tercepts and end behavior, and trigonometric functions,
showing period, midline, and amplitude.

Analyze functions using different representations Functions are
often studied and understood as families, and students should spend
time studying functions within a family, varying parameters to de-
velop an understanding of how the parameters affect the graph of a
function and its key features.F-IF.7

Within a family, the functions often have commonalities in the
shapes of their graphs and in the kinds of features that are impor-
tant for identifying functions more precisely within a family. This
standard indicates which function families should be in students’
repertoires, detailing which features are required for several key
families. It is an overarching standard that covers the entire range
of a student’s high school experience; in this part of the progression
we merely indicate some guidelines for how it should be treated.

First, linear and exponential functions (and to a lesser extent
quadratic functions) receive extensive treatment and comparison in
a dedicated group of standards, Linear and Exponential Models.
Thus, those function families should receive the bulk of the atten-
tion related to this standard. Second, all students are expected to
develop fluency with linear, quadratic, and exponential functions, in-
cluding the ability to graph them by hand. Finally, in most of the
other function families, students are expected to graph simple cases
without technology, and more complex ones with technology.

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Consistent with the practice of looking for and making use of
structure (MP.7), students should also develop the practice of writing
expressions for functions in ways that reveal the key features of the
function.F-IF.8 F-IF.8 Write a function defined by an expression in different but

equivalent forms to reveal and explain different properties of the
function.

a Use the process of factoring and completing the square in
a quadratic function to show zeros, extreme values, and
symmetry of the graph, and interpret these in terms of a
context.

b Use the properties of exponents to interpret expressions
for exponential functions.

Quadratic functions provide a rich playground for developing this
ability, since the three principal forms for a quadratic expression
(expanded, factored, and completed square) each give insight into
different aspects of the function. However, there is a danger that

Which Expression? 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Which of the following could be an expression for the function
whose graph is shown below? Explain.

(a) px � 12q2 � 4 (b) �px � 2q2 � 1
(c) px � 18q2 � 40 (d) px � 10q2 � 15
(e) �4px � 2qpx � 3q (f) px � 4qpx � 6q
(g) px � 12qp�x � 18q (h) p20� xqp30� xq

Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/640.

working with these different forms becomes an exercise in picking
numbers out of an expression. For example, students often arrive
at college talking about “minus b over 2a method” for finding the
vertex of the graph of a quadratic function. To avoid this problem it
is useful to give students tasks such as “Which Expression?” in the
margin, where they must read both the graphs and the expression
and choose for themselves which parts of each correspond.F-IF.9

F-IF.9 Compare properties of two functions each represented in
a different way (algebraically, graphically, numerically in tables, or
by verbal descriptions).

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Building Functions
The previous group of standards focuses on interpreting functions
given by expressions, graphs, or tables. The Building Functions
group focuses on building functions to model relationships, and
building new functions from existing functions. A-CED.2 Create equations in two or more variables to represent

relationships between quantities; graph equations on coordinate
axes with labels and scales.Note: Inverse of a function and composition of a function with

its inverse are among the plus standards. The following discussion
describes in detail what is required for students to grasp these se-
curely. Because of the subtleties and pitfalls involved, it is strongly
recommended that these topics be included only in optional courses. F-BF.1a Write a function that describes a relationship between

two quantities.
a Determine an explicit expression, a recursive process, or

steps for calculation from a context.Build a function that models a relationship between two quanti-
ties This cluster of standards is very closely related to the algebra
standard on writing equations in two variables.A-CED.2 Indeed, that
algebra standard might well be met by a curriculum in the same
unit as this cluster. Although students will eventually study vari-
ous families of functions, it is useful for them to have experiences of
building functions from scratch, without the aid of a host of special
recipes, by grappling with a concrete context for clues.F-BF.1a For

Lake Algae3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

On June 1, a fast growing species of algae is accidentally
introduced into a lake in a city park. It starts to grow and cover
the surface of the lake in such a way that the area covered by
the algae doubles every day. If it continues to grow unabated,
the lake will be totally covered and the fish in the lake will
suffocate. At the rate it is growing, this will happen on June 30.

(a) When will the lake be covered half-way?

(b) On June 26, a pedestrian who walks by the lake every day
warns that the lake will be completely covered soon. Her
friend just laughs. Why might her friend be skeptical of the
warning?

(c) On June 29, a clean-up crew arrives at the lake and
removes almost all of the algae. When they are done, only
1% of the surface is covered with algae. How well does this
solve the problem of the algae in the lake?

(d) Write an equation that represents the percentage of the
surface area of the lake that is covered in algae as a function
of time (in days) that passes since the algae was introduced
into the lake if the cleanup crew does not come on June 29.

Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/533.

example, in “Lake Algae” in the margin, a solution for part (a) might
involve noting that if the lake is completely covered with algae on
June 30, then half of its surface will be covered on June 29 because
the area covered doubles each day. This might be expressed in a
table:

date 29 30
percent covered 50 100

Finding a solution for part (b) might start from the table above.
Repeatedly using the information that the algae doubles each day:
one divides the amount for June 29 by 2, then divides the amount
for June 28 by 2, then divides the amount for June 27 by 2. This
repeated reasoning (MP.8) might be suggested by the table:

date 26 27 28 29 30
percent covered 1

16 � 100 1
8 � 100 1

4 � 100 1
2 � 100 1 � 100

Some students might express the action of repeatedly dividing by
2 by writing the table entries for surface area as a product of 100
and a power of 1

2 or 2, making use of structure (MP.7) by using an
exponential expression. Or they might express this action with a
recursively defined function, e.g., if t is a number between 2 and
30, and f ptq gives the amount of surface covered on June t , then
f pt � 1q � 1

2 f ptq.The Algebra Progression discusses the difference between a
function and an expression. Not all functions are given by expres-

Drug Dosage3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

A student strained her knee in an intramural volleyball game,
and her doctor has prescribed an anti-inflammatory drug to
reduce the swelling. She is to take two 220-milligram tablets
every 8 hours for 10 days. Her kidneys filter 60% of this drug
from her body every 8 hours. How much of the drug is in her
system after 24 hours?

Task from High School Mathematics at Work: Essays and
Examples for the Education of All Students, 1998, National
Academies Press. For discussion of the task, see
http://www.nap.edu/openbook/0309063531/html/80.html.

sions, and in many situations it is natural to use a function defined
recursively. Calculating mortgage payment and drug dosages are
typical cases where recursively defined functions are useful (see
“Drug Dosage” in the margin).

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Modeling contexts also provide a natural place for students to
start building functions with simpler functions as components.F-BF.1bc F-BF.1 Write a function that describes a relationship between

two quantities.

b Combine standard function types using arithmetic opera-
tions.

c (+) Compose functions.

Situations of cooling or heating involve functions which approach a
limiting value according to a decaying exponential function. Thus,
if the ambient room temperature is 700 Fahrenheit and a cup of tea
is made with boiling water at a temperature of 2120 Fahrenheit, a
student can express the function describing the temperature as a
function of time using the constant function f ptq � 70 to represent
the ambient room temperature and the exponentially decaying func-
tion gptq � 142e�kt to represent the decaying difference between
the temperature of the tea and the temperature of the room, leading
to a function of the form F-BF.2 Write arithmetic and geometric sequences both recur-

sively and with an explicit formula, use them to model situations,
and translate between the two forms.T ptq � 70� 142e�kt .

Students might determine the constant k experimentally.
In contexts where change occurs at discrete intervals (such as

payments of interest on a bank balance) or where the input vari-
able is a whole number (for example the number of a pattern in a
sequence of patterns), the functions chosen will be sequences. In
preparation for the deeper study of linear and exponential functions,
students can study arithmetic sequences (which are linear functions)
and geometric sequences (which are exponential functions).F-BF.2
This is a good point at which to start making the distinction be-
tween additive and multiplicative changes.
Build new functions from existing functions With a basis of ex-
periences in building specific functions from scratch, students start

Transforming Functions3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

The figure shows the graph of a function f whose domain is the
interval �2 ¤ x ¤ 2.

(a) In (i)–(iii), sketch the graph of the given function and
compare with the graph of f . Explain what you see.

(i) gpxq � fpxq � 2

(ii) hpxq � �fpxq
(iii) ppxq � fpx � 2q

(b) The points labelled Q,O,P on the graph of f have
coordinates

Q � p�2� 0.509q, O � p0,�0.4q, P � p2, 1.309q.
What are the coordinates of the points corresponding to
P,O,Q on the graphs of g, h, and p?

Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/742.

to develop a notion of naturally occurring families of functions that
deserve particular attention. It is possible to harden the curricu-
lum too soon around these families, before students have enough
experience to get a feel for the effects of different parameters. Stu-
dents can start getting that feel by playing around with the effect
on the graph of simple algebraic transformations of the input and
output variables.F-BF.3 Quadratic and absolute value functions are

F-BF.3 Identify the effect on the graph of replacing fpxq by fpxq�
k , kfpxq, fpkxq, and fpx�kq for specific values of k (both positive
and negative); find the value of k given the graphs. Experiment
with cases and illustrate an explanation of the effects on the graph
using technology.

good contexts for getting a sense of the effects of many of these
transformations, but eventually students need to understand these
ideas abstractly and be able to talk about them for any function f .

Students may find the effect of adding a constant to the input
variable to be counterintuitive, because the effect on the graph ap-
pears to be the opposite to the transformation on the variable, e.g.,
the graph of y � f px � 2q is a horizontal translation of the graph
of y � f pxq �2 units along the x-axis rather than in the opposite
direction. In part (b) of “Transforming Functions” in the margin, ask-
ing students to talk through the positions of the points in terms of
function values can help.•

• The graphs of linear functions are especially complicated with
respect to adding a constant to the input variable because its
effect can be seen as one of many different translations. For
example, the graph of y � 2px � 3q can be seen as a horizontal
translation of the graph of y � 2x. But, thinking of it as y � 2x�6
it can also be seen as a vertical translation that moves the graph 6
units. And, it can also be seen as a translation in other directions,
e.g., as suggested by y � 2px � 3� cq � 2c.

The concepts of even and odd functions are useful for noticing
symmetry. A function f is called an even function if f p�xq � f pxq
for all x in its domain and an odd function if f p�xq � �f pxq for
Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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all x in its domain. To understand the names of these concepts,
consider that polynomial functions are even exactly when all terms
are of even degree and odd exactly when all terms are of odd degree.
With some grounding in polynomial functions, students can reason
that lots of functions are neither even nor odd.

Students can show from the definitions that the sum of two even
functions is even and the sum of two odd functions is odd, and they
can interpret these results graphically.

An interesting fact

Suppose f is a function with a domain of all real numbers.
Define g and h as follows:

gpxq � fpxq � fp�xq
2

and hpxq � fpxq � fp�xq
2

Then fpxq � gpxq � hpxq, g is even, and h is odd. (Students
may use the definitions to verify these claims.) Thus, any
function defined on the real numbers can be expressed as the
sum of an even and an odd function.

When it comes to inverse functions,F-BF.4a the expectations are

F-BF.4a Find inverse functions.
a Solve an equation of the form fpxq � c for a simple func-

tion f that has an inverse and write an expression for the
inverse.

modest, requiring only that students solve equations of the form
f pxq � c. The point is to provide an informal sense of determining
the input when the output is known. Much of this work can be done
with specific values of c. Eventually, some generality is warranted.
For example, if f pxq � 2x3, then solving f pxq � c leads to x �
pc{2q1{3, which is the general formula for finding an input from a
specific output, c, for this function, f .

At this point, students need neither the notation nor the formal
language of inverse functions, but only the idea of “going backwards”
from output to input. This can be interpreted for a table and graph
of the function under examination. Correspondences between equa-
tions giving specific values of the functions, table entries, and points
on the graph can be noted (MP.1). And although not required in the
standard, it is reasonable to include, for comparison, a few examples
where the input cannot be uniquely determined from the output. For
example, if gpxq � x2, then gpxq � 5 has two solutions, x � �?5.

For some advanced mathematics courses, students will need a+
formal sense of inverse functions, which requires careful develop-+
ment. For example, as students begin formal study, they can easily+
believe that “inverse functions” are a new family of functions, sim-+
ilar to linear functions and exponential functions. To help students

A joke

Teacher: Are these two functions inverses?
Student: Um, the first one is and the second one isn’t.

What does this student misunderstand about inverse functions?

+
develop the instinct that “inverse” is a relationship between two+
functions, the recurring questions should be “What is the inverse of+
this function?” and “Does this function have an inverse?” The fo-+
cus should be on “inverses of functions” rather than a new type of+
function.+

Discussions of the language and notation for inverse functions+
can help to provide students a sense of what the adjective “inverse”+
means and mention that a function which has an inverse is known+
as an “invertible function.”+

The function Ipxq � x is sometimes called the identity function+
because it assigns each number to itself. It behaves with respect+
to composition of functions the way the multiplicative identity, 1,+
behaves with multiplication of real numbers and the way that the+
identity matrix behaves with matrix multiplication. If f is any func-+
tion (defined on the real numbers), this analogy can be expressed+
symbolically as f � I � f � I � f , and it can be verified as follows:+

f � Ipxq � f pIpxqq � f pxq and I � f pxq � Ipf pxqq � f pxq
Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Suppose f denotes a function with an inverse whose domain is+
the real numbers and a is a nonzero real number (which thus has a+
multiplicative inverse), and B is an invertible matrix. The following+
table compares the concept of inverse function with the concepts of+
multiplicative inverse and inverse matrix:+

Equation Interpretation
f�1 � f � I � f � f�1 The composition of f�1 with f is the identity function
a�1 � a � 1 � a � a�1 The product of a�1 and a is the multiplicative identity
B�1 � B � I � B � B�1 The product of B�1 and B is the identity matrix

+

+

In other words, where a�1 means the inverse of a with respect+
to multiplication, f�1 means the inverse of f with respect to func-+
tion composition. Thus, when students interpret the notation f�1pxq+
incorrectly to mean 1{f pxq, the guidance they need is that the mean-+
ing of the “exponent” in f�1 is about function composition, not about+
multiplication.

A note on notation3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

In the expression sin2 x, the superscript denotes exponentiation.
In sin�1 x, the superscript denotes inverse with respect to
composition of functions rather than with respect to
multiplication. Despite the similar look, these superscripts act in
different ways. The 2 acts as an exponent but the �1 does not.
Both notations, however, allow the expression to be written
without the parentheses that would be needed otherwise.

Another convention that allows parentheses to be omitted is the
use of sinax rather than sinpaxq. Thus, some expressions built
from trigonometric functions may written in ways that look quite
different to students, but differ only in the use or omission of
parentheses.

+
Students do not need to develop the abstract sense of identity+

and inverse detailed in this table. Nonetheless, these perspectives+
can inform the language and conversation in the classroom as stu-+
dents verify by composition (in both directions) that given functions+
are inverses of each other.F-BF.4b. Furthermore, students can con-

F-BF.4b(+) Verify by composition that one function is the inverse
of another.

+
tinue to refine their informal “going backwards” notions, as they con-+
sider inverses of functions given by graphs or tables.F-BF.4c In this

F-BF.4c(+) Read values of an inverse function from a graph or a
table, given that the function has an inverse.

+
work, students can gain a sense that “going backwards” interchanges+
the input and output and therefore the stereotypical roles of the let-+
ters x and y. And they can reason why the graph of y � f�1pxq will+
be the reflection across the line y � x of the graph of y � f pxq.+

Suppose gpxq � px � 3q2. From the graph, it can be seen that+
gpxq � c will have two solutions for any c ¡ 0. (This draws on+
the understanding that solutions of gpxq � c are x-coordinates of+
points that lie on both the graphs of g and y � c.) Thus, to create an+
invertible function,F-BF.4d we must restrict the domain of g so that F-BF.4d(+) Produce an invertible function from a non-invertible

function by restricting the domain.
+

every range value corresponds to exactly one domain value. One+
possibility is to restrict the domain of g to x ¥ 3, as illustrated by+
the solid purple curve in the graph on the left.•

•

      

10

8

6

4

2

5

g x( ) = x  3( )2 10

8
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h x( ) = 3 + x
g x( ) = x  3( )2

+
When solving px � 3q2 � c, we get x � 3� ?c, illustrating that+

positive values of c will yield two solutions x for the unrestricted+
function. With the restriction, 3� ?c is not in the domain. Thus, x �+
3� ?c, which corresponds to choosing the solid curve and ignoring+
the dotted portion. The inverse function, then, is hpcq � 3� ?c, for+
c ¥ 0.+

We check that h is the inverse of (restricted) g as follows:
gphpxqq � g �3� ?x� � �p3� ?xq � 3

�2 � p?xq2 � x, x ¥ 0

hpgpxqq � h �px � 3q2� � 3�
a
px � 3q2 � 3�px�3q � x, x ¥ 3.

The first verification requires that x ¥ 0 so that x is in the domain of+
h. The second verification requires that x ¥ 3 so that x is in the do-+
main of (restricted) g. This allows apx � 3q2 to be written without+
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the square root symbol as px � 3q.• The rightmost graph shows the • In general,
a
px � 3q2 � |x � 3|. If x were restricted to the

dotted portion of the graph (i.e., x ¤ 3), the corresponding ex-
pression could have been written as �px � 3q or 3� x.

+
graph of h. Students can draw on their work with transformations+
in Grades 7 and 8,8.G.3 possibly augmented by plotting points such 8.G.3Describe the effect of dilations, translations, rotations, and

reflections on two-dimensional figures using coordinates.

+
as (0,3) and (3,0), to perceive the graph of h as the reflection of the+
graph of g across the line y � x .+
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Linear and Exponential Models
Construct and compare linear and exponential models and solve
problems Distinguishing between situations that can be modeled
with linear functions and with exponential functionsF-LE.1a turns on

F-LE.1a Prove that linear functions grow by equal differences
over equal intervals, and that exponential functions grow by equal
factors over equal intervals.understanding their rates of growth and looking for indications of

these types of growth rates (MP.7). One indicator of these growth
rates is differences over equal intervals, given, for example, in a
table of values drawn from the situation—with the understanding
that such a table may only approximate the situation (MP.4).

To prove that a linear function grows by equal differences over
equal intervals,F-LE.1b students draw on the understanding devel- F-LE.1b Recognize situations in which one quantity changes at

a constant rate per unit interval relative to another.oped in Grade 8 that the ratio of the rise and run for any two dis-
tinct points on a line is the same (see the Expressions and Equations
Progression) and recast it in terms of function inputs and outputs.
An interval can be seen as determining two points on the line whose
inputs (x-coordinates) occur at the boundaries of the intervals. The
equal intervals can be seen as the runs for two pairs of points. Be-
cause these runs have equal length and the ratio of rise to run is
the same for any pair of distinct points, the differences of the cor-
responding outputs (the rises) are the same. These differences are
the growth of the function over each interval.

In the process of this proof, students note the correspondence
between rise and run on a graph and symbolic expressions for dif-
ferences of inputs and outputs (MP.1). Using such expressions has
the advantage that the analogous proof showing that exponential
functions grow by equal factors over equal intervals begins in an
analogous way with expressions for differences of inputs and out-
puts.

The process of going from linear or exponential functions to ta-
bles can go in the opposite direction. Given sufficient information,
e.g., a table of values together with information about the type of
relationship represented,F-LE.4 students construct the appropriate

F-LE.4 For exponential models, express as a logarithm the solu-
tion to abct � d where a, c, and d are numbers and the base b
is 2, 10, or e; evaluate the logarithm using technology.function. For example, students might be given the information that

the table below shows inputs and outputs of an exponential function,
and asked to write an expression for the function.

Input Output
0 5
8 33

For most students, the logarithm of x is merely shorthand for a
number that is the solution of an exponential equation in x .F-LE.4 F-LE.4 For exponential models, express as a logarithm the solu-

tion to abct � d where a, c, and d are numbers and the base b
is 2, 10, or e; evaluate the logarithm using technology.Students in advanced mathematics courses such as calculus,+

however, need to understand logarithms as functions—and as in-+
verses of exponential functions.F-BF.5 They should be able to explain F-BF.5(+) Understand the inverse relationship between expo-

nents and logarithms and use this relationship to solve problems
involving logarithms and exponents.

+
identities such as logbpbxq � x and blogb x � x as well as the laws+
of logarithms, such as logpabq � loga� log b. In doing so, students+
can think of the logarithms as unknown exponents in expressions+
with base 10 (e.g. loga answers the question “Ten to the what+
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equals a?”) and use the properties of exponents,N-RN.1 building on+
the understanding of exponents that began in Grade 8.8.EE.1

N-RN.1 Explain how the definition of the meaning of rational ex-
ponents follows from extending the properties of integer expo-
nents to those values, allowing for a notation for radicals in terms
of rational exponents.

8.EE.1Know and apply the properties of integer exponents to
generate equivalent numerical expressions.

+

Interpret expressions for functions in terms of the situation they
model Students may build a function to model a situation, using
parameters from that situation. In these cases, interpreting expres-
sions for a linear or exponential function in terms of the situation
it modelsF-LE.5 is often just a matter of remembering how the func- F-LE.5 Interpret the parameters in a linear or exponential func-

tion in terms of a context.tion was constructed. However, interpreting expressions may be
less straightforward for students when they are given an algebraic
expression for a function and a description of what the function is
intended to model.

For example, in doing the task “Illegal Fish” in the margin, stu-
dents may need to rely on their understanding of a function as de-
termining an output for a given input to answer the question “Find
b if you know the lake contains 33 fish after eight weeks.”

Illegal Fish3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

A fisherman illegally introduces some fish into a lake, and they
quickly propagate. The growth of the population of this new
species (within a period of a few years) is modeled by
Ppxq � 5bx , where x is the time in weeks following the
introduction and b is a positive unknown base.

(a) Exactly how many fish did the fisherman release into the
lake?

(b) Find b if you know the lake contains 33 fish after eight
weeks. Show step-by-step work.

(c) Instead, now suppose that Ppxq � 5bx and b � 2. What is
the weekly percent growth rate in this case? What does this
mean in every-day language?

Task from Illustrative Mathematics. For solutions and discussion,
see illustrativemathematics.org/illustrations/579.

See the linear and exponential model section of the Modeling
Progression for an example of an interpretation of the intersection
of a linear and an exponential function in terms of the situation that
is being modeled.
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Trigonometric Functions
Students begin their study of trigonometry with right triangles.G-SRT.6 G-SRT.6 Understand that by similarity, side ratios in right trian-

gles are properties of the angles in the triangle, leading to defini-
tions of trigonometric ratios for acute angles.Right triangle trigonometry is concerned with ratios of sides of right

triangles, allowing functions of angle measures to be defined in
terms of these ratios.• This limits the angles considered to those • Traditionally, trigonometry concerns “ratios.” Note, however,

that according to the usage of the Ratio and Proportional Rela-
tionships Progression, that these would be called the “value of the
ratio.” In high school, students’ understanding of ratio may now be
sophisticated enough to allow the traditional “ratio” to be used for
“value of the ratio” in the traditional manner. Likewise, angles are
carefully distinguished from their measurements when students
are learning about measuring angles in Grades 4 and 5. In high
school, students’ understanding of angle measure may now allow
angles to be referred to by their measures.

between 0� and 90�. This section briefly outlines some considera-
tions involved in extending the domains of the trigonometric functions
within the real numbers.

Traditionally, trigonometry includes six functions (sine, cosine,
tangent, cotangent, secant, cosecant). Because the second three
may be expressed as reciprocals of the first three, this progression
discusses only the first three.
Extend the domain of trigonometric functions using the unit circle
After study of trigonometric ratios in right triangles, students expand
the types of angles considered. Students learn, by similarity, that
the radian measure of an angle can be defined as the quotient of arc
length to radius.G-C.5 As a quotient of two lengths, therefore, radian

G-C.5 Derive using similarity the fact that the length of the arc
intercepted by an angle is proportional to the radius, and define
the radian measure of the angle as the constant of proportionality;
derive the formula for the area of a sector.measure is “dimensionless.” That is why the “unit” is often omitted

when measuring angles in radians.
In calculus, the benefits of radian measure become plentiful, lead-

ing, for example, to simple formulas for derivatives and integrals of
trigonometric functions. Before calculus, there are two key benefits
of using radians rather than degrees: G-SRT.5 Use congruence and similarity criteria for triangles to

solve problems and to prove relationships in geometric figures.

G-SRT.9(+) Derive the formula A � 1{2ab sinpCq for the area of
a triangle by drawing an auxiliary line from a vertex perpendicular
to the opposite side.

F-TF.1 Understand radian measure of an angle as the length of
the arc on the unit circle subtended by the angle.

• arclength is simply rθ, and
• sinθ � θ for small θ.
Steps to extending the domain of trigonometric functions and

introduction of radian measurement may include:
• Extending consideration of trigonometric ratios from right tri-

angles to obtuse triangles. This may occur in the context of
solving problems about geometric figures.G-SRT.5G-SRT.9 See
the Geometry Progression.
• Associating the degree measure of an angle with the length of

the arc it subtends on the unit circle,F-TF.1 as described below.
With the help of a diagram, students mark the intended angle, •

θ, measured counterclockwise from the positive ray of the x-axis.•

• Note that this convention for measurement is consistent with
conventions for measuring angles with protractors that students
learned in Grade 4. The protractor is placed so that the initial
side of the angle lies on the 0�-mark. For the angles of positive
measure (such as the angles considered in Grade 4), the termi-
nal side of the angle is located by a clockwise rotation. See the
Geometric Measurement Progression.

They identify the coordinates x and y; draw a reference triangle;
and then use their knowledge of right triangle trigonometry. In
particular, sinθ � y{1 � y, cosθ � x{1 � x , and tanθ � y{x .
(Note the simplicity afforded by using a circle of radius 1.) This way,
students can compute values of any of the trigonometric functions,
being careful to note the signs of x and y. In the figure as drawn
in the second quadrant, for example, x is negative and y is positive,
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which implies that sinθ is positive and cosθ and tanθ are both
negative.

The next step is sometimes called “unwrapping the unit circle.”
On a fresh set of axes, the angle θ is plotted along the horizontal axis
and one of the trigonometric functions is plotted along the vertical
axis. Dynamic presentations with shadows can help considerably,
and the point should be that students notice the periodicity of the
functions, caused by the repeated rotation about the origin, regularly
reflecting on the grounding in right triangle trigonometry.

With the help of the special right triangles, 30�-60�-90� and 45�-+
45�-90�, for which the quotients of sides can be computed using the+
Pythagorean Theorem,8.G.7 the values of the trigonometric functions

8.G.7Apply the Pythagorean Theorem to determine unknown
side lengths in right triangles in real-world and mathematical
problems in two and three dimensions.

+
can be computed for the angles π{3, π{4, and π{6 as well as their+
multiples.F-TF.3 For advanced mathematics, students need to develop F-TF.3(+) Use special triangles to determine geometrically the

values of sine, cosine, tangent for π{3, π{4 and π{6, and use the
unit circle to express the values of sine, cosines, and tangent for
π � x, π � x, and 2π � x in terms of their values for x, where x
is any real number.

+
fluency with the trigonometric functions of these special angles to+
support fluency with the “unwrapping of the unit circle” to create+
and graph the trigonometric functions.+

Building on their understanding of geometric transformations,G-CO.7
G-CO.7 Use the definition of congruence in terms of rigid mo-
tions to show that two triangles are congruent if and only if cor-
responding pairs of sides and corresponding pairs of angles are
congruent.

•
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1 1

1
y

x

-y

θ
θ
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+
either directly or via the side-angle-side congruence criterion,G-CO.8

G-CO.8 Explain how the criteria for triangle congruence (ASA,
SAS, and SSS) follow from the definition of congruence in terms
of rigid motions.

+
students see that, compared to the reference triangle with angle θ,+
an angle of �θ will produce a congruent reference triangle that is its+
reflection across the x-axis. They can then reason that sinp�θq �+
�y � � sinpθq, so sine is an odd function. Similarly, cosp�θq � x �+
cospθq, so cosine is an even function.F-TF.4 Some additional work is

F-TF.4(+) Use the unit circle to explain symmetry (odd and even)
and periodicity of trigonometric functions.

+
required to verify that these relationships hold for values of θ outside+
the first quadrant.+

The same sorts of pictures can be used to argue that the trigono-+
metric functions are periodic. For example, for any integer n, sinpθ�+
2nπq � sinpθq because angles that differ by a multiple of 2π have+
the same terminal side and thus the same coordinates x and y.+

Model periodic phenomena with trigonometric functions Now that
students are equipped with trigonometric functions, they can model
some periodic phenomena that occur in the real world. For stu-
dents who do not continue into advanced mathematics, this is the
culmination of their study of trigonometric functions.

The tangent function is not often useful for modeling periodic
phenomena because tan x is undefined for x � π

2 � kπ , where k is
an integer. Because the graphs of sine and cosine have the same
shape (each is a horizontal translation of the other), either suffices
to model simple periodic phenomena.F-TF.5 A function is described

F-TF.5 Choose trigonometric functions to model periodic phe-
nomena with specified amplitude, frequency, and midline.

as sinusoidal or is called a sinusoid if it has the same shape as
the sine graph, i.e. has the form f ptq � A � B sinpCt � Dq. Many
real-world phenomena can be approximated by sinusoids, including
sound waves, oscillation on a spring, the motion of a pendulum, tides,
and phases of the moon. Some students will learn in college that
sinusoids are used as building blocks to approximate any periodic
waveform.
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Because sin t oscillates between �1 and 1, A � B sinpCt � Dq
will oscillate between A�B and A�B. Thus, y � A is the midline,
and B is the amplitude of the sinusoid. Students can obtain the
frequency of f : the period of sint is 2π , so (knowing the effect of
multiplying t by C ) the period of sinCt is 2π{C , and the frequency
is its reciprocal. When modeling, students need to have the sense
that C affects the frequency and that C and D together produce
a phase shift, but getting these correct might involve technological
support, except in simple cases.

Frequency vs. period

For a sinusoid, the frequency is often measured in cycles per
time unit, thus the period is often measured in time unit per
cycle. For reasoning about a context, it is common to choose
whichever is greater numerically.

For example, students might be asked to model the length of
the day in Columbus, Ohio. Day length as a function of date is
approximately sinusoidal, varying from about 9 hours, 20 minutes
on December 21 to about 15 hours on June 21. The average of
the maximum and minimum gives the value for the midline, and the
amplitude is half the difference. So A � 12.17, and B � 2.83. With
some support, students can determine that for the period to be 365
days (per cycle) (or the frequency to be 1

365 cycles/day), C � 2π{365,
and if day 0 corresponds to March 21, no phase shift is needed, so
D � 0. Thus,

f ptq � 12.17� 2.83 sin
�
2πt
365




From the graph, students can see that the period is indeed 365 days, •

15
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as desired, as it takes one year to complete the cycle. They can also
see that two days are approximately 14 hours long, which is to say
that f ptq � 14 has two solutions over a domain of one year, and
they might use graphing or spreadsheet technology to determine
that May 1 and August 10 are the closest such days. Students can
also see that f ptq � 9 has no solutions, which makes sense because
9 hours, 20 minutes is the minimum length of day.

Students who take advanced mathematics will need additional+
fluency with transformations of trigonometric functions, including+
changes in frequency and phase shifts.+

Based on plenty of experience solving equations of the form+
f ptq � c graphically, students of advanced mathematics should be+
able to see that such equations will have an infinite number of solu-+
tions when f is a trigonometric function. Furthermore, they should+
have had experience of restricting the domain of a function so that it+
has an inverse. For trigonometric functions, a common approach to+
restricting the domain is to choose an interval on which the function+
is always increasing or always decreasing.F-TF.6 The obvious choice F-TF.6(+) Understand that restricting a trigonometric function to

a domain on which it is always increasing or always decreasing
allows its inverse to be constructed.

+
for sinpxq is the interval �π

2 ¤ x ¤ π
2 , shown as the solid part of the+

graph. This yields a function θ � sin�1pxq with domain �1 ¤ x ¤ 1

•

 

1

1

π π

2

π

2

π 3π

2

2π

f x( ) = sin x( )
+

and range �π
2 ¤ θ ¤ π

2 .+
Inverses of trigonometric functions can be used in solving equa-

tions in modeling contexts.F-TF.7 For example, in the length of day

F-TF.7(+) Use inverse functions to solve trigonometric equations
that arise in modeling contexts; evaluate the solutions using tech-
nology, and interpret them in terms of the context.

context, students can use inverse trig functions to determine days
with particular lengths. This amounts to solving f ptq � d for t , which
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yields
t � 365

2π sin�1

�d� 12.17
2.83




Using d � 14 and a calculator (in radian mode), they can compute+
that t � 40.85, which is closest to May 1. Finding the other solution+
is a bit of a challenge, but the graph indicates that it should occur+
just as many days before midyear (day 182.5) as May 1 occurs after+
day 0. So the other solution is t � 182.5� 40.85 � 141.65, which is+
closest to August 10.+

Prove and apply trigonometric identities For the cases illustrated
by the diagram (in which the terminal side of angle θ does not lie on •
an axis) and the definitions of sinθ and cosθ, students can reason
that, in any quadrant, the lengths of the legs of the reference triangle
are |x| and |y|. It then follows from the Pythagorean Theorem that
|x|2 � |y|2 � 1. Because |a|2 � a2 for any real number a, this
equation can be written x2 � y2 � 1. Because x � cosθ and
y � sinθ, the equation can be written as sin2pθq � cos2pθq � 1.
When the terminal side of angle θ does lie on an axis, then one of x
or y is 0 and the other is 1 or �1 and the equation still holds. This
argument proves what is known as the Pythagorean identityF-TF.8 F-TF.8 Prove the Pythagorean identity sin2pθq � cos2pθq � 1

and use it to find sinpθq, cospθq, or tanpθq given sinpθq, cospθq,
or tanpθq and the quadrant of the angle.because it is essentially a restatement of the Pythagorean Theorem

for a right triangle of hypotenuse 1.
With this identity and the value of one of the trigonometric

functions for a given angle, students can find the values of the
other functions for that angle, as long as they know the quad-
rant in which the angle lies. For example, if sinpθq � 0.6 and θ
lies in the second quadrant, then cos2pθq � 1 � 0.62 � 0.64, so
cospθq � �?0.64 � �0.8. Because cosine is negative in the sec-
ond quadrant, it follows that cospθq � 0.8, and therefore tanpθq �
sinpθq{ cospθq � 0.6{p�0.8q � �0.75.

Students in advanced mathematics courses can prove and use+
other trigonometric identities, including the addition and subtrac-+
tion formulas.F-TF.9 If students have already represented complex F-TF.9(+) Prove the addition and subtraction formulas for sine,

cosine, and tangent and use them to solve problems.
+

numbers on the complex planeN-CN.4 and developed the geomet- N-CN.4(+) Represent complex numbers on the complex plane
in rectangular and polar form (including real and imaginary num-
bers), and explain why the rectangular and polar forms of a given
complex number represent the same number.

+
ric interpretation of their multiplication,N-CN.5 then the the product

N-CN.5(+) Represent addition, subtraction, multiplication, and
conjugation of complex numbers geometrically on the complex
plane; use properties of this representation for computation.

+
pcosα � i sinαqpcosβ � i sinβq can be used in deriving the addition+
formulas for cosine and sine. Subtraction and double angle formulas+
can follow from these.+
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High School, Algebra*
Overview
Two Grades 6–8 domains are important in preparing students for
Algebra in high school. The Number System prepares students to
see all numbers as part of a unified system, and become fluent in
finding and using the properties of operations to find the values of
numerical expressions that include those numbers. The standards
of the Expressions and Equations domain ask students to extend
their use of these properties to linear equations and expressions
with letters. These extend uses of the properties of operations in
earlier grades: in Grades 3–5 Number and Operations—Fractions,
in K–5 Operations and Algebraic Thinking, and K–5 Number and
Operations in Base Ten.

The Algebra category in high school is very closely allied with
the Functions category:

• An expression in one variable can be viewed as defining a
function: the act of evaluating the expression at a given input
is the act of producing the function’s output at that input.

• An equation in two variables can sometimes be viewed as
defining a function, if one of the variables is designated as
the input variable and the other as the output variable, and if
there is just one output for each input. For example, this is the
case if the equation is in the form y � (expression in x) or if
it can be put into that form by solving for y.

• The notion of equivalent expressions can be understood in
terms of functions: if two expressions are equivalent they de-
fine the same function.

*The study of algebra occupies a large part of a student’s high school career,
and this document does not treat in detail all of the material studied. Rather it
gives some general guidance about ways to treat the material and ways to tie it
together. It notes key connections among standards, points out cognitive difficulties
and pedagogical solutions, and gives more detail on particularly knotty areas of the
mathematics.

The high school standards specify the mathematics that all students should study
in order to be college and career ready. Additional material corresponding to (+)
standards, mathematics that students should learn in order to take advanced courses
such as calculus, advanced statistics, or discrete mathematics, is indicated by plus
signs in the left margin.
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• The solutions to an equation in one variable can be under-
stood as the input values which yield the same output in the
two functions defined by the expressions on each side of the
equation. This insight allows for the method of finding ap-
proximate solutions by graphing the functions defined by each
side and finding the points where the graphs intersect.

Because of these connections, some curricula take a functions-based
approach to teaching algebra, in which functions are introduced
early and used as a unifying theme for algebra. Other approaches
introduce functions later, after extensive work with expressions and
equations. The separation of algebra and functions in the Stan-
dards is not intended to indicate a preference between these two
approaches. It is, however, intended to specify the difference as
mathematical concepts between expressions and equations on the
one hand and functions on the other. Students often enter college-
level mathematics courses apparently conflating all three of these.
For example, when asked to factor a quadratic expression a stu-
dent might instead find the solutions of the corresponding quadratic
equation. Or another student might attempt to simplify the expres-
sion sin xx by cancelling the x ’s.

The algebra standards are fertile ground for the Standards for
Mathematical Practice. Two in particular that stand out are MP.7,
“Look for and make use of structure” and MP.8 “Look for and express
regularity in repeated reasoning.” Students are expected to see
how the structure of an algebraic expression reveals properties of
the function it defines. They are expected to move from repeated
reasoning with pairs of points on a line to writing equations in
various forms for the line, rather than memorizing all those forms
separately. In this way the Algebra standards provide focus in a
way different from the K–8 standards. Rather than focusing on a
few topics, students in high school focus on a few seed ideas that
lead to many different techniques.
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Seeing Structure in Expressions
Students have been seeing expressions since Kindergarten, start-
ing with arithmetic expressions in Grades K–5 and moving on to
algebraic expressions in Grades 6–8. The middle grades standards
in Expression and Equations build a ramp from arithmetic expres-
sions in elementary school to more sophisticated work with alge-
braic expressions in high school. As the complexity of expressions

Animal Populations3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Suppose P and Q give the sizes of two different animal
populations, where Q ¡ P. In 1–4, say which of the given pair of
expressions is larger. Briefly explain your reasoning in terms of
the two populations.

1. P � Q and 2P
2.

P
P � Q and

P � Q
2

3. pQ � Pq{2 and Q � P{2
4. P � 50t and Q � 50t

Task from Illustrative Mathematics. For solutions and discussion,
see http://www.illustrativemathematics.org/illustrations/436.

increases, students continue to see them as being built out of basic
operations: they see expressions as sums of terms and products of
factors.A-SSE.1a

A-SSE.1a Interpret expressions that represent a quantity in
terms of its context.

a Interpret parts of an expression, such as terms, factors,
and coefficients.

For example, in “Animal Populations” in the margin, students
compare P � Q and 2P by seeing 2P as P � P . They distinguish
between pQ � Pq{2 and Q � P{2 by seeing the first as a quotient
where the numerator is a difference and the second as a difference
where the second term is a quotient. This last example also illus-
trates how students are able to see complicated expressions as built
up out of simpler ones.A-SSE.1b As another example, students can see

A-SSE.1b Interpret expressions that represent a quantity in
terms of its context.

b Interpret complicated expressions by viewing one or more
of their parts as a single entity.

the expression 5�px�1q2 as a sum of a constant and a square; and
then see that inside the square term is the expression x � 1. The
first way of seeing tells them that it is always greater than or equal
to 5, since a square is always greater than or equal to 0; the second
way of seeing tells them that the square term is zero when x � 1.
Putting these together they can see that this expression attains its
minimum value, 5, when x � 1. The margin lists other tasks from
the Illustrative Mathematics project (illustrativemathematics.org) for
A-SSE.1.

In elementary grades, the repertoire of operations for building

Illustrations of interpreting the structure of expressions3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

The following tasks can be found by going to
http://illustrativemathematics.org/illustrations/ and searching for
A-SSE:

• Delivery Trucks

• Kitchen Floor Tiles

• Increasing or Decreasing? Variation 1

• Mixing Candies

• Mixing Fertilizer

• Quadrupling Leads to Halving

• The Bank Account

• The Physics Professor

• Throwing Horseshoes

• Animal Populations

• Equivalent Expressions

• Sum of Even and Odd

expressions is limited to the operations of arithmetic: addition, sub-
traction, multiplication and division. Later, it is augmented by expo-
nentiation, first with whole numbers in Grades 5 and 6, then with
integers in Grade 8. By the time they finish high school, students
have expanded that repertoire to include radicals and trigonometric
expressions, along with a wider variety of exponential expressions.

For example, students in physics classes might be expected to
see the expression

L0
c
1�

v2

c2 ,
which arises in the theory of special relativity, as the product of the
constant L0 and a term that is 1 when v � 0 and 0 when v � c—
and furthermore, they might be expected to see it without having to
go through a laborious process of written or electronic evaluation.
This involves combining the large-scale structure of the expression—
a product of L0 and another term—with the structure of internal
components such as v2c2 .

Seeing structure in expressions entails a dynamic view of an
algebraic expression, in which potential rearrangements and ma-
nipulations are ever present.A-SSE.2 An important skill for college A-SSE.2 Use the structure of an expression to identify ways to

rewrite it.
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readiness is the ability to try possible manipulations mentally with-
out having to carry them out, and to see which ones might be fruitful
and which not. For example, a student who can see

p2n� 1qnpn� 1q

6

as a polynomial in n with leading coefficient 1
3n3 has an advantage

when it comes to calculus; a student who can mentally see the
equivalence R1R2

R1 � R2
�

1
1R1
� 1R2

without a laborious pencil and paper calculation is better equipped
for a course in electrical engineering.

The Standards avoid talking about simplification, because it is
often not clear what the simplest form of an expression is, and even

Which form is “simpler”?3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

After a container of ice cream has been sitting in a room for t
minutes, its temperature in degrees Fahrenheit is

a� b � 2�t � b,
where a and b are positive constants.

Write this expression in a form that

1. Shows that the temperature is always less than a� b.

2. Shows that the temperature is never less than a.

Commentary The form a� b� b � 2�t for the temperature
shows that it is a� b minus a positive number, so always less
than a� b. On the other hand, the form a� bp1� 2�tq reveals
that the temperature is never less than a, because it is a plus a
positive number.

“Ice Cream” task from Illustrative Mathematics. For solutions and
discussion, see
http://www.illustrativemathematics.org/illustrations/551.

in cases where that is clear, it is not obvious that the simplest form is
desirable for a given purpose. The Standards emphasize purposeful
transformation of expressions into equivalent forms that are suitable
for the purpose at hand, as illustrated in the margin.A-SSE.3

A-SSE.3 Choose and produce an equivalent form of an expres-
sion to reveal and explain properties of the quantity represented
by the expression.

For example, there are three commonly used forms for a quadratic
expression:

• Standard form, e.g., x2 � 2x � 3

• Factored form, e.g., px � 1qpx � 3q

• Vertex form (a square plus or minus a constant), e.g. px�1q2�4.
Rather than memorize the names of these forms, students need to
gain experience with them and their different uses. The traditional
emphasis on simplification as an automatic procedure might lead
students to automatically convert the second two forms to the first,
rather than convert an expression to a form that is useful in a given
context.A-SSE.3ab This can lead to time-consuming detours in alge- a Factor a quadratic expression to reveal the zeros of the

function it defines.

b Complete the square in a quadratic expression to reveal
the maximum or minimum value of the function it defines.

braic work, such as solving px � 1qpx � 3q � 0 by first expanding
and then applying the quadratic formula.

The introduction of rational exponents and systematic practice
with the properties of exponents in high school widen the field of op-
erations for manipulating expressions.A-SSE.3c For example, students c Use the properties of exponents to transform expressions

for exponential functions.in later algebra courses who study exponential functions see
Pp1� r

12
q12n as P �p1� r

12
q12
	n

in order to understand formulas for compound interest.

Illustrations of writing expressions in equivalent forms3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

The following tasks can be found by going to
http://illustrativemathematics.org/illustrations/ and searching for
A-SSE:

• Ice Cream

• Increasing or Decreasing? Variation 2

• Profit of a Company

• Seeing Dots

Much of the ability to see and use structure in transforming
expressions comes from learning to recognize certain fundamental
situations that afford particular techniques. One such technique is
internal cancellation, as in the expansion

pa� bqpa� bq � a2 � b2.
Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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An impressive example of this is
px � 1qpxn�1 � xn�2 � � � � � x � 1q � xn � 1,

in which all the terms cancel except the end terms. This identity
is the foundation for the formula for the sum of a finite geometric
series.A-SSE.4 A-SSE.4 Derive the formula for the sum of a finite geometric se-

ries (when the common ratio is not 1), and use the formula to
solve problems.

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Arithmetic with Polynomials and Rational Expressions
The development of polynomials and rational expressions in high
school parallels the development of numbers in elementary and
middle grades. In elementary school, students might initially see
expressions for the same numbers 8 � 3 and 11, or 3

4 and 0.75, as
referring to different entities: 8 � 3 might be seen as describing a
calculation and 11 is its answer; 3

4 is a fraction and 0.75 is a deci-
mal. They come to understand that these different expressions are
different names for the same numbers, that properties of operations
allow numbers to be written in different but equivalent forms, and
that all of these numbers can be represented as points on the num-
ber line. In middle grades, they come to see numbers as forming a
unified system, the number system, still represented by points on
the number line. The whole numbers expand to the integers—with
extensions of addition, subtraction, multiplication, and division, and
their properties. Fractions expand to the rational numbers—and the
four operations and their properties are extended.

A similar evolution takes place in algebra. At first algebraic ex-
pressions are simply numbers in which one or more letters are used
to stand for a number which is either unspecified or unknown. Stu-
dents learn to use the properties of operations to write expressions
in different but equivalent forms. At some point they see equiva-
lent expressions, particularly polynomial and rational expressions,
as naming some underlying thing.A-APR.1 There are at least two

A-APR.1 Understand that polynomials form a system analogous
to the integers, namely, they are closed under the operations of
addition, subtraction, and multiplication; add, subtract, and multi-
ply polynomials.ways this can go. If the function concept is developed before or

concurrently with the study of polynomials, then a polynomial can
be identified with the function it defines. In this way x2 � 2x � 3,
px�1qpx�3q, and px�1q2�4 are all the same polynomial because
they all define the same function. Another approach is to think
of polynomials as elements of a formal number system, in which
you introduce the “number” x and see what numbers you can write
down with it. In this approach, x2 � 2x � 3, px � 1qpx � 3q, and
px � 1q2 � 4 are all the same polynomial because the properties of
operations allow each to be transformed into the others. Each ap-
proach has its advantages and disadvantages; the former approach
is more common. Whichever is chosen and whether or not the choice
is explicitly stated, a curricular implementation should nonetheless
be constructed to be consistent with the choice that has been made.

Either way, polynomials and rational expressions come to form
a system in which they can be added, subtracted, multiplied and
divided.A-APR.7 Polynomials are analogous to the integers; rational

A-APR.7(+) Understand that rational expressions form a system
analogous to the rational numbers, closed under addition, sub-
traction, multiplication, and division by a nonzero rational expres-
sion; add, subtract, multiply, and divide rational expressions.expressions are analogous to the rational numbers.

Polynomials form a rich ground for mathematical explorations
that reveal relationships in the system of integers.A-APR.4 For exam- A-APR.4 Prove polynomial identities and use them to describe

numerical relationships.ple, students can explore the sequence of squares
1, 4, 9, 16, 25, 36, . . .

and notice that the differences between them—3, 5, 7, 9, 11—are
Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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consecutive odd integers. This mystery is explained by the polyno-
mial identity

pn� 1q2 � n2 � 2n� 1.
A more complex identity,

px2 � y2q2 � px2 � y2q2 � p2xyq2,
allows students to generate Pythagorean triples. For example, tak-
ing x � 2 and y � 1 in this identity yields 52 � 32 � 42.

A particularly important polynomial identity, treated in advanced+
courses, is the Binomial TheoremA-APR.5

A-APR.5(+) Know and apply the Binomial Theorem for the ex-
pansion of px � yqn in powers of x and y for a positive integer n,
where x and y are any numbers, with coefficients determined for
example by Pascal’s Triangle.1

+

px �yqn � xn �
�n
1



xn�1y�

�n
2



xn�2y2�

�n
3



xn�3y3� � � � �yn,

for a positive integer n. The binomial coefficients can be obtained+
using Pascal’s triangle+

n � 0: 1
n � 1: 1 1
n � 2: 1 2 1
n � 3: 1 3 3 1
n � 4: 1 4 6 4 1

+

in which each entry is the sum of the two above. Understanding+
why this rule follows algebraically from+

px � yqpx � yqn�1 � px � yqn
is excellent exercise in abstract reasoning (MP.2) and in expressing+
regularity in repeated reasoning (MP.8).+

Polynomials as functions Viewing polynomials as functions leads
to explorations of a different nature. Polynomial functions are, on
the one hand, very elementary, in that, unlike trigonometric and ex-
ponential functions, they are built up out of the basic operations of
arithmetic. On the other hand, they turn out to be amazingly flexi-
ble, and can be used to approximate more advanced functions such
as trigonometric and exponential functions. Experience with con-
structing polynomial functions satisfying given conditions is useful
preparation not only for calculus (where students learn more about
approximating functions), but for understanding the mathematics be-
hind curve-fitting methods used in applications to statistics and com-
puter graphics.

A simple step in this direction is to construct polynomial functions
with specified zeros.A-APR.3 This is the first step in a progression

A-APR.3 Identify zeros of polynomials when suitable factoriza-
tions are available, and use the zeros to construct a rough graph
of the function defined by the polynomial.which can lead, as an extension topic, to constructing polynomial

functions whose graphs pass through any specified set of points in
the plane.

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Polynomials as analogues of integers The analogy between poly-
nomials and integers carries over to the idea of division with remain-
der. Just as in Grade 4 students find quotients and remainders of
integers,4.NBT.6 in high school they find quotients and remainders of

4.NBT.6Find whole-number quotients and remainders with up to
four-digit dividends and one-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

polynomials.A-APR.6 The method of polynomial long division is anal-
A-APR.6 Rewrite simple rational expressions in different forms;
write apxq

bpxq in the form qpxq � rpxq
bpxq , where apxq, bpxq, qpxq, and

rpxq are polynomials with the degree of rpxq less than the degree
of bpxq, using inspection, long division, or, for the more compli-
cated examples, a computer algebra system.

ogous to, and simpler than, the method of integer long division.
A particularly important application of polynomial division is the

case where a polynomial ppxq is divided by a linear factor of the
form x � a, for a real number a. In this case the remainder is the
value ppaq of the polynomial at x � a.A-APR.2 It is a pity to see this

A-APR.2 Know and apply the Remainder Theorem: For a poly-
nomial ppxq and a number a, the remainder on division by x � a
is ppaq, so ppaq � 0 if and only if px � aq is a factor of ppxq.

topic reduced to “synthetic division,” which reduced the method to
a matter of carrying numbers between registers, something easily
done by a computer, while obscuring the reasoning that makes the
result evident. It is important to regard the Remainder Theorem as
a theorem, not a technique.

A consequence of the Remainder Theorem is to establish the
equivalence between linear factors and zeros that is the basis of
much work with polynomials in high school: the fact that ppaq � 0
if and only if x � a is a factor of ppxq. It is easy to see if x � a is a
factor then ppaq � 0. But the Remainder Theorem tells us that we
can write

ppxq � px � aqqpxq � ppaq for some polynomial qpxq.
In particular, if ppaq � 0 then ppxq � px � aqqpxq, so x � a is a
factor of ppxq.

Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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Creating Equations
Students have been seeing and writing equations since elementary
grades,K.OA.1, 1.OA.1 with mostly linear equations in middle grades. At

K.OA.1Represent addition and subtraction with objects, fingers,
mental images, drawings2, sounds (e.g., claps), acting out situa-
tions, verbal explanations, expressions, or equations.

1.OA.1Use addition and subtraction within 20 to solve word prob-
lems involving situations of adding to, taking from, putting to-
gether, taking apart, and comparing, with unknowns in all posi-
tions, e.g., by using objects, drawings, and equations with a sym-
bol for the unknown number to represent the problem.3

first glance it might seem that the progression from middle grades to
high school is fairly straightforward: the repertoire of functions that
is acquired during high school allows students to create more com-
plex equations, including equations arising from linear and quadratic
expressions, and simple rational and exponential expressions;A-CED.1

A-CED.1 Create equations and inequalities in one variable and
use them to solve problems.

students are no longer limited largely to linear equations in mod-
eling relationships between quantities with equations in two varia-
bles;A-CED.2 and students start to work with inequalities and systems

A-CED.2 Create equations in two or more variables to represent
relationships between quantities; graph equations on coordinate
axes with labels and scales.

of equations.A-CED.3

A-CED.3 Represent constraints by equations or inequalities, and
by systems of equations and/or inequalities, and interpret solu-
tions as viable or nonviable options in a modeling context.

Two developments in high school complicate this picture. First,
students in high school start using parameters in their equations, to
represent whole classes of equationsF-LE.5 or to represent situations

F-LE.5 Interpret the parameters in a linear or exponential func-
tion in terms of a context.

where the equation is to be adjusted to fit data.•

• As noted in the Standards:

Analytic modeling seeks to explain data on the
basis of deeper theoretical ideas, albeit with pa-
rameters that are empirically based; for example,
exponential growth of bacterial colonies (until cut-
off mechanisms such as pollution or starvation in-
tervene) follows from a constant reproduction rate.
Functions are an important tool for analyzing such
problems. (p. 73)

Second, modeling becomes a major objective in high school. Two
of the standards just cited refer to “solving problems” and “interpret-
ing solutions in a modeling context.” And all the standards in the
Creating Equations group carry a modeling star, denoting their con-
nection with the Modeling category in high school. This connotes
not only an increase in the complexity of the equations studied, but
an upgrade of the student’s ability in every part of the modeling
cycle, shown in the margin.

The modeling cycle 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Problem Formulate Validate Report

Compute Interpret

Variables, parameters, and constants Confusion about these terms
plagues high school algebra. Here we try to set some rules for us-
ing them. These rules are not purely mathematical; indeed, from a
strictly mathematical point of view there is no need for them at all.
However, users of equations, by referring to letters as “variables,”
“parameters,” or “constants,” can indicate how they intend to use the
equations. This usage can be helpful if it is consistent.

In elementary and middle grades, students solve problems with
an unknown quantity, might use a symbol to stand for that quantity,
and might call the symbol an unknown.1.OA.2 In Grade 6, students 1.OA.2Solve word problems that call for addition of three whole

numbers whose sum is less than or equal to 20, e.g., by using
objects, drawings, and equations with a symbol for the unknown
number to represent the problem.

begin to use variables systematically.6.EE.6 They work with equa-

6.EE.6Use variables to represent numbers and write expressions
when solving a real-world or mathematical problem; understand
that a variable can represent an unknown number, or, depending
on the purpose at hand, any number in a specified set.

tions in one variable, such as p � 0.05p � 10 or equations in two
variables such as d � 5 � 5t , relating two varying quantities.• In

• Some writers prefer to retain the term “unknown” for the first
situation and the word “variable” for the second. This is not the
usage adopted in the Standards.

each case, apart from the variables, the numbers in the equation are
given explicitly. The latter use presages the use of varibles to define
functions.

In high school, things get more complicated. For example, stu-
dents consider the general equation for a non-vertical line, y �
mx � b. Here they are expected to understand that m and b are
fixed for any given straight line, and that by varying m and b we
obtain a whole family of straight lines. In this situation, m and b are
called parameters. Of course, in an episode of mathematical work,
the perspective could change; students might end up solving equa-
Draft, 7/02/2013, comment at commoncoretools.wordpress.com .
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tions for m and b. Judging whether to explicitly indicate this—“now
we will regard the parameters as variables”—or whether to ignore
it and just go ahead and solve for the parameters is a matter of
pedagogical judgement.

Sometimes, an equation like y � mx � b is used, not to work
with a parameterized family of equations, but to consider the general
form of an equation and prove something about it. For example, you
might want take two points px1, y1q and px2, y2q on the graph of
y � mx � b and show that the slope of the line they determine is
m. In this situation you might refer to m and b as constants rather
than as parameters.

Finally, there are situations where an equation is used to de-
scribe the relationship between a number of different quantities, to
which none of these terms apply.A-CED.4 For example, Ohm’s Law A-CED.4 Rearrange formulas to highlight a quantity of interest,

using the same reasoning as in solving equations.V � IR relates the voltage, current, and resistance of an electrical
circuit. An equation used in this way is sometimes called a formula.
It is perhaps best to avoid using the terms “variable,” “parameter,”
or “constant” when working with this formula, because there are
six different ways it can be viewed as defining one quantity as a
function of the other with a third held constant.

Different curricular implementations of the Standards might nav-
igate these terminological shoals in different ways (that might in-
clude trying to avoid them entirely).
Modeling with equations Consider the Formulate node in the mod-
eling cycle. In elementary school, students formulate equations to

The modeling cycle 3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Problem Formulate Validate Report

Compute Interpret

solve word problems. They begin with situations that can be rep-
resented by “situation equations” that are also “solution equations.”
These situations and their equations have two important character-
istics. First, the actions in the situations can be straightforwardly
represented by operations. For example, the action of putting to-
gether is readily represented by addition (e.g., “There were 2 bun-
nies and 3 more came, how many were there?”), but representing
an additive comparison (“There were 2 bunnies, more came. Then
there were 5. How many more bunnies came?”) requires a more
sophisticated understanding of addition. Second, the equations lead
directly to a solution, e.g., they are of the form 2 � 3 � l with the
unknown isolated on one side of the equation rather than 2�l � 5
or 5�l � 2. More comprehensive understanding of the operations
(e.g., understanding subtraction as finding an unknown addend) al-
lows students to transform the latter types of situation equations
into solution equations, first for addition and subtraction equations,
then for multiplication and division equations.

In high school, there is again a difference between directly repre-
senting the situation and finding a solution. For example, in solving

Selina bought a shirt on sale that was 20% less than
the original price. The original price was $5 more than
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the sale price. What was the original price? Explain or
show work.

students might let p be the original price in dollars and then express
the sale price in terms of p in two different ways and set them equal.
On the one hand, the sale price is 20% less than the original price,
and so equal to p � 0.2p. On the other hand, it is $5 less than the
original price, and so equal to p � 5. Thus they want to solve the
equation

p� 0.2p � p� 5.
In this task, the formulation of the equation tracks the text of the
problem fairly closely, but requires more than a direct representation
of “The original price was $5 more than the sale price.” To obtain an
expression for the sale price, this sentence needs to be reinterpreted
as “the sale price is $5 less than the original price.” Because the
words “less” and “more” have often traditionally been the subject of
schemes for guessing the operation required in a problem without
reading it, this shift is significant, and prepares students to read
more difficult and realistic task statements.

Indeed, in a high school modeling problem, there might be sig-
nificantly different ways of going about a problem depending on the
choices made, and students must be much more strategic in formu-
lating the model.

For example, students enter high school understanding a solution
of an equation as a number that satisfies the equation6.EE.6 rather

6.EE.6Use variables to represent numbers and write expressions
when solving a real-world or mathematical problem; understand
that a variable can represent an unknown number, or, depending
on the purpose at hand, any number in a specified set.than as the outcome of an accepted series of manipulations for a

given type of equation. Such an understanding is a first step in
allowing students to represent a solution as an unknown number
and to describe its properties in terms of that representation.

Formulating an equation by checking a solution3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

Mary drives from Boston to Washington, and she travels at an
average rate of 60 mph on the way down and 50 mph on the way
back. If the total trip takes 18 1

3 hours, how far is Boston from
Washington?

Commentary How can we tell whether or not a specific number
of miles s is a solution for this problem? Building on the
understanding of rate, time, and distance developed in Grades 7
and 8, students can check a proposed solution s, e.g., 500
miles. They know that the time required to drive down is 500

60

hours and to drive back is 500
50 hours. If 500 miles is a solution,

the total time 500
60 � 500

50 should be 18 1
3 hours. This is not the

case. How would we go about checking another proposed
solution, say, 450 miles? Now the time required to drive down is
450
60 hours and to drive back is 450

50 hours.
Formulating these repeated calculations be formulated in terms
of s rather than a specific number (MP.8), leads to the equations
60 � s

50 � 18 1
3 .

Task and discussion adapted from Cuoco, 2008, “Introducing
Extensible Tools in High School Algebra,” in Algebra and
Algebraic Thinking in School Mathematics, National Council of
Teachers of Mathematics.

The Compute node of the modeling cycle is dealt with in the next
section, on solving equations.

The Interpret node also becomes more complex. Equations in
high school are also more likely to contain parameters than equa-
tions in earlier grades, and so interpreting a solution to an equation
might involve more than consideration of a numerical value, but con-
sideration of how the solution behaves as the parameters are varied.

The Validate node of the modeling cycle pulls together many
of the standards for mathematical practice, including the modeling
standard itself (“Model with mathematics,” MP.4).
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Reasoning with Equations and Inequalities
Equations in one variable A naked equation, such as x2 � 4,
without any surrounding text, is merely a sentence fragment, neither
true nor false, since it contains a variable x about which nothing is
said. A written sequence of steps to solve an equation, such as in
the margin, is code for a narrative line of reasoning using words like

Fragments of reasoning3Grade3ThemeaningoffractionsInGrades1and2,studentsusefractionlanguagetodescribepartitionsofshapesintoequalshares.2.G.3In2.G.3Partitioncirclesandrectanglesintotwo,three,orfourequalshares,describethesharesusingthewordshalves,thirds,halfof,athirdof,etc.,anddescribethewholeastwohalves,threethirds,fourfourths.Recognizethatequalsharesofidenticalwholesneednothavethesameshape.Grade3theystarttodeveloptheideaofafractionmoreformally,buildingontheideaofpartitioningawholeintoequalparts.Thewholecanbeacollectionofobjects,ashapesuchasacircleorrect-angle,alinesegment,oranyfiniteentitysusceptibletosubdivisionandmeasurement.Thewholeasacollectionofobjects!Ifthewholeisacollectionof4bunnies,thenonebunnyis14ofthewholeand3bunniesis34ofthewhole.Grade3studentsstartwtihunitfractions(fractionswithnumer-ator1).Theseareformedbydividingawholeintoequalpartsandtakingonepart,e.g.,ifawholeisdividedinto4equalpartstheneachpartis14ofthewhole,and4copiesofthatpartmakethewhole.Next,studentsbuildfractionsfromunitfractions,seeingthenumer-ator3of34assayingthat34iswhatyougetbyputting3ofthe14’stogether.3.NF.1Anyfractioncanbereadthisway,andinparticular3.NF.1Understandafraction1�asthequantityformedby1partwhenawholeispartitionedinto�equalparts;understandafrac-tion��asthequantityformedby�partsofsize1�.thereisnoneedtointroducetheconceptsof“properfraction"and“improperfraction"initially;53iswhatonegetsbycombining5partstogetherwhenthewholeisdividedinto3equalparts.Twoimportantaspectsoffractionsprovideopportunitiesforthemathematicalpracticeofattendingtoprecision(MP6):•Specifyingthewhole.TheimportanceofspecifyingthewholeWithoutspecifyingthewholeitisnotreasonabletoaskwhatfractionisrepresentedbytheshadedarea.Iftheleftsquareisthewhole,itrepresentsthefraction32;iftheentirerectangleisthewhole,itrepresents34.•Explainingwhatismeantby“equalparts.”Initially,studentscanuseanintuitivenotionofcongruence(“samesizeandsameshape”)toexplainwhythepartsareequal,e.g.,whentheydivideasquareintofourequalsquaresorfourequalrectangles.Arearepresentationsof14Ineachrepresentationthesquareisthewhole.Thetwosquaresontheleftaredividedintofourpartsthathavethesamesizeandshape,andsothesamearea.Inthethreesquaresontheright,theshadedareais14ofthewholearea,eventhoughitisnoteasilyseenasonepartoutofadivisionintofourpartsofthesameshapeandsize.Studentscometounderstandamoreprecisemeaningfor“equalparts”as“partswithequalmeasurement.”Forexample,whenarulerisdividedintohalvesorquartersofaninch,theyseethateachsubdivisionhasthesamelength.Inareamodelstheyreasonabouttheareaofashadedregiontodecidewhatfractionofthewholeitrepresents(MP3).Thegoalisforstudentstoseeunitfractionsasthebasicbuildingblocksoffractions,inthesamesensethatthenumber1isthebasicbuildingblockofthewholenumbers;justaseverywholenumberisobtainedbycombiningasufficientnumberof1s,everyfractionisobtainedbycombiningasufficientnumberofunitfractions.ThenumberlineOnthenumberline,thewholeistheunitinterval,thatis,theintervalfrom0to1,measuredbylength.Iteratingthiswholetotherightmarksoffthewholenumbers,sothattheintervalsbetweenconsecutivewholenumbers,from0to1,1to2,2to3,etc.,areallofthesamelength,asshown.Studentsmightthinkofthenumberlineasaninfiniteruler.Thenumberline0123456etc.Toconstructaunitfractiononthenumberline,e.g.13,studentsdividetheunitintervalinto3intervalsofequallengthandrecognizethateachhaslength13.Theylocatethenumber13onthenumberDraft,5/29/2011,commentatcommoncoretools.wordpress.com.

x2 � 4

x2 � 4 � 0

px � 2qpx � 2q � 0

x � 2,�2

This sequence of equations is short-hand for a line of reasoning:

If x is a number whose square is 4, then
x2 � 4 � 0. Since x2 � 4 � px � 2qpx � 2q for all
numbers x, it follows that px � 2qpx � 2q � 0. So
either x � 2 � 0, in which case x � 2, or
x � 2 � 0, in which case x � �2.

More might be said: a justification of the last step, for example,
or a check that 2 and �2 actually do satisfy the equation, which
has not been proved by this line of reasoning.

“if,” “then,” “for all,” and “there exists.” In the process of learning to
solve equations, students learn certain standard “if–then” moves, for
example “if x � y then x�2 � y�2.” The danger in learning algebra
is that students emerge with nothing but the moves, which may make
it difficult to detect incorrect or made-up moves later on. Thus the
first requirement in the standards in this domain is that students
understand that solving equations is a process of reasoning.A-REI.1

A-REI.1 Explain each step in solving a simple equation as follow-
ing from the equality of numbers asserted at the previous step,
starting from the assumption that the original equation has a so-
lution. Construct a viable argument to justify a solution method.

This does not necessarily mean that they always write out the full
text; part of the advantage of algebraic notation is its compactness.
Once students know what the code stands for, they can start writing
in code. Thus, eventually students might go from x2 � 4 to x � �2
without intermediate steps.4

Understanding solving equations as a process of reasoning de-
mystifies “extraneous” solutions that can arise under certain solution
procedures.A-REI.2 The reasoning begins from the assumption that x A-REI.2 Solve simple rational and radical equations in one vari-

able, and give examples showing how extraneous solutions may
arise.is a number that satisfies the equation and ends with a list of pos-

sibilities for x . But not all the steps are necessarily reversible, and
so it is not necessarily true that every number in the list satisfies
the equation. For example, it is true that if x � 2 then x2 � 4. But
it is not true that if x2 � 4 then x � 2 (it might be that x � �2).
Squaring both sides of an equation is a typical example of an irre-
versible step; another is multiplying both sides of the equation by a
quantity that might be zero.

With an understanding of solving equations as a reasoning pro-
cess, students can organize the various methods for solving different
types of equations into a coherent picture. For example, solving
linear equations involves only steps that are reversible (adding a
constant to both sides, multiplying both sides by a non-zero con-
stant, transforming an expression on one side into an equivalent
expression). Therefore solving linear equations does not produce ex-
traneous solutions.A-REI.3 The process of completing the square also A-REI.3 Solve linear equations and inequalities in one variable,

including equations with coefficients represented by letters.involves only this same list of steps, and so converts any quadratic
equation into an equivalent equation of the form px � pq2 � q that
has exactly the same solutions.A-REI.4a The latter equation is easy

A-REI.4a Solve quadratic equations in one variable.
a Use the method of completing the square to transform any

quadratic equation in x into an equation of the form px �
pq2 � q that has the same solutions. Derive the quadratic
formula from this form.

to solve by the reasoning explained above.
This example sets up a theme that reoccurs throughout algebra;

finding ways of transforming equations into certain standard forms
that have the same solutions. For example, an exponential equation
of the form c �dkx � constant can be transformed into one of the form

4It should be noted, however, that calling this action “taking the square root of
both sides” is dangerous, because it suggests the erroneous statement ?4 � �2.
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bx � a, the solution to which is (by definition) a logarithm. Students
obtain such solutions for specific casesF-LE.4 and those intending

F-LE.4 For exponential models, express as a logarithm the solu-
tion to abct � d where a, c, and d are numbers and the base b
is 2, 10, or e; evaluate the logarithm using technology.study of advanced mathematics understand these solutions in terms

of the inverse relationship between exponents and logarithms.F-BF.5 F-BF.5(+) Understand the inverse relationship between expo-
nents and logarithms and use this relationship to solve problems
involving logarithms and exponents.

It is traditional for students to spend a lot of time on various tech-
niques of solving quadratic equations, which are often presented as
if they are completely unrelated (factoring, completing the square,
the quadratic formula). In fact, as we have seen, the key step in com-
pleting the square involves at its heart factoring. And the quadratic
formula is nothing more than an encapsulation of the method of
completing the square, expressing the actions repeated in solving a
collection of quadratic equations with numerical coefficients with a
single formula (MP.8). Rather than long drills on techniques of dubi-
ous value, students with an understanding of the underlying reason-
ing behind all these methods are opportunistic in their application,
choosing the method that best suits the situation at hand.A-REI.4b b Solve quadratic equations by inspection (e.g., for x2 �

49), taking square roots, completing the square, the
quadratic formula and factoring, as appropriate to the ini-
tial form of the equation. Recognize when the quadratic
formula gives complex solutions and write them as a�bi
for real numbers a and b.

Systems of equations Student work with solving systems of equa-
tions starts the same way as work with solving equations in one
variable; with an understanding of the reasoning behind the various
techniques.A-REI.5 An important step is realizing that a solution to a A-REI.5 Prove that, given a system of two equations in two vari-

ables, replacing one equation by the sum of that equation and a
multiple of the other produces a system with the same solutions.

system of equations must be a solution all of the equations in the
system simultaneously. Then the process of adding one equation to
another is understood as “if the two sides of one equation are equal,
and the two sides of another equation are equal, then the sum of the
left sides of the two equations is equal to the sum of the right sides.”
Since this reasoning applies equally to subtraction, the process of
adding one equation to another is reversible, and therefore leads to
an equivalent system of equations.

Understanding these points for the particular case of two equa-
tions in two variables is preparation for more general situations.
Such systems also have the advantage that a good graphical visu-
alization is available; a pair px, yq satisfies two equations in two
variables if it is on both their graphs, and therefore an intersection
point of the graphs.A-REI.6 A-REI.6 Solve systems of linear equations exactly and approxi-

mately (e.g., with graphs), focusing on pairs of linear equations in
two variables.Another important method of solving systems is the method of

substitution. Again this can be understood in terms of simultaneity;
if px, yq satisfies two equations simultaneously, then the expression
for y in terms of x obtained from the first equation should form a
true statement when substituted into the second equation. Since a
linear equation can always be solved for one of the variables in it,
this is a good method when just one of the equations in a system is
linear.A-REI.7 A-REI.7 Solve a simple system consisting of a linear equation

and a quadratic equation in two variables algebraically and graph-
ically.In more advanced courses, students see systems of linear equa-+

tions in many variables as single matrix equations in vector vari-+
ables.A-REI.8, A-REI.9 A-REI.8(+) Represent a system of linear equations as a single

matrix equation in a vector variable.

A-REI.9(+) Find the inverse of a matrix if it exists and use it to
solve systems of linear equations (using technology for matrices
of dimension 3� 3 or greater).

+
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Visualizing solutions graphically Just as the algebraic work with
equations can be reduced to a series of algebraic moves unsup-
ported by reasoning, so can the graphical visualization of solu-
tions. The simple idea that an equation f pxq � gpxq can be solved
(approximately) by graphing y � f pxq and y � gpxq and finding
the intersection points involves a number of pieces of conceptual
understanding.A-REI.11 This seemingly simple method, often treated

A-REI.11 Explain why the x-coordinates of the points where the
graphs of the equations y � fpxq and y � gpxq intersect are the
solutions of the equation fpxq � gpxq; find the solutions approx-
imately, e.g., using technology to graph the functions, make ta-
bles of values, or find successive approximations. Include cases
where fpxq and/or gpxq are linear, polynomial, rational, absolute
value, exponential, and logarithmic functions.

as obvious, involves the rather sophisticated move of reversing the
reduction of an equation in two variables to an equation in one
variable. Rather, it seeks to convert an equation in one variable,
f pxq � gpxq, to a system of equations in two variables, y � f pxq and
y � gpxq, by introducing a second variable y and setting it equal to
each side of the equation. If x is a solution to the original equation
then f pxq and gpxq are equal, and thus px, yq is a solution to the
new system. This reasoning is often tremendously compressed and
presented as obvious graphically; in fact following it graphically in
a specific example can be instructive.

Fundamental to all of this is a simple understanding of what a
graph of an equation in two variables means.A-REI.10 A-REI.10 Understand that the graph of an equation in two vari-

ables is the set of all its solutions plotted in the coordinate plane,
often forming a curve (which could be a line).
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High School Statistics
and Probability

Overview
In high school, students build on knowledge and experience de-
scribed in the 6-8 Statistics and Probability Progression. They de-
velop a more formal and precise understanding of statistical infer-
ence, which requires a deeper understanding of probability. Stu-
dents learn that formal inference procedures are designed for stud-
ies in which the sampling or assignment of treatments was random,
and these procedures may not be informative when analyzing non-
randomized studies, often called observational studies. For example,
a random selection of 100 students from your school will allow you to
draw some conclusion about all the students in the school, whereas
taking your class as a sample will not allow that generalization.

Probability is still viewed as long-run relative frequency but the
emphasis now shifts to conditional probability and independence,
and basic rules for calculating probabilities of compound events. In
the plus standards• are the Multiplication Rule, probability distri-

• Additional mathematics that students should learn in order to
take advanced courses such as calculus, advanced statistics, or
discrete mathematics is indicated by (+).butions and their expected values. Probability is presented as an

essential tool for decision-making in a world of uncertainty.
In the high school Standards, individual modeling standards are

indicated by a star symbol ( ). Because of its strong connection
with modeling, the domain of Statistics and Probability is starred,
indicating that all of its standards are modeling standards.
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Interpreting categorical and quantitative
data
Summarize, represent, and interpret data on a single count or
measurement variable Students build on the understanding of key
ideas for describing distributions—shape, center, and spread—de-
scribed in the Grades 6-8 Statistics and Probability Progression.
This enhanced understanding allows them to give more precise an-
swers to deeper questions, often involving comparisons of data sets.

Shapes of distributions

Skewed left Skewed right The normal distribution is
bell-shaped

In Grade 6, students began to distinguish among distributions
that were skewed or approximately symmetric. In high school,
they distinguish among the latter, according to whether or not
they are approximately normal, that is approximately
bell-shaped.

Students use shape and the question(s) to be answered to decide
on the median or mean as the more appropriate measure of center
and to justify their choice through statistical reasoning. They also
add a key measure of variation to their toolkits.

S-ID.1 Represent data with plots on the real number line (dot
plots, histograms, and box plots).

In connection with the mean as a measure of center, the standard
deviation is introduced as a measure of variation. The standard
deviation is based on the squared deviations from the mean, but
involves much the same principle as the mean absolute deviation
(MAD) that students learned about in Grades 6-8. Students should
see that the standard deviation is the appropriate measure of spread
for data distributions that are approximately normal in shape, as the
standard deviation then has a clear interpretation related to relative
frequency.

The margin shows two ways of comparing height data for males

Comparing heights of males and females

58 60 62 64 66 68 70 72 74 76 78 80

Height

Heights Box Plot

0.00

0.04

0.08

0.12

0.16

Female

0.04

0.08

0.12

0.16

Male

60 65 70 75 80

Height

Heights Histogram

Heights of U.S. males and females in the 20–29 age group.
Source: U.S. Census Bureau, Statistical Abstract of the United
States: 2009, Table 201.

and females in the 20-29 age group. Both involve plotting the data
or data summaries (box plots or histograms) on the same scale, re-
sulting in what are called parallel (or side-by-side) box plots and
parallel histograms.S-ID.1 The parallel box plots show an obvious dif-
ference in the medians and the IQRs for the two groups; the medians
for males and females are, respectively, 71 inches and 65 inches,
while the IQRs are 4 inches and 5 inches. Thus, male heights center
at a higher value but are slightly more variable.

The parallel histograms show the distributions of heights to be
mound shaped and fairly symmetrical (approximately normal) in
shape. Therefore, the data can be succinctly described using the
mean and standard deviation. Heights for males and females have
means of 70.4 inches and 64.7 inches, respectively, and standard
deviations of 3.0 inches and 2.6 inches. Students should be able
to sketch each distribution and answer questions about it just from
knowledge of these three facts (shape, center, and spread). For ei-
ther group, about 68% of the data values will be within one standard
deviation of the mean.S-ID.2,S-ID.3 They should also observe that the S-ID.2 Use statistics appropriate to the shape of the data distribu-

tion to compare center (median, mean) and spread (interquartile
range, standard deviation) of two or more different data sets.

S-ID.3 Interpret differences in shape, center, and spread in the
context of the data sets, accounting for possible effects of ex-
treme data points (outliers).

two measures of center, median and mean, tend to be close to each
other for symmetric distributions.

Data on heights of adults are available for anyone to look up.
But how can we answer questions about standardized test scores
when individual scores are not released and only a description of the
distribution of scores is given? Students should now realize that we
can do this only because such standardized scores generally have
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a distribution that is mound-shaped and somewhat symmetric, i.e.,
approximately normal.• For example, SAT math scores for a recent
year have a mean of 516 and a standard deviation of 116.• Thus,
about 16% of the scores are above 632. In fact, students should be

• At this level, students are not expected to fit normal curves to
data. (In fact, it is rather complicated to rescale data plots to
be density plots and then find the best fitting curve.) Instead,
the aim is to look for broad approximations, with application of
the rather rough “empirical rule” (also called the 68%–95% Rule)
for distributions that are somewhat bell-shaped. The better the
bell, the better the approximation. Using such approximations is
partial justification for the introduction of the standard deviation.

• See http://professionals.collegeboard.com/profdownload/2010-
total-group-profile-report-cbs.pdf.

aware that technology now allows easy computation of any area
under a normal curve. “If Alicia scored 680 on this SAT mathematics
exam, what proportion of students taking the exam scored less than
she scored?” (Answer: about 92%.)S-ID.4

S-ID.4 Use the mean and standard deviation of a data set to fit it
to a normal distribution and to estimate population percentages.
Recognize that there are data sets for which such a procedure
is not appropriate. Use calculators, spreadsheets, and tables to
estimate areas under the normal curve.

Summarize, represent, and interpret data on two categorical and
quantitative variables As with univariate data analysis, students
now take a deeper look at bivariate data, using their knowledge
of proportions to describe categorical associations and using their
knowledge of functions to fit models to quantitative data.MP7, MP4

MP7, MP4 Looking for patterns in tables and on scatter plots;
modeling patterns in scatter plots with lines.The table below shows statistics from the Center for Disease

Control relating HIV risk to age groups. Students should be able
to explain the meaning of a row or column total (marginal), a row
or column percentage (conditional) or a “total” percentage (joint).
They should realize that possible associations between age and HIV
risk are best explained in terms of the row or column conditional
percentages. Are the comparisons of percentages valid when the
first age category is much smaller (in years) than the others?S-ID.5

S-ID.5 Summarize categorical data for two categories in two-way
frequency tables. Interpret relative frequencies in the context of
the data (including joint, marginal, and conditional relative fre-
quencies). Recognize possible associations and trends in the
data.HIV risk by age groups, in percent of population

Age 18–24 25–44 45–64 Row Total
Row % 14.0 59.6 26.4 100.0

Not at risk Column % 35.0 51.7 27.2
Total % 5.6 23.6 10.5 39.6
Row % 17.1 36.5 46.4 100.0

At risk Column % 65.0 48.3 72.8
Total % 10.3 22.0 28.1 60.4
Row % 15.9 45.6 38.5 100.0

Column total Column % 100.0 100.0 100.0 100.0
Total % 15.9 45.6 38.5 100.0
Source: Center for Disease Control,

http://apps.nccd.cdc.gov/s_broker/WEATSQL.exe/weat/freq_year.hsql

Students have seen scatter plots in Grade 8 and now extend that
knowledge to fit mathematical models that capture key elements
of the relationship between two variables and to explain what the
model tells us about that relationship. Some of the data should come
from science, as in the examples about cricket chirps and tempera-
ture, and tree growth and age, and some from other aspects of their

Cricket chirps and temperature
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ChirpsPerSecond

Temperature_F = 25.2 + 3.29ChirpsPerSecond; r2 = 0.70

Crickets Chirping Scatter Plot

Source: George W. Pierce, The Songs of Insects, Harvard
University Press, 1949, pp. 12–21.

everyday life, e.g., cost of pizza and calories per slice (p. 6).
If you have a keen ear and some crickets, can the cricket chirps

help you predict the temperature? The margin shows data modeled
in a scientific investigation of that phenomenon. In this situation, the
variables have been identified as chirps per second and temperature
in degrees Fahrenheit. The cloud of points in the scatter plot is
essentially linear with a moderately strong positive relationship. It
looks like there must be something other than random behavior in
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this association. A model has been formulated: The least squares
regression line• has been fit by technology.S-ID.6 The model is used

• This term is used to identify the line in this Progression. Stu-
dents will identify the line as the “line of best fit” obtained by tech-
nology and should not be required to use or learn “least squares
regression line.”to draw conclusions: The line estimates that, on average, each added

chirp predicts an increase of about 3.29 degrees Fahrenheit.
But, students must learn to take a careful look at scatter plots,

as sometimes the “obvious” pattern does not tell the whole story,
and can even be misleading. The margin shows the median heights

Median heights of boys
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BoysMedianHeight = 31.6 in + (2.47 in/yr)Age; r2 = 1.00

Median Heights Scatter Plot

Source: National Health and Nutrition Examination Survey,
2002, www.cdc.gov/nchs/about/major/nhanes/
datatblelink.htm.

of growing boys through the ages 2 to 14. The line (least squares
regression line) with slope 2.47 inches per year of growth looks to
be a perfect fit. S-ID.6c But, the residuals, the collection of differences
between the corresponding coordinate on the least squares line and
the actual data value for each age, reveal additional information. A
plot of the residuals shows that growth does not proceed at a con-
stant rate over those years.S-ID.6b What would be a better description
of the growth pattern?

S-ID.6 Represent data on two quantitative variables on a scatter
plot, and describe how the variables are related.

a Fit a function to the data; use functions fitted to data to
solve problems in the context of the data.

b Informally assess the fit of a function by plotting and ana-
lyzing residuals.

c Fit a linear function for a scatter plot that suggests a linear
association.

It is readily apparent to students, after a little experience with
plotting bivariate data, that not all the world is linear. The figure
below shows the diameters (in inches) of growing oak trees at var-
ious ages (in years). A careful look at the scatter plot reveals some
curvature in the pattern,S-ID.6a which is more obvious in the residual
plot, because the older and larger trees add to the diameter more
slowly. Perhaps a curved model, such as a quadratic, will fit the
data better than a line. The figure below shows that to be the case.

Would it be wise to extrapolate the quadratic model to 50-year-
old trees? Perhaps a better (and simpler) model can be found by
thinking in terms of cross-sectional area, rather than diameter, as the
measure that might grow linearly with age.S-ID.6a Area is proportional
to the square of the diameter, and the plot of diameter squared versus
age in the margin does show remarkable linearity,S-ID.6a but there
is always the possibility of a closer fit, that students familiar with
cube root, exponential, and logarithmic functionsF-IF.7 could investi-

F-IF.7 Graph functions expressed symbolically and show key fea-
tures of the graph, by hand in simple cases and using technology
for more complicated cases.gate. Students should be encouraged to think about the relationship

between statistical models and the real world, and how knowledge of
Three iterations of the modeling cycle

Linear model: Age vs diameter
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A closer fit: Age vs diameter in a
quadratic model
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A simpler model: Age vs diameter
squared

0

10

20

30

40

50

60

70

Age

0 10 20 30 40

Diameter_Squared = 1.44Age - 4.7; r2 = 0.79

-20

0

20

0 10 20 30 40

Age

Oak Trees Scatter Plot

Draft, 4/21/2012, comment at commoncoretools.wordpress.com .



6

the context is essential to building good models.

Interpret linear models Students understand that the process of
fitting and interpreting models for discovering possible relationships
between variables requires insight, good judgment and a careful look
at a variety of options consistent with the questions being asked in
the investigation.MP6 MP6 Reasoning abstractly but quantitatively in discovering pos-

sible associations between numerical variables.Suppose you want to see if there is a relationship between the
cost per slice of supermarket pizzas and the calories per serving.
The margin shows data for a sample of 15 such pizza brands, and
a somewhat linear trend. A line fitted via technology might suggest
that you should expect to see an increase of about 43 calories if
you go from one brand to another that is one dollar more in price.
But, the line does not appear to fit the data well and the correla-
tion coefficient r (discussed below) is only about 0.5. Students will
observe that there is one pizza that does not seem to fit the pattern
of the others, the one with maximum cost. Why is it way out there?
A check reveals that it is Amy’s Organic Crust & Tomatoes, the only
organic pizza in the sample. If the outlier (Amy’s pizza) is removed
and the discussion is narrowed to non-organic pizzas (as shown in
the plot for pizzas other than Amy’s), the relationship between calo-

Pizza: Calories per slice vs cost
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Source: Consumer Reports, January 2002.

ries and price is much stronger with an expected increase of 124
caloriesS-ID.7 per extra dollar spent and a correlation coefficient of

S-ID.7 Interpret the slope (rate of change) and the intercept
(constant term) of a linear model in the context of the data.

0.8. Narrowing the question allows for a better interpretation of the
slope of a line fitted to the data.S-ID.8

S-ID.8 Compute (using technology) and interpret the correlation
coefficient of a linear fit.

The correlation coefficient measures the “tightness” of the data
points about a line fitted to data, with a limiting value of 1 (or -1)
if all points lie precisely on a line of positive (or negative) slope.
For the line fitted to cricket chirps and temperature (p. 4), the cor-
relation is 0.84, and for the line fitted to boys’ height (p. 5), it is
about 1.0. However, the quadratic model for tree growth (p. 5) is
non-linear, so the value of its correlation coefficient has no direct
interpretation.S-ID.8 (The square of the correlation coefficient, how-
ever, does have an interpretation for such models.)

In situations where the correlation coefficient of a line fitted to
data is close to 1 or 1, the two variables in the situation are said to
have a high correlation. Students must see that one of the most com-
mon misinterpretations of correlation is to think of it as a synonym
for causation. A high correlation between two variables (suggesting
a statistical association between the two) does not imply that one
causes the other. It is not a cost increase that causes calories to
increase in pizza, and it is not a calorie increase per se that causes
cost to increase; the addition of other expensive ingredients cause
both to increase simultaneously.S-ID.9 Students should look for ex- S-ID.9 Distinguish between correlation and causation.
amples of correlation being interpreted as cause and sort out why
that reasoning is incorrect (MP3). Examples may include medica-
tions versus disease symptoms and teacher pay or class size versus
high school graduation rates. One good way of establishing cause
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is through the design and analysis of randomized experiments, and
that subject comes up in the next section.
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Making inferences and justifying conclusions
Understand and evaluate random processes underlying statistical
experiments Students now move beyond analyzing data to mak-
ing sound statistical decisions based on probability models. The
reasoning process is as follows: develop a statistical question in
the form of a hypothesis (supposition) about a population parame-
ter; choose a probability model for collecting data relevant to that
parameter; collect data; compare the results seen in the data with
what is expected under the hypothesis. If the observed results are far
away from what is expected and have a low probability of occurring
under the hypothesis, then that hypothesis is called into question.
In other words, the evidence against the hypothesis is weighed by
probability.S-IC.1

S-IC.1 Understand statistics as a process for making inferences
about population parameters based on a random sample from
that population.But, what is considered “low”? That determination is left to the

investigator and the circumstances surrounding the decision to be
made. Statistics and probability weigh the chances; the person in
charge of the investigation makes the final choice. (This is much
like other areas of life in which the teacher or physician weighs
the evidence and provides your chances of passing a test or easing
certain disease symptoms; you make the choice.)

Consider this example. You cannot seem to roll an even number
with a certain number cube. The statistical question is, “Does this
number cube favor odd numbers?” The hypothesis is, “This cube
does not favor odd numbers,” which is the same as saying that the
proportion of odd numbers rolled, in the long run, is 0.5, or the
probability of tossing an odd number with this cube is 0.5. Then,
toss the cube and collect data on the observed number of odds.
Suppose you get an odd number in each of the:

first two tosses, which has probability 1
4 0�25

under the hypothesis;
first three tosses, which has probability 1

8 0�125
under the hypothesis;
first four tosses, which has probability 1

16 0�0625
under the hypothesis;
first five tosses, which has probability 1

32 0�03125
under the hypothesis.
At what point will students begin to seriously doubt the hypoth-

esis that the cube does not favor odd numbers? Students should
experience a number of simple situations like this to gain an un-
derstanding of how decisions based on sample data are related to
probability, and that this decision process does not guarantee a
correct answer to the underlying statistical question.S-IC.3

S-IC.3 Recognize the purposes of and differences among sam-
ple surveys, experiments, and observational studies; explain how
randomization relates to each.

Make inferences and justify conclusions from sample surveys, ex-
periments, and observational studies Once they see how prob-
ability intertwines with data collection and analysis, students use
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this knowledge to make statistical inferences from data collected in
sample surveys and in designed experiments, aided by simulation
and the technology that affords it.MP5, MP3 MP5, MP3 Using a variety of statistical tools to construct and

defend logical arguments based on data.A Time magazine poll reported on the status of American women.
One of the statements in the poll was “It is better for a family if
the father works outside the home and the mother takes care of
children.” Fifty-one percent of the sampled women agreed with the
statement while 57% of the sampled men agreed. A note on the
polling methodology states that about 1600 men and 1800 women
were randomly sampled in the poll and the margin of error was
about two percentage points. What is the margin of error and how
is it interpreted in this context? We’ll come back to the Time poll
after exploring this question further.

“Will 50% of the homeowners in your neighborhood agree to sup-
port a proposed new tax for schools?” A student attempts to answer
this question by taking a random sample of 50 homeowners in her
neighborhood and asking them if they support the tax. Twenty of
the sampled homeowners say they will support the proposed tax,
yielding a sample proportion of 20

50 0�4. That seems like bad news
for the schools, but could the population proportion favoring the tax
in this neighborhood still be 50%? The student knows that a second
sample of 50 homeowners might produce a different sample propor-
tion and wonders how much variation there might be among sample
proportions for samples of size 50 if, in fact, 50% is the true popula-
tion proportion. Having a graphing calculator available, she simu-
lates this sampling situation by repeatedly drawing random samples
of size 50 from a population of 50% ones and 50% zeros, calculating
and plotting the proportion of ones observed in each sample. The
result for 200 trials is displayed in the margin. The simulated values

Proportions in random samples of size 50

0.3 0.4 0.5 0.6 0.7 0.8

Sample_proportion

Sample Proportions Dot Plot

at or below the observed 0.4 number 25 out of 200, or 25
200 0�125.

So, the chance of seeing a 40% or fewer favorable response in the
sample even if the true proportion of such responses was 50% is not
all that small, casting little doubt on 50% as a plausible population
value.

Relating the components of this example to the statistical reason-
ing process, students see that the hypothesis is that the population
parameter is 50% and the data are collected by a random sample.
The observed sample proportion of 40% was found to be not so far
from the 50% so as to cause serious doubt about the hypothesis.
This lack of doubt was justified by simulating the sampling process
many times and approximating the chance of a sample proportion
being 40% or less under the hypothesis.MP8 MP8 Observing regular patterns in distributions of sample statis-

tics.Students now realize that there are other plausible values for the
population proportion, besides 50%. The plot of the distribution of
sample proportions in the margin is mound-shaped (approximately
normal) and somewhat symmetric with a mean of about 0.49 (close
to 0.50) and a standard deviation of about 0.07. From knowledge
of the normal distribution,S-ID.4 students knows that about 95% of

S-ID.4 Use the mean and standard deviation of a data set to fit it
to a normal distribution and to estimate population percentages.
Recognize that there are data sets for which such a procedure
is not appropriate. Use calculators, spreadsheets, and tables to
estimate areas under the normal curve.

the possible sample proportions that could be generated this way
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will fall within two standard deviations of the mean. This two-
standard deviation distance is called the margin of error for the
sample proportions. In this example with samples of size 50, the
margin of error is 2 0�07 0�14.

Suppose the true population proportion is 0.60. The distribution
of the sample proportions will still look much like the plot in the
margin, but the center of the distribution will be at 0.60. In this case,
the observed sample proportion 0.4 will not be within the margin of
error. Reasoning this way leads the student to realize that any
population proportion in the interval 0�40 0�14 will result in the
observed sample proportion of 0.40 being within the middle 95% of
the distribution of sample proportions, for samples of size 50. Thus,
the interval

observed sample proportion margin of error

includes the plausible values for the true population proportion in
the sense that any of those populations would have produced the
observed sample proportion within its middle 95% of possible out-
comes. In other words, the student is confident that the proportion
of homeowners in her neighborhood that will favor the tax is be-
tween 0.26 and 0.54.S-IC.4 All of this depends on random sampling

S-IC.4 Use data from a sample survey to estimate a population
mean or proportion; develop a margin of error through the use of
simulation models for random sampling.because the characteristics of distributions of sample statistics are

predictable only if the sampling is random.
With regard to the Time poll on the status of women, the student

now sees that the plausible proportions of men who agree with the
statement lie between 55% and 59% while the plausible proportions
of women who agree lie between 49% and 53%. What interesting
conclusions might be drawn from this?S-IC.6 S-IC.6 Evaluate reports based on data.

Students’ understanding of random sampling as the key that al-
lows the computation of margins of error in estimating a population
quantity can now be extended to the random assignment of treat-
ments to available units in an experiment. A clinical trial in medical
research, for example, may have only 50 patients available for com-
paring two treatments for a disease. These 50 are the population, so
to speak, and randomly assigning the treatments to the patients is
the “fair” way to judge possible treatment differences, just as random
sampling is a fair way to select a sample for estimating a population
proportion.

There is little doubt that caffeine stimulates bodily activity, but
how much does it take to produce a significant effect? This is a
question that involves measuring the effect of two or more treatments
and deciding if the different interventions have differing effects. To
obtain a partial answer to the question on caffeine, it was decided to
compare a treatment consisting of 200 mg of caffeine with a control
of no caffeine in an experiment involving a finger tapping exercise.

Twenty male students were randomly assigned to one of two

Finger taps per minute in a caffeine experiment
0 mg caffeine 200 mg caffeine

242 246
245 248
244 250
248 252
247 248
248 250
242 246
244 248
246 245
242 250

Mean 244.8 248.3

Source: Draper and Smith, Applied Regression Analysis, John
Wiley and Sons, 1981

treatment groups of 10 students each, one group receiving 200 mil-
ligrams of caffeine and the other group no caffeine. Two hours later
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the students were given a finger tapping exercise. The response is
the number of taps per minute, as shown in the table.

The plot of the finger tapping data shows that the two data sets

Plot of finger tapping data

242 244 246 248 250 252 254

Taps

Finger Taps by Mg Dot Plot

Differences in re-randomized means for finger tapping data

tend to be somewhat symmetric and have no extreme data points
(outliers) that would have undue influence on the analysis. The
sample mean for each data set, then, is a suitable measure of center,
and will be used as the statistic for comparing treatments.

The mean for the 200 mg data is 3.5 taps larger than that for
the 0 mg data. In light of the variation in the data, is that enough
to be confident that the 200 mg treatment truly results in more
tapping activity than the 0 mg treatment? In other words, could
this difference of 3.5 taps be explained simply by the randomization
(the luck of the draw, so to speak) rather than any real difference in
the treatments? An empirical answer to this question can be found
by “re-randomizing” the two groups many times and studying the
distribution of differences in sample means. If the observed difference
of 3.5 occurs quite frequently, then we can safely say the difference
could simply be due to the randomization process. If it does not
occur frequently, then we have evidence to support the conclusion
that the 200 mg treatment has increased mean finger tapping count.

The re-randomizing can be accomplished by combining the data
in the two columns, randomly splitting them into two different groups
of ten, each representing 0 and 200 mg, and then calculating the
difference between the sample means. This can be expedited with
the use of technology.

The margin shows the differences produced in 400 re-random-
izations of the data for 200 and 0 mg. The observed difference of 3.5
taps is equaled or exceeded only once out of 400 times. Because the
observed difference is reproduced only 1 time in 400 trials, the data
provide strong evidence that the control and the 200 mg treatment
do, indeed, differ with respect to their mean finger tapping counts. In
fact, we can conclude with little doubt that the caffeine is the cause
of the increase in tapping because other possible factors should have
been balanced out by the randomization.S-IC.5 Students should be

S-IC.5 Use data from a randomized experiment to compare two
treatments; use simulations to decide if differences between pa-
rameters are significant.able to explain the reasoning in this decision and the nature of the

error that may have been made.
It must be emphasized repeatedly that the probabilistic reason-

ing underlying statistical inference is introduced into the study by
way of random sampling in sample surveys and random assignment
of treatments in experiments. No randomization, no such reasoning!
Students will know, however, that randomization is not possible in
many types of statistical investigations. Society will not condone
the assigning of known harmful “treatments” (smoking, for example)
to patients, so studies of the effects of smoking on health cannot be
randomized experiments. Such studies must come from observing
people who choose to smoke, as compared to those who do not, and
are, therefore, called observational studies. The oak tree study (p.
5) and the pizza study (p. 6) are both observational studies.

Surveys of samples to estimate population parameters, random-
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ized experiments to compare treatments and show cause, and ob-
servational studies to indicate possible associations among variables
are the three main methods of data production in statistical studies.
Students should understand the distinctions among these three and
practice perceiving them in studies that are reported in the media,
deciding if appropriate inferences seem to have been drawn.S-IC.3

S-IC.3 Recognize the purposes of and differences among sam-
ple surveys, experiments, and observational studies; explain how
randomization relates to each.
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Conditional probability and the rules of
probability
In Grades 7 and 8, students encountered the development of ba-
sic probability, including chance processes, probability models, and
sample spaces. In high school, the relative frequency approach to
probability is extended to conditional probability and independence,
rules of probability and their use in finding probabilities of compound
events, and the use of probability distributions to solve problems in-
volving expected value. As seen in the making inferences section
above, there is a strong connection between statistics and probabil-
ity. This will be seen again in this section with the use of data in
selecting values for probability models.

Understand independence and conditional probability and use
them to interpret data In developing their understanding of condi-
tional probability and independence, students should see two types
of problems, one in which the uniform probabilities attached to out-
comes leads to independence and one in which it does not. For
example, suppose a student is randomly guessing the answers to
all four true–false questions on a quiz. The outcomes in the sample
space can be arranged as shown in the margin.S-CP.1 Probabili-

Possible outcomes: Guessing on four true–false questions

Number
correct

Out-
comes

Number
correct

Out-
comes

Number
correct

Out-
comes

4 CCCC 2 CCII 1 CIII
3 ICCC 2 CICI 1 ICII
3 CICC 2 CIIC 1 IICI
3 CCIC 2 ICCI 1 IIIC
3 CCCI 2 ICIC 0 IIII

2 IICC

C indicates a correct answer; I indicates an incorrect answer.

S-CP.1 Describe events as subsets of a sample space (the set of
outcomes) using characteristics (or categories) of the outcomes,
or as unions, intersections, or complements of other events (“or,”
“and,” “not”).

ties assigned to these outcomes should be equal because random
guessing implies that no one outcome should be any more likely
than another.

By simply counting equally likely outcomes,

P(exactlyMP6 two correct answers 6

16

and
MP6 Attend to precision. “Two correct answers” may be inter-
preted as “at least two” or as “exactly two.”P(at least one correct answer 15

16
1 P(no correct answers �

Likewise,

P(C on first question 1

2
P(C on second question

as should seem intuitively reasonable. Now,

P (C on first question) and (C on second question) 4

16
1

4
1

2

1

2
�
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which shows that the two events (C on first question) and (C on sec-
ond question) are independent, by the definition of independence.• • Two events A and B are said to be independent if P(A P(B

P(A and B .
This, too, should seem intuitively reasonable to students because
the random guess on the second question should not have been
influenced by the random guess on the first.

Students may contrast the quiz scenario above with the scenario
of choosing at random two students to be leaders of a five-person
working group consisting of three girls (April, Briana, and Cyndi)
and two boys (Daniel and Ernesto). The first name chosen indi-
cates the discussion leader and the second the recorder, so order of
selection is important. The 20 outcomes are displayed in the margin.

Selecting two students from three girls and two boys

Number of girls Outcomes
2 AB BA
2 AC CA
2 BC CB
1 AD DA
1 AE EA
1 BD DB
1 BE EB
1 CD DC
1 CE EC
0 DE ED

Here, the probability of selecting two girls is:

P(two girls selected 6

20
3

10

whereas

P(girl selected on first draw 12

20
3

5
P(girl selected on second draw �

Because 3
5

3
5

3
10 , these two events are not independent. The

selection of the second person does depend on the selection of the
first when the same person cannot be selected twice.

Another way of viewing independence is to consider the con-
ditional probability of an event A given an event B, P(A|B), as the
probability of A in the sample space restricted to just those out-
comes that constitute B. In the table of outcomes for guessing on
the true-false questions,

P(C on second question | C on first question 4

8
1

2
P(C on second

and students see that knowledge of what happened on the first
question does not alter the probability of the outcome on the second;
the two events are independent.

In the selecting students scenario, the conditional probability of
a girl on the second selection, given that a girl was selected on the
first is

P(girl on second | girl on first) 6

12
1

2
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and
P(girl on second) 3

5
�

So, these two events are again seen to be dependent. The outcome
of the second draw does depend on what happened at the first
draw.S-CP.3

S-CP.3 Understand the conditional probability of A given B as
P A and B P B , and interpret independence of A and B as
saying that the conditional probability of A given B is the same as
the probability of A, and the conditional probability of B given A is
the same as the probability of B.

Students understand that in real world applications the proba-
bilities of events are often approximated by data about those events.
For example, the percentages in the table for HIV risk by age group
(p. 4) can be used to approximate probabilities of HIV risk with re-
spect to age or age with respect to HIV risk for a randomly selected
adult from the U.S. population of adults. Emphasizing the conditional
nature of the row and column percentages:

P(adult is age 18 to 24 | adult is at risk) 0�171

whereas

P(adult is at risk | adult is age 18 to 24) 0�650�

Comparing the latter to

P(adult is at risk | adult is age 25 to 44) 0�483

shows that the conditional distributions change from column to col-
umn, reflecting dependence and an association between age cate-
gory and HIV risk.S-CP.4, S-CP.5

S-CP.4 Construct and interpret two-way frequency tables of data
when two categories are associated with each object being clas-
sified. Use the two-way table as a sample space to decide if
events are independent and to approximate conditional probabil-
ities.

S-CP.5 Recognize and explain the concepts of conditional prob-
ability and independence in everyday language and everyday sit-
uations.

Students can gain practice in interpreting percentages and using
them as approximate probabilities from study data presented in the
popular press. Quite often the presentations are a little confusing
and can be interpreted in more than one way. For example, two data
summaries from USA Today are shown below. What might these
percentages represent and how might they be used as approximate
probabilities?S-CP.5

S-CP.5 Recognize and explain the concepts of conditional prob-
ability and independence in everyday language and everyday sit-
uations.

Top age groups for DUI
21–25 29%
26–29 24%
18–20 20%
30–34 19%

Use the rules of probability to compute probabilities of compound
events in a uniform probability model The two-way table for HIV
risk by age group (p. 4) gives percentages from a data analysis that
can be used to approximate probabilities, but students realize that
such tables can be developed from theoretical probability models.
Suppose, for example, two fair six-sided number cubes are rolled,
giving rise to 36 equally likely outcomes.
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Outcomes for specified events can be diagramed as sections of
the table, and probabilities calculated by simply counting outcomes.
This type of example is one way to review information on conditional
probability and introduce the addition and multiplication rules. For
example, defining events:

Possible outcomes: Rolling two number cubes

A is “you roll numbers summing to 8 or more”

B is “you roll doubles”

and counting outcomes leads to

P(A) 15

36

P(B) 6

36

P(A and B) 3

36
� and

P(B|A) 3

15
� the fraction of A’s 15 outcomes that also fall in B.S-CP.6

Now, by counting outcomes
S-CP.6 Find the conditional probability of A given B as the frac-
tion of B’s outcomes that also belong to A, and interpret the an-
swer in terms of the model.

P(A or B) 18

36

or by using the Addition RuleS-CP.7 S-CP.7 Apply the Addition Rule, P A or B P A P B
P A and B , and interpret the answer in terms of the model.

P(A or B) P(A) P(B) P(A and B)
15

36

6

36

3

36
18

36
�

By the Multiplication RuleS-CP.8
S-CP.8(+) Apply the general Multiplication Rule in a uniform prob-
ability model, P A and B P A P B A P B P A B , and
interpret the answer in terms of the model.

+

P(A and B) P(A)P(B|A)
15

36

3

15
3

36
�

The assumption that all outcomes of rolling each cube once are
equally likely results in the outcome of rolling one cube being in-
dependent of the outcome of rolling the other.S-CP.5 Students should

S-CP.5 Recognize and explain the concepts of conditional prob-
ability and independence in everyday language and everyday sit-
uations.understand that independence is often used as a simplifying assump-

tion in constructing theoretical probability models that approximate
real situations. Suppose a school laboratory has two smoke alarms
as a built in redundancy for safety. One has probability 0.4 of going
off when steam (not smoke) is produced by running hot water and
the other has probability 0.3 for the same event. The probability
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that they both go off the next time someone runs hot water in the
sink can be reasonably approximated as the product 0�4 0�3 0�12,
even though there may be some dependence between two systems
operating in the same room. Modeling independence is much easier
than modeling dependence, but models that assume independence
are still quite useful.

Draft, 4/21/2012, comment at commoncoretools.wordpress.com .



18

Using probability to make decisions
Calculate expected values and use them to solve problems As+

students gain experience with probability problems that deal with+

listing and counting outcomes, they will come to realize that, most+

often, applied problems concern some numerical quantity of inter-+

est rather than a description of the outcomes themselves.MP1 MP2 MP1 Make sense of a problem, analyzing givens, constraints,
relationships, and goals.

+

Advertisers want to know how many customers will purchased their
MP2 Formulate a probability model for a practical problem that
reflects constraints and relationships, and reason abstractly to
solve the problem.

+

product, not the order in which they came into the store. A political+

pollster wants to know how many people are likely to vote for a par-+

ticular candidate and a student wants to know how many questions+

he is likely to get right by guessing on a true-false quiz.+

In such situations, the outcomes can be seen as numerical values+

of a random variable.• Reconfiguring the tables of outcomes for the
• Students should realize that random variables are different from
the variables used in other high school domains; random vari-
ables are functions of the outcomes of a random process and
thus have probabilities attached to their possible values.

+

true-false test (p. 13) and student selection (p. 14) in a way that+

emphasizes these numerical values and their probabilities gives rise+

to the probability distributions shown below.+

True–false test

Number
correct, X

Probab-
ility

0
1

16

1
4

16

2
6

16

3
4

16

4
1

16

0.10

0.20

0.30

0.40

-1 0 1 2 3 4 5 6

X

Number of correct answers Histogram

Selection of students

Number of
girls, Y

Probab-
ility

0
1

10

1
6

10

2
3

10

0.2

0.4

0.6

Y

-1 0 1 2 3 4 5

Number of girls Histogram

Because probability is viewed as a long-run relative frequency,+

probability distributions can be treated as theoretical data distri-+

butions. If 1600 students all guessed at all four questions on the+

true-false test, about 400 of them would get three answers correct,+

about 100 four answers correct, and so on. These scores could then+

be averaged to come up with a mean score of:+

0
1

16
1

4

16
2

6

16
3

4

16
4

1

16
2�

With the number correct labeled as X, this value is called the+

expected value of X, usually expressed as E(X). Anyone guessing at+

all four true-false questions on a test can expect, over the long run,+

to get two correct answers per test, which is intuitively reasonable.+

Students then develop the general rule that, for any discrete•
• Students need not learn the term “discrete random variable.” All
of the random variables treated in this Progression are discrete
random variables, that is, they concern only sample spaces which
are collections of discrete objects.

+

random variable X,+

E X (value of X)(probability of that value)

where the sum extends over all values of X.S-MD.2 S-MD.2(+) Calculate the expected value of a random variable;
interpret it as the mean of the probability distribution.

+
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For the random variable number of girls, Y, E(Y) = 1.2. Of course,+

1.2 girls cannot be selected in any one group, but if the group selects+

leaders at random each day for ten days, they would be expected+

to choose about 12 girls as compared to 8 boys over the period.+

The probability distributions considered above arise from theo-+

retical probability models, but they can also come from empirical+

approximations. The margin displays the distribution of family sizes

Empirical distribution of family size

Family
size

Propor-
tion

2 0.28
3 0.25
4 0.27
5 0.13
6 0.04
7 0.03

0.05

0.10
0.15

0.20

0.25
0.30

0 2 4 6 8

Family_size

Family Sizes Histogram

Source: U.S. Census Bureau, http://www.census.gov/
population/www/socdemo/hh-fam/cps2010.html; Table F1

+

in the U.S., according to the Census Bureau. (Very few families have+

more than seven members.) These proportions calculated from cen-+

sus counts can serve as to approximate probabilities that families+

of given sizes will be selected in a random sample. If an advertiser+

randomly samples 1000 families for a special trial of a new product+

to be used by all members of the family, she would expect to have+

the product used by about 3.49 people per family, or about 3,490+

people over all.+

Use probability to evaluate outcomes of decisions Students should+

understand that probabilities and expected values must be thought+

of as long-term relative frequencies and means, and consider the+

implications of that view in decision making. Consider the following+

real-life example. The Wisconsin lottery had a game called “Hot+

Potato” that cost a dollar to play and had payoff probabilities as+

shown in the margin. The sum of these probabilities is not 1, but

“Hot Potato” payoffs and probabilities

Payoff ($) Probability

1
1

9

2
1

13

3
1

43

6
1

94

9
1

150

18
1

300

50
1

2050

100
1

144000

300
1

180000

900
1

270000

For details about Hot Potato and other lotteries, see
www.wilottery.com/scratchgames/historical.aspx.

+

there is a key payoff value missing from the table. Students can+

include that key value and its probability to make this a true prob-+

ability distribution and find that the expected payoff per game is+

about $0.55.S-MD.5 Losing a dollar to play the game may not mean

S-MD.5(+) Weigh the possible outcomes of a decision by assign-
ing probabilities to payoff values and finding expected values.

+

much to an individual player, but expecting to take in $450 for ev-+

ery $1000 spent on the game means a great deal to the Wisconsin+

Lottery Commission!+

Studying the behavior of games of chance is fun, but students+

must see more serious examples such as this one, based on em-+

pirical data. In screening for HIV by use of both the ELISA and+

Western Blot tests, HIV-positive males will test positive in 99.9% of+

the cases and HIV-negative males will test negative in 99.99% of the+

cases. Among men with low-risk behavior, the rate of HIV is about+

1 in 10,000. What is the probability that a low-risk male who tests+

positive actually is HIV positive?+

Having students turn the given rates into expected counts and+

placing the counts in an appropriate table is a good way for them to+

construct a meaningful picture of what is going on here. There are

HIV testing expected frequencies

HIV+ male HIV- male Totals
HIV+ test result 0.999 1 1.999
HIV- test result 0.001 9,998 9,998.001
Totals 1 9,999 10,000

+

two variables, whether or not a tested person is HIV positive and+

whether or not the test is positive. Starting with a cohort of 10,000+

low-risk males, the table might look like the one in the margin.+

The conditional probability of a randomly selected male being HIV+

positive, given that he tested positive is about 0.5! Students should+

discuss the implications of this in relation to decisions concerning+

mass screening for HIV.S-MD.6, S-MD.7 S-MD.6(+) Use probabilities to make fair decisions (e.g., drawing
by lots, using a random number generator).

S-MD.7(+) Analyze decisions and strategies using probability
concepts (e.g., product testing, medical testing, pulling a hockey
goalie at the end of a game).

+
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Where the Statistics and Probability
Progression might lead
Careers A few examples of careers that draw on the knowledge
discussed in this Progression are actuary, manufacturing technician,
industrial engineer or statistician, industrial engineer and produc-
tion manager. The level of education required for these careers and
sources of further information and examples of workplace tasks are
summarized in the table below. Information about careers for statis-
ticians in health and medicine, business and industry, and govern-
ment appears on the web site of the American Statistical Association
(www.amstat.org/careers/index.cfm).

Education Location of information, workplace task
Actuary bachelors Ready or Not, p. 79; http://beanactuary.org/how/highschool/
Manufacturing technician associate Ready or Not, p. 81
Industrial engineer or statistician bachelors http://www.achieve.org/node/205

Industrial engineer; production manager bachelors http://www.achieve.org/node/620

Source: Ready or Not: Creating a High School Diploma That Counts, 2004, www.achieve.org/ReadyorNot

College Most college majors in the sciences (including health sci-
ences), social sciences, biological sciences (including agriculture),
business, and engineering require some knowledge of statistics.
Typically, this exposure begins with a non-calculus-based intro-
ductory course that would expand the empirical view of statistical
inference found in this high school progression to a more general
view based on mathematical formulations of inference procedures.
(The Advanced Placement Statistics course is at this level.) After
that general introduction, those in more applied areas would take
courses in statistical modeling (regression analysis) and the design
and analysis of experiments and/or sample surveys. Those heading
to degrees in mathematics, statistics, economics, and more mathe-
matical areas of engineering would study the mathematical theory
of statistics and probability at a deeper level, perhaps along with
more specialized courses in, say, time series analysis or categorical
data analysis. Whatever their future holds, most students will en-
counter data in their chosen field—and lots of it. So, gaining some
knowledge of both applied and theoretical statistics, along with ba-
sic skills in computing, will be a most valuable asset indeed!
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Modeling, High School

Introduction • January 27, 1921, address to the Prussian Academy of Sci-
ence, Berlin.

• 1960, “The Unreasonable Effectiveness of Mathematics," Com-
munications in Pure and Applied Mathematics.

A-CED.2 Create equations in two or more variables to represent
relationships between quantities; graph equations on coordinate
axes with labels and scales.

F-TF.5 Choose trigonometric functions to model periodic phe-
nomena with specified amplitude, frequency, and midline.

N-Q.1 Use units as a way to understand problems and to guide
the solution of multi-step problems; choose and interpret units
consistently in formulas; choose and interpret the scale and the
origin in graphs and data displays.

Mathematical models describe situations in the world, to the sur-
prise of many. Albert Einstein wondered, “How can it be that math-
ematics, being after all a product of human thought which is inde-
pendent of experience, is so admirably appropriate to the objects of
reality?"• This points to the basic reason to model with mathematics
and statistics: to understand reality. Reality might be described
by a law of nature such as that governing the motion of an object
dropped from a height above the groundA-CED.2 or in terms of the
height above the ground of a person riding a Ferris wheel,F-TF.5 the
unemployment rate,N-Q.1 how people’s heights vary,S-ID.1 a risk factor

S-ID.1 Represent data with plots on the real number line (dot
plots, histograms, and box plots).

for a disease,S-ID.5 the effectiveness of a medical treatment,S-ID.5 or

S-ID.5 Summarize categorical data for two categories in two-way
frequency tables. Interpret relative frequencies in the context of
the data (including joint, marginal, and conditional relative fre-
quencies). Recognize possible associations and trends in the
data.

the amount of money in a savings account to which periodic addi-
tions are made.A-SSE.4 On a more sophisticated level, modeling the

A-SSE.4 Derive the formula for the sum of a finite geometric se-
ries (when the common ratio is not 1), and use the formula to
solve problems.

spread of an epidemic, assessing the security of a computer pass-
word, understanding cyclic populations of predator and prey in an
ecosystem, finding an orbit for a communications satellite that keeps
it always over the same spot, estimating how large an area of solar
panels would be enough to power a city of a given size, under-
standing how global positioning systems (GPSs) work, estimating
how long it would take to get to the nearest star—all can be done
using mathematical modeling. A survey of how mathematics has im-
pacted recent breakthroughs can be found in Fueling Innovation and
Discovery: The Mathematical Sciences in the 21st Century.• • This report was published in 2012 by the National Academies

Press and can be read online at http://www.nap.edu/
catalog.php?record_id=13373.Mathematical modeling is fundamental to how mathematics is

used in medicine, engineering, ecology, weather forecasting, oil ex-
ploration, finance and economics, business and marketing, climate
modeling, designing search engines, understanding social networks,
public key cryptography and cybersecurity, the space program, as-
tronomy and cosmology, biology and genetics, criminology, using
genetics to reconstruct how early humans spread over the planet,
in testing and designing new drugs, in compressing images (JPEG)
and music (MP3), in creating the algorithms that cell phones use to
communicate, to optimize air traffic control and schedule flights, to
design cars and wind turbines, to recommend which books (Ama-
zon), music (Pandora) and movies (Netflix) an individual might like
based on other things they rated highly. The range of careers for
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M, HS 3

which mathematical and statistical modeling are good preparation
has expanded substantially in recent years, and the list continues
to grow.

What is a model?

The word “model” can be used as a noun, verb, or adjective. As
an adjective, “model” often signifies an ideal, as in “model
student.” In this progression, “model” will be a noun or a verb.

In elementary mathematics, a model might be a representation
such as a math drawing or a situation equation (operations and
algebraic thinking), line plot, picture graph, or bar graph
(measurement), or building made of blocks (geometry). In
Grades 6–7, a model could be a table or plotted line (ratio and
proportional reasoning) or box plot, scatter plot, or histogram
(statistics and probability). In Grade 8, students begin to use
functions to model relationships between quantities.

Models are also used to understand mathematical or statistical
concepts. In elementary grades, students use rows of dots or
tape diagrams to represent addition and subtraction. Later they
use tape diagrams, arrays, and area models to represent
multiplication and division. In Grade 6 geometry, nets can
represent a three-dimensional mathematical object (e.g., a
prism) as well as a design for a real world object (e.g., a
gingerbread house). In Grade 8, students use physical models,
transparencies, or geometry software to understand congruence
and similarity. In Grade 6–8 statistics, simulations help students
to understand what can happen during statistical sampling.

In high school, modeling becomes more complex, building on
what students have learned in K–8. Representations such as
tables or scatter plots are often intermediate steps rather than
the models themselves.

Mathematical and statistical models of real world situations range
in complexity from objects or drawings that represent addition and
subtraction situationsK.OA.2 to systems of equations that describe

K.OA.2Solve addition and subtraction word problems, and add
and subtract within 10, e.g., by using objects or drawings to rep-
resent the problem.

behaviors of natural phenomena such as fluid flow or the paths of
ballistic missiles. Sometimes models give rather complete infor-
mation about the situation. For example, writing total cost as the
product of the unit price and the number bought is often a complete
and accurate model of monetary costs. Some models do not give
exact and complete information but approximations that may result
from the features of the situation that are reasonably available or
of most interest.MP4 In the business world, the per item price when

MP4 Mathematically proficient students . . . are comfortable mak-
ing assumptions and approximations . . . realizing that these may
need revision later.

purchasing a large number of the same item is lower than for the
price for a single item. This is important in modeling some situations
but may be neglected in others. As another example, consider the
linear function describing the cost of purchasing an automobile and
gasoline for a number of years

C � � ���

where � is the purchase price, � is the number of years, and � is a
constant based on assumptions of the cost of gasoline (per gallon),
the number of miles driven per year and the fuel efficiency in miles
per gallon.F-BF.1 All of the quantities going into the constant � are

F-BF.1 Write a function that describes a relationship between
two quantities.

estimates and likely will not be constant over time, but a more com-
plex model of gasoline costs and expected driving habits requires
information not available and perhaps unnecessary for decision-
making. Further, there are costs not included—insurance and main-
tenance, for example—and the effect of a gasoline-powered auto-
mobile on the environment is not considered. However, the simple
model may suffice to decide, say, between the purchase of a hybrid
version and a gasoline version of an automobile, where the basic
differences are in purchase price (hybrids may cost more) and fuel
efficiency. Following the advice attributed to Einstein that, “Every-
thing should be made as simple as possible, but not simpler,"1 we
can get good evidence to support the choice of the simple model
C � � �� , so in this situation this is “as simple as possible," but
dropping the purchase price p, or the term at would delete critical
information for our decision, based on cost differences. That would
delete necessary information, moving us to Einstein’s “simpler [than
possible]."

Models mimic features of reality. These features are often se-
lected for particular uses. For example, a road map is a model. So

1Probably a paraphrase of “It can scarcely be denied that the supreme goal
of all theory is to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation of a single datum
of experience” from “On the Method of Theoretical Physics.”
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is a geological map. Features that are important on road maps, e.g.,
major highways, may not be important on a geological map. The fea-
tures of the real world situation mimicked by a mathematical model
fall into three categories:2

• Things whose effects are neglected.

• Things that affect the model but whose behavior the model is
not designed to study—inputs or independent variables.

• Things that the model is designed to study—outputs or de-
pendent variables.3

These features of a mathematical model are helpful to keep in mind.
For example, in the cost function C above, the effect on environment,
insurance costs, and maintenance costs are neglected. Inputs are
cost of gasoline, miles driven per year, and fuel efficiency rate. The
output, or dependent variable, is the cost .

Modeling in K–12

Modeling is critically important, but is not easy. Some idealized,
simple modeling problems are needed for learning throughout K–12,
but real problems easily available and solvable (perhaps with the as-
sistance of technology). Graphing utilities, spreadsheets, computer
algebra systems, and dynamic geometry software are powerful tools
that can be used to model purely mathematical phenomena as well
as physical phenomena. Situations which are not modeled by sim-
ple equations can often be understood by simulation on a calculator,
desktop, or laptop, a process which many students will find espe-
cially engaging because of its exploratory and open-ended nature.
These tools allow for modeling complex real world situations, and
most real world situations are complex.

While there is certainly no limit to the sophistication of a model
or of the mathematics used in a model, the essence of modeling is
often to use humble mathematics in rather sophisticated ways. For
example, percentages are often crucial in modeling situations. “Dis-
tance equals rate times time” is a powerful idea that is introduced
in grade 6 [cite] that nevertheless forms the basis for many useful
models throughout high school and beyond. Or as another example,
when high school students make an order of magnitude estimate,
they may learn a great deal by using only simple multiplication and
division. Likewise, statistical modeling in high school might often in-
volve only measures of center and variability, rather than relying on
a host of sophisticated statistical techniques. “Back of the envelope”
modeling is one of the discipline’s most powerful forms.

2Bender, 1978, An Introduction to Mathematical Modeling, John Wiley and Sons.
3Statistical modeling also involves relationships among variables, but the rela-

tionship may be construed as association (e.g., correlation) rather than dependency.
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Many situations in the real world involve rate of change, with
models that involve a differential equation. Although differential
equations are not in the Standards, the interpretation of rates of
changeS-ID.7 and the study of functions with base rules of growthF-LE.1 S-ID.7 Interpret the slope (rate of change) and the intercept

(constant term) of a linear model in the context of the data.

F-LE.1 Distinguish between situations that can be modeled with
linear functions and with exponential functions.

prepares the way for the study of more sophisticated models in col-
lege. Likewise, using probability in modeling greatly extends the
scope of real world situations which can be modeled.

News media accounts of topics of current interest often illustrate
why modeling and understanding the models of others is important,
mostly for informed citizenship. For example, probabilities often are
stated in terms of odds in media accounts. Thus, to connect such
accounts to school mathematics, students need to know the relation-
ship between the two. Learning to model and understand models is
enhanced by seeing the same mathematics or statistics model sit-
uations in different contexts.• Media accounts provide those varied

• For example, right triangles are a frequent model for situations
that students may initially see as different mathematically, e.g.,
finding the length of the shadow cast by an upright pole and find-
ing the height of a tree or building. A line fitted to a scatter plot is
often used in statistics to model relationships between two mea-
surement quantities. Risk factors are often derived from relative
frequency within a single sample.

contexts in circumstances that require critical thinking. Analyzing
these accounts provides opportunities for students to maintain and
deepen their understanding of modeling in high school and after
graduation.4

The Modeling Process
In the Standards, modeling means using mathematics or statistics
to describe (i.e., model) a real world situation and deduce additional
information about the situation by mathematical or statistical com-
putation and analysis. For example, if the annual rate of inflation
is assumed to be 3% and your current salary is $38,000 per year,
what is an equivalent salary t years in the future? What salary is
equivalent in 10 years? The model is a familiar one to many:

S � 38�000 1�03

� �

This aspect of modeling produces information about the real world
situation via the mathematical model, i.e. the real world is under-
stood through the mathematics.

Complex models are often built hierarchically, out of simpler com-
ponents which can then be artfully joined together to capture the
behavior of the complex system. Certain simplifications have become
standard based on historical use. For example, the consumer price
index (CPI) and the cost of living index (COLI) are commonly cited
measures that serve as agreed-upon proxies for important economic
circumstances, substituting a single quantity for a more complicated
collection of quantities that tend to move as a group. There is even
an index of indexes, the index of leading economic indicators. The
monthly payments required to amortize a home mortgage over 30
years are computed by summing a geometric series and manipu-
lating the results.A-SSE.4 Numerous political and economic debates

A-SSE.4 Derive the formula for the sum of a finite geometric se-
ries (when the common ratio is not 1), and use the formula to
solve problems.4For further examples, see Dingman & Madison, 2010, “Quantitative Reasoning

in the Contemporary World” [two-part article], Numeracy, http://scholarcommons.
usf.edu/numeracy/vol3/iss2/.
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center on how one measures amounts of money, that is, what units
are used. Measuring amounts of money in nominal dollars (dollars-
of-the-day) over periods of several years is very different from mea-
suring in constant dollars (the dollar of a particular year). Mea-
suring in percent of gross domestic product (GDP) is also different.
Understanding what these are and how to move from one unit to the
others is critical in understanding many issues important to personal
prosperity and responsible citizenship.

Probability and statistical models abound in news media re-
ports. Complex and heretofore unusual graphics are made possible
by technology and in recent years the diversity of graphical models
in media accounts has increased enormously. Many of these mod-
els and the situations they describe are very important for making
decisions about health issues or political circumstances. Political
polls model elections themselves,S-IC.1 and skeptics decry their pre-

S-IC.1 Understand statistics as a process for making inferences
about population parameters based on a random sample from
that population.dictions because they are based on a small sample of all eligible

voters. Lack of understanding leads to suspicion and distrust of
democratic processes.

Modeling in High School

The Modeling Cycle
In high school, modeling involves a way of thought different from
what students are taught when they learn much of the core K–8
mathematics. It provides experience in approaching problems that
are not precisely formulated and for which there is not necessar-
ily a single “correct" answer. Deciding what is left out of a model
can be as important as deciding what is put in. Judgment, ap-
proximation, and critical thinking enter into the process. Modeling
can have differing goals depending on the situation—sometimes the
aim is quantitative prediction, for example in weather modeling, and
sometimes the aim is to create a simple model that captures some
qualitative aspect of the system with a goal of better understanding
the system, for example modeling the cyclic nature of predator-prey
populations.

Why is modeling difficult? Modeling requires multiple mental
activities and significant human skills of abstraction, analysis, and
communication. First, a real world situation must be understood in
terms familiar to the student. Critical variables must be identified
and those that represent essential features are selected. Second,
the interpreted situation must be represented—by diagrams, graphs,
equations, or tables. Moving from the interpretation to the represen-
tation involves reasoning—algebraic, proportional, quantitative, ge-
ometric, or statistical. Symbolic manipulation and calculationA-SSE.3

A-SSE.3 Choose and produce an equivalent form of an expres-
sion to reveal and explain properties of the quantity represented
by the expression.may follow to produce expressions for the desired quantities. A crit-

ical step is now to interpret the quantitative information in terms
of the original situation. The quantitative information must be ana-
lyzed or synthesized, that is, information is either combined to make
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some judgment or separated into pieces to do so. During this anal-
ysis or synthesis, assumptions are either made or assumptions are
evaluated. At this point, the information obtained is evaluated in
terms of the original situation. If the information is unreasonable or
inadequate, then the model may need to be modified to re-start the
whole process. If the information is reasonable and adequate, the
results are communicated in terms reflecting the original real world
context and the information sought by the student. Understanding
the limitations of the model involves critical thinking.

Problem
Represent
Mathematically

Reflect to
Validate

Communicate/

Report

Manipulate

Model

Analyse Results/

Interpret

This figure is a variation of the figures in the introduction to high
school modeling in the Standards.

Diagrams of modeling processes vary. For example, a diagram
that focuses on reasoning processes has four components: Descrip-
tion, Manipulation, Translation or Prediction, and Verification.5 Par-
titioning the modeling process into reasoning components is help-
ful in identifying where reasoning is succeeding or failing. This is
important in both assessing student work and guiding instruction.
These diagrams of modeling processes are intended as guides for
teachers and curriculum developers rather than as illustrations of
steps to be memorized by students.

Units and Modeling
Throughout the modeling process, units are critical for several rea-
sons, including guiding the symbolic or numeric calculations.N-Q.1

N-Q.1 Use units as a way to understand problems and to guide
the solution of multi-step problems; choose and interpret units
consistently in formulas; choose and interpret the scale and the
origin in graphs and data displays.Keeping track of units is very helpful in determining if the calcula-

tions are meaningful and lead to the desired results. Units are also
critical in the analysis and synthesis and in making or evaluating
assumptions, as well as determining reasonableness of answer. For
example, if analysis of a cost equation for driving an automobile in-
dicates that a typical driver in the US will drive 5000 miles per year,
one should check units to make sure that the gallons are US gallons
and the fuel efficiency is in miles per US gallon. Most of the world
measures gasoline in liters and distances in kilometers rather than
miles. (According to the Federal Highway Administration, the aver-
age number of miles driven per year by US drivers is over 13,000.)

5See Lesh & Doerr, 2003, Beyond Constructivism: Models and Modeling Perspec-
tives on Mathematics Problem Solving, Learning, and Teaching, Lawrence Erlbaum
Associates, p. 17.
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Units are almost always essential in communicating the results of a
model since answers to real world problems are usually quantities,
that is, numbers with units. Modeling prior to high school produces
measures of attributes such as length, area, and volume. In high
school, students encounter a wider variety of units in modeling such
as acceleration, percent of GDP, person-hours, and some measures
where the units are not specified and have to be understood in the
way the measure is defined.N-Q.2 For example, the S&P 500 stock

N-Q.2 Define appropriate quantities for the purpose of descrip-
tive modeling.index is a measure derived from the quotient of the value of 500

companies now and in 1940–42.

Modeling and the Standards for Mathematical Practice
One of the eight mathematical practice standards—MP4 Model with
mathematics—focuses on modeling and modeling draws on and de-
velops all eight. This helps explain why modeling with mathematics
and statistics is challenging. It is a capstone experience, the proof
of the pudding. To embody this, students might complete a capstone
experience in modeling.

Make sense of problems and persevere in solving them (MP1) be-
gins with the essence of problem solving by modeling: “Mathemati-
cally proficient students start by explaining to themselves the mean-
ing of a problem and looking for entry points to its solution." Solving
a real life problem in a non-mathematical context by mathematiz-
ing (i.e. modeling) requires knowing the meaning of the problem
and finding a mathematical representation. Later in this standard,
“Younger students might rely on using concrete objects or pictures
[i.e. models] to help conceptualize and solve a problem."

Reason abstractly and quantitatively (MP2) includes two critical
modeling activities. The first is “the ability to decontextualize—to
abstract a given situation and represent it symbolically and manip-
ulate," and the second is that “Quantitative reasoning entails habits
of creating a coherent representation of the problem at hand; con-
sidering the units involved." Decontextualizing and representing are
fundamental to problem solving by modeling.

Construct viable arguments and critique the reasoning of others
(MP3) notes that mathematically proficient students “reason induc-
tively about data, making plausible arguments that take into ac-
count the context from which the data arose"—the data being the
model educed from some context. Further, “Elementary students can
construct arguments using concrete referents (i.e. models) such as
objects, drawings, diagrams, and actions." Discussing the validity of
the model and the level of uncertainty in the results makes use of
these skills.

Use appropriate tools strategically (MP5) notes that “When mak-
ing mathematical models, [mathematically proficient students] know
that technology can enable them to visualize the results of varying
assumptions, explore consequences, and compare predictions with
data." Simulation provides an important path to explore the conse-
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quences of a model, and to see what happens when parameters of
the model are varied.

Attend to precision (MP6). Here the most important consider-
ation of modeling is to “express numerical answers with a degree
of precision appropriate for the problem context" and in appropriate
units. For example, if one is modeling the annual debt or surplus
(there were no surpluses) in the US federal budget over the decade
2001–2010, then common options for a unit are nominal dollars, con-
stant dollars, or percent of GDP. The degree of precision appropriate
for understanding the model is to the nearest billion dollars (or near-
est tenth percent of GDP) or perhaps the nearest ten billion dollars
(or nearest percent of GDP).N-Q.3 Beyond accuracy, modeling raises

N-Q.3 Choose a level of accuracy appropriate to limitations on
measurement when reporting quantities.the issue of uncertainty—how likely are the quantities we want to

model to be within a certain range. How much do features the model
neglects affect accuracy and uncertainty?

Look for and make use of structure (MP7). Here, looking closely
at a real world situation to discern relationships between quantities
is critical for mathematical modeling. Students look for patterns or
structure in the situation, for example, seeing the side of a right
triangle when a shadow is cast by an upright flagpole as part of a
right triangle or seeing the rise and run of a ramp on a staircase.

Look for and express regularity in repeated reasoning (MP8).
Modeling activities often involve multistep calculations and the whole
modeling cycle may need to be repeated. Here, mathematically pro-
ficient students “continually evaluate the reasonableness of their in-
termediate results" and “maintain oversight of the process" (in this
case, the modeling process).

Modeling and Reasonableness of Answers
Continually evaluating reasonableness of intermediate results in
problem solving is important in several of the standards for mathe-
matical practice. Doing this often requires having reference values,
sometimes called anchors or quantitative benchmarks, for compari-
son. Joel Best, in his book Stat-Spotting,6 lists a few quantitative
benchmarks necessary for understanding US social statistics: the
US population, the annual birth and death rates, and the approxi-
mate fractions of the minority subpopulations. Without these refer-
ence values, an answer of 27 million 18-year-olds in the US popu-
lation may seem reasonable. Such benchmarks for other measures
are helpful, providing quick ways to mentally check intermediate
answers while solving multistep problems. For example, it is very
helpful to know that a kilogram is approximately 2 pounds, a meter
is a bit longer than a yard, and there are about 3 liters in a gallon.
This kind of quantitative awareness can be developed with prac-

62008, Stat-Spotting: A Field Guide to Identifying Dubious Data, University of
California Press.
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tice, and easily expanded with the immense amount of information
readily available from the internet.

Statistics and Probability
Specific modeling standards appear throughout the high school stan-
dards indicated by a star symbol ( ). About one in four of the stan-
dards in Number and Quantity, Algebra, Functions, and Geometry
have a star, but the entire conceptual category of Statistics and
Probability has a star. In statistics, students use statistical and
probability models—whose data and variables are often embodied
in graphs, tables, and diagrams—to understand reality. Statistical
problem solving is an investigative process designed to understand
variability and uncertainty in real life situations. Students formu-
late a question (anticipating variability), collect data (acknowledging
variability), analyze data (accounting for variability), and interpret
results (allowing for variability).7 The final step is a report.

Much of the study of statistics and probability in Grades 6–8
concerns describing variability, building on experiences with cat-
egorical and measurement data in early grades (see the progres-
sions for these domains). In high school the focus shifts to drawing
inferences—that is, conclusions—from data in the face of statistical
uncertainty. In this process, analyzing data may have two steps:
representing data and fitting a function (often called the model)
which is intended to capture a relationship of the variables. For ex-
ample, bivariate quantitative data might be represented by a scatter
plot and then the scatter plot is modeled as a linear, quadratic, or
logarithmic function. A probability distribution might be represented
as a bar graph and then the bar graph is modeled by an exponential
function. See the high school Statistics and Probability Progression
for examples.

Because the Statistics and Probability Progression for high school
is also a modeling progression, the discussion here will only note
statistics and probability standards when they are related to mod-
eling standards in one of the other conceptual categories.

Developing High School Modeling

In early grades, students use models to represent addition and sub-
traction relationships among quantities such as 2 apples and 3 ap-
ples, and to understand numbers and arithmetic. Concrete models,
drawings, numerical equations, and diagrams help to explain arith-
metic as well as represent addition, subtraction, multiplication, and
division situations described in the Operations and Algebraic Think-
ing Progression. Later, students use graphs and symbolic equations

7See the American Statistical Association’s 2007 Guidelines for Assessment and
Instruction in Statistics Education, Alexandria, VA: American Statistical Association,
2007, pp. 11–15, http://www.amstat.org/education/gaise.
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to represent relationships among quantities such as the price of n
apples where p is the price per apple. In Grade 8, calculating and
interpreting the concept of slope may, in various contexts, draw on
interpreting subtraction as measuring change or as comparison, and
division as equal partition or as comparison (see Tables 2 and 3
of the Operations and Algebraic Thinking Progression). Creation of
exponential models builds on initial understanding of positive inte-
ger exponents as a representation of repeated multiplication, while
identifying the base of the exponential expression from a table re-
quires the unknown factor interpretation of division. Extension of an
exponential model from a geometric sequence to a function defined
on the real numbers builds on the understanding of rational and ir-
rational numbers developed in Grades 6–8 (see The Number System
Progression).

By the beginning of high school, variables and algebraic expres-
sions are available for representing quantities in a context. Modeling
in high school can proceed in two ways. First, problems can focus
directly on the concepts being studied, i.e., situations such as the
path of a projectile which are modeled by quadratic equations can
be a part of the study of quadratic equations. This is the traditional
path followed by having a section of word problems at the end of
a lesson. A second, more realistic, way to develop modeling is to
utilize situations that can become more complex as more mathe-
matics and statistics are learned.8 It is unlikely that one situation
can be used throughout high school modeling, but some situations
can be increased in complexity (examples are given in this progres-
sion). Modeling with mathematics in high school begins with linear
and exponential models and proceeds to representing more com-
plex situations with quadratics and other polynomials, geometric
and trigonometric models, logic models such as flow charts, dia-
grams with graphs and networks, composite functional models such
as logistic ones, and combinations and systems of these. Modeling
with statistics and probability (that is, as noted earlier, essentially
all of statistics and probability) is detailed in the progression for
that conceptual category.

Linear and Exponential Models
In high school, the most commonly occurring relationships are those
modeled by linear and exponential functions. Examples abound. The
number of miles traveled in � hours by an automobile at a speed of 30
miles per hour is 30� and the amount of money in an account earning
4% interest compounded annually after 3 years is P 1�04

3 where
P is the initial deposit. Students learn to identify the referents of

8For examples, see Schoen & Hirsch, “The Core-Plus Mathematics Project: Per-
spectives and Student Achievement,” and Senk, “Effects of the UCSMP Secondary
School Curriculum on Students’ Achievement” in Senk & Thompson (Eds.), 2003,
Standards-Based School Mathematics Curricula: What Are They? What Do Stu-
dents, Learn?, Lawrence Erlbaum Associates.
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symbols within expressions (MP2), e.g., 30 is the speed (or, later,
velocity), � is the time in hours, and to abstract distance traveled as
the product of velocity and time.

In Grade 8, students learned that functions are relationships
where one quantity (output or dependent variable) is determined
by another (input or independent variable).8.F.1 In high school, they

8.F.1Understand that a function is a rule that assigns to each
input exactly one output. The graph of a function is the set of or-
dered pairs consisting of an input and the corresponding output.9deepen their understanding of functions, learning that the set of

inputs is the domain of the function and the set of outputs is the
range.F-IF.1 For example, the car traveling 30 miles per hour travels

F-IF.1 Understand that a function from one set (called the do-
main) to another set (called the range) assigns to each element
of the domain exactly one element of the range. If � is a function
and � is an element of its domain, then � � denotes the output
of � corresponding to the input �. The graph of � is the graph of
the equation � � � .

a distance � in � hours is expressed as a function

� � 30��

Students learn that when a function arises in a real world context
a reasonable domain for the function is often determined by that
context. F-LE.5 Interpret the parameters in a linear or exponential func-

tion in terms of a context.Students learn that functions provide ways of comparing quan-
tities and making decisions. For example, a more fuel-efficient au- Comparing Functions

Year � S � A � Year � S � A �
0 -3000 3000 10 2000 4441
1 -2500 3120 11 2500 4618
2 -2000 3245 12 3000 4803
3 -1500 3375 13 3500 4995
4 -1000 3510 14 4000 5195
5 -500 3650 15 4500 5403
6 0 3796 16 5000 5619
7 500 3948 17 5500 5844
8 1000 4106 18 6000 6077
9 1500 4270 19 6500 6321

Outcomes for two scenarios at year �. If the hybrid is purchased,
its savings on gasoline costs plus the difference in price between
hybrid and gasoline models is shown as S � . If the gasoline
model is purchased and the price difference is invested, the
amount of the investment is A � .

Comparing Functions

0 10 20 30 40 50 60
-4000

4000

8000

12000

16000

20000

24000

A

S

t

Comparing outcomes for two scenarios: Buying and operating a
hybrid automobile vs buying and operating a gasoline
automobile and investing the difference in their prices.

tomobile costs $3000 more than a less fuel efficient one, and $500
per year will be saved on gasoline with the more efficient car. (This
can be made precisely realistic by using data, say, from comparing
a hybrid version to a gasoline version of an automotive model.) A
graph of the net savings function

S � 500� 3000

(see margin) will have a vertical intercept at S 3000 and a
horizontal intercept at � 6. Students learn that the horizontal
intercept, or the zero of the function, is the break-even point, that
is, by year 6 the $3000 extra cost has been recovered in savings on
gasoline costs.F-LE.5

As students learn more about comparing functions that have do-
mains other than the nonnegative integers, this example can be in-
creased in complexity.10 The buyer has the option of paying the
extra $3000 and saving money on gasoline or placing the $3000 in
a savings account earning 4% per year compounded yearly. One
option yields the net savings

S � 500� 3000

while the other yields amount

A � 3000 1�04

� �

Students compare S � and A � by graphs or tables over some num-
ber of years, the domain of the functions.F-IF.9 The expected time the

F-IF.9 Compare properties of two functions each represented in
a different way (algebraically, graphically, numerically in tables, or
by verbal descriptions).

buyer will drive the car determines a reasonable domain. A table
of values for A and S (shown in the margin) over years 1 to 20 is
likely to be sufficient for comparing the functions,F-IF.6 or, later when

F-IF.6 Calculate and interpret the average rate of change of a
function (presented symbolically or as a table) over a specified
interval. Estimate the rate of change from a graph.

10Example from Madison, Boersma, Diefenderfer, & Dingman, 2009, Case Studies
for Quantitative Reasoning, Pearson Custom Publishing.
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non-integer domains are understood, the graphs of S and A over the
interval [0,20] will give considerable information (see the margin).
The vertical intercepts of the two graphs and their two points of
intersection are interpreted in the context of the problem. Analysis
of the key features of the two graphsF-IF.4 provides opportunities for

F-IF.4 For a function that models a relationship between two
quantities, interpret key features of graphs and tables in terms
of the quantities, and sketch graphs showing key features given
a verbal description of the relationship.students to compare the behaviors of linear and exponential func-

tions. Students observe the average rates of change of the two
functions over various intervalsF-IF.6 and see why the exponential
function values will eventually overtake the linear function values
and remain greater beyond some point. Students can now report on
the information that will influence an economic decision by relating
the behavior of the graphs to the comparative savings.

F-IF.6 Calculate and interpret the average rate of change of a
function (presented symbolically or as a table) over a specified
interval. Estimate the rate of change from a graph.Students can again question the assumptions underlying the

models of the two savings functions. What is the effect if the cost of
gasoline changes? What is the effect if the number of miles driven
changes? What will be the results of periodically (say, annually)
placing the savings on gasoline costs in the savings account earn-
ing 4% per year compounded yearly? This latter option changes
the linear model to a second exponential model, starts with a sum
of a geometric series, which can be expressed either recursively
or with an explicit formula,F-BF.2 and points to the advantages of

F-BF.2 Write arithmetic and geometric sequences both recur-
sively and with an explicit formula, use them to model situations,
and translate between the two forms.rewriting the sum of exponential expressions as a single exponen-

tial expression.A-SSE.3c This reinforces that algebraic re-writing of A-SSE.3c Choose and produce an equivalent form of an expres-
sion to reveal and explain properties of the quantity represented
by the expression.

c Use the properties of exponents to transform expressions
for exponential functions.

expressions is helpful, sometimes essential, to achieve comprehen-
sible and usable models.

In the above example, students learn to question why the two
scenarios have a $6000 difference at year 0. Students might argue
that the $3000 is being invested two ways—one way is investing
in the automobile and one way is placing in a savings account.
The question then becomes: Which investment produces the most
returns? That would make both functions be 0 at time 0. Is it more

Comparing Functions
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reasonable to note that the difference is $3000 and not $6000? In
that case the graphs look like the ones here, and the table above is
altered by reducing each entry for A � by 3000.

Students learn that some initial representations and calculations
can be done by hand,F-IF.7 say, the graph of S � 500� 3000 and

F-IF.7 Graph functions expressed symbolically and show key fea-
tures of the graph, by hand in simple cases and using technology
for more complicated cases.

its key features. With iterations of the modeling cycle, the model
becomes more complicated. Specific outputs of the functions can be
calculated by hand, but technology is essential to understand the
overall situation.

Students learn to distinguish between scenarios like the one
above where two (or more) equations or functions give different re-
sults based on different assumptions about the situation and sce-
narios where the two (or more) equations (possibly, inequalities) or
functions express relationships among the quantities of interest un-
der the same assumptions. The latter scenarios are modeled by a
system of equations or inequalities. A system of equations imposes
multiple conditions on a situation, one for each of the equations. So-
lutions to systems must satisfy each of the equations. For example,
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a system of two linear equationsA-CED.3 will model the speed that A-CED.3 Represent constraints by equations or inequalities, and
by systems of equations and/or inequalities, and interpret solu-
tions as viable or nonviable options in a modeling context.

you can row a boat with no current and the speed of the current
provided you know the speed of the boat as you row with the cur-
rent and the speed you can row against the current. Students learn
how to describe situations by systems of two or three equations
or inequalities and to solve the systems using graphs, substitution,
or matrices. Students learn to detect if a system of equations is
consistent, inconsistent, or independent.

Later, as students are challenged to develop more complex mod-
els, the processes of solving systems of equations are used to synthe-
size and develop new relationships from systems of equations that
model a situation. Thus, students are challenged to use substitution
to combine parametric equations and giving the spatial coordinates
of a projectile as a function of time into a single relation modeling
the path of the projectile, or to incorporate a constraint on the vol-
ume into a formula giving the cost of a cylindrical can as a function
of the radius.

Counting, Probability, Odds and Modeling
In Grades 7 and 8, students learned about probability and analysis
of bivariate data. In high school, students learn the meanings of
correlation and causation. Correlation, along with standard devia-
tion, is interpreted in terms of a linear model of a data set. Students
distinguish in models of real data the difference between correlation
and causation.S-ID.7 ,S-ID.8 ,S-ID.9 S-ID.7 Interpret the slope (rate of change) and the intercept

(constant term) of a linear model in the context of the data.

S-ID.8 Compute (using technology) and interpret the correlation
coefficient of a linear fit.

S-ID.9 Distinguish between correlation and causation.

Students’ intuitions, affected by media reports and the surround-
ing culture (cf. Nobel Laureate Daniel Kahnemann’s Thinking Fast
and Slow), sometimes conflict with their study of probability. Un-
usual events do occur and unconditional theoretical probabilities are
based on what will happen over the long term and are not affected
by the past—the probability of a head on a coin flip is 1

2 even though
each of the seven previous flips resulted in a head. Students learn
how to reconcile accounts of probability from public and social me-
dia with their study of probability in school. For example, they learn
the intriguing difference between conspiracy and coincidence.

Relating the study of probability to everyday language and feel-
ings is important. Students learn about interpreting probabilities as
“how surprised should we be?" Students learn to understand mean-
ings of ordinary probabilistic words such as “unusual" by examples
such as: “The really unusual day would be one where nothing un-
usual happens" and “280 times a day, a one-in-a-million shot is going
to occur," given that there were approximately 280 million people in
the US at the time. Coincidence is described as “unexpected con-
nections that are both riveting and rattling."•

• “How surprised should we be?" is attributed to statistician
Bradley Efron. “The really unusual day" and other examples are
attributed to mathematician Persi Diaconis. See Belkin, 2002,
“The Odds of That," New York Times Magazine, http://www.
nytimes.com/2002/08/11/magazine/11COINCIDENCE.html.

Because probabilities are often stated in news media in terms
of odds against an event occurring, students learn to move from
probabilities to odds and back. For example, if the odds against
a horse winning a race are 4 to 1, the probability that the horse
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will win is estimated to be 1
1 4 . If the probability that another

horse will win is 0.4 then the odds against that horse winning is
the probability of not winning, 0.6, to the probability of winning, 0.4,
written as 0.6–0.4 or, equivalently, 3–2 or 3:2 and read as “3 to 2."
The equivalence of 0.6–0.4 and 3–2 highlights the fact that odds are
ratios of numbers, where the numerator and denominators convey
meaning. Students learn that the sum of the probabilities of mutually
exclusive events occurring cannot exceed 1, but that they sometimes
do in media reports where odds and probabilities are approximated
for simplicity.

Counting to determine probabilities continues into high school,
and student learning is reinforced with models. For example, the
birthday problem provides rich learning experiences and shows stu-
dents some outcomes that are not intuitively obvious. Counting the
number of possibilities for � birthdays yields an exponential expres-
sion 366

�, and counting of the number of possibilities for n birthdays
all to be different yields a permutation P366

� . The quotient is the
probability that � randomly chosen people will all have different
birthdays, yielding the probability of at least one birthday match
among � people. The often surprising result that when � 23 there
is approximately a 50-50 chance (probability of 0.5 or 50–50 odds)
of having a match. Students learn that the function

P � P366
�

366

�

models the probability of having no birthday match for � randomly
chosen people, and 1 P � is the probability of at least one birth-
day match. The results can be modeled by a spreadsheet revealing
the probabilities for � 2 to � 367. Students learn that it re-
quires at least 367 people to have a probability of 1 of a birthday
match and also learn about the behavior of technology in that the
spreadsheet values for the probability of at least one match become
1 (or at least report as 1) for values of � less than 367. Students
calculating P � using hand held calculators learn that for values of
� of approximately 40, many hand-held calculators cannot compute
the numerators and denominators because of their size. This pro-
vides an opportunity to learn that rewriting the quotient of the two,
too large numbers as the product of a sequence of simpler quotients
allows the calculator to compute the sequence of quotients and then
take their product. On TI calculators this takes the form

Prod Seq

�
366

� �� 366� 366 � 1� 1 �

that is, the product of the sequence

366

366

� 365

366

� � � � � 366 � 1

366

�

which students learn is a product of probabilities. Students learn
that more complex questions can be asked about birthday matches.
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For example, what is the probability of having exactly one, or exactly
two matches of birthdays among � people?

Key Features to Model
Students learn key features of the graphs of polynomials, rational
functions, exponential and logarithmic functions, and modifications
such as logistic functions to help in choosing a function that models
a real life situation. For example, logistic functions are used in mod-
eling how many students get a certain problem on a test right, and
thereby are used in evaluating the difficulty of a problem on a stan-
dardized test. A quadratic function might be considered as model of
profit from a business if the profit has one maximum (or minimum)
over the domain of interest. An exponential function may model a
population over some portion of the domain, but circumstances may
constrain the growth over other portions. Piecewise functions are
considered in situations where the behavior is different over different
portions of the domain of interest.

A common model for population growth

0 2 4 6 8 10 12 14 16 18 20

200

400

600

800

1000

The function shown in the graph is P � 800 300� ��

where � is a positive constant, the solution to
�P �

�� � 800 P � .

Students learn that real life circumstances such as changes in
populations are constrained by various conditions such as available
food supply and diseases. They learn that these conditions prevent
populations from growing exponentially over long periods of time. A
common model for growth of a population P results from a rate of
change of P being proportional to the difference between a limiting
constant and P , as in Newton’s law of cooling. This constrained ex-
ponential growth results in P being given by the difference between
the limiting constant and an exponentially decaying function. For
example, the margin shows the graph of a population that is initially
500 and approaches a limiting value of 800. Another common pop-
ulation growth model results from logistic functions where the rate
of growth of P is proportional to the product of P � P for some
constant �.

Students learn to look at key features of the graphs of models
of constrained exponential growth (or decay) and logistic functions
(intercepts, limiting values, and inflection points) and interpret these
key features into the circumstances being modeled.F-IF.4

F-IF.4 For a function that models a relationship between two
quantities, interpret key features of graphs and tables in terms
of the quantities, and sketch graphs showing key features given
a verbal description of the relationship.

Formulas as Models
Formulas are mathematical models of relationships among quan-
tities. Some are statements of laws of nature—e.g., Ohm’s Law,
V IR , or Newton’s law of cooling—and some are measurements
of one quantity in terms of others—e.g., V π�2�, the volume of
a right circular cylinder in terms of its radius and height.G-MG.2

G-MG.2 Apply concepts of density based on area and volume
in modeling situations (e.g., persons per square mile, BTUs per
cubic foot).Students learn how to manipulate formulas to isolate a quantity of

interest. For example, if the question is to what depth will 50 cu-
bic feet of a garden mulch cover a bed of area 20 square feet, then
the formula � V

A where � is the depth, V is the volume, and A
is the area, is an appropriate form.A-CED.4 If one wants a depth of 6

A-CED.4 Rearrange formulas to highlight a quantity of interest,
using the same reasoning as in solving equations.
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inches, then the form would be the appropriate for finding how much
mulch to buy. Students learn that the shape of the bed (modeled
as the base of a cylinder) does not matter, an application of Cav-
alieri’s principle;G-GMD.1 volume is the product of the area and the

G-GMD.1 Give an informal argument for the formulas for the cir-
cumference of a circle, area of a circle, volume of a cylinder, pyra-
mid, and cone.height.G-GMD.3

G-GMD.3 Use volume formulas for cylinders, pyramids, cones,
and spheres to solve problems.

Formulas that are models may sometimes be readily transformed
into functions that are models. For example, the formula for the vol-
ume of a cylinder can be viewed as giving volume as a function of
area of the base and the height, or, rearranging, giving the area of
the base as a function of the volume and height. Similarly, Ohm’s
law can be viewed as giving voltage as a function of current and
resistance. Newton’s law of cooling states that the rate of change
of the temperature of a cooling body is directionally proportional to
the difference between the temperature of the body and the temper-
ature of the environment, i.e., the ambient temperature.F-BF.1b This is

F-BF.1b Write a function that describes a relationship between
two quantities.

b Combine standard function types using arithmetic opera-
tions.another example of constrained exponential growth (or decay). The

solution of this change equation (a differential equation) gives the
temperature of the cooling body as a function of time.

In Grade 7 students learned about proportional relationships and
constants of proportionality.7.RP.2 These surface often in high school 7.RP.2Recognize and represent proportional relationships be-

tween quantities.modeling. Students learn that many modeling situations begin with
a statement like Ohm’s law or Newton’s law of cooling, that is, that
a quantity of interest, I , is directly proportional to a quantity, V ,
and inversely proportional to a quantity, R , i. e. I is given by the
product of a constant and V

I . Newton’s law of cooling is stated as
a proportionality giving the rate of change of the temperature at a
given moment as a product of a constant and the difference in the
temperatures—this can be used in forensic science to estimate the
time of death of a murder victim based on the temperature of the
body when it is found.

Right Triangle and Trigonometric Models Students learn that
many real world situations can be modeled by right triangles. These
include areas of regions that are made up of polygons, indirect mea-
surement problems, and approximations of areas of non-polygonal
regions such as circles. Examples are areas of regular polygons,
height of a flag pole, and approximation of the area of a circle by
regular polygons. Prior to extending the domains of the trigonomet-
ric functions by defining them in terms of arc length on the unit circle,
students understand the trigonometric functions as ratios of sides of
right triangles. These functions, paired with the Pythagorean The-
orem, provide powerful tools for modeling many situations.G-SRT.8 G-SRT.8 Use trigonometric ratios and the Pythagorean Theorem

to solve right triangles in applied problems.When the domains of the trigonometric functions are extended
beyond acute angles,F-TF.2 the reasons that these functions are called F-TF.2 Explain how the unit circle in the coordinate plane enables

the extension of trigonometric functions to all real numbers, inter-
preted as radian measures of angles traversed counterclockwise
around the unit circle.

“circular functions" become clearer. Many situations involving circu-
lar motion can be modeled by trigonometric functions. The example
below uses trigonometric functions and vector-valued functions. For
example, prior to GPSs, this is how sailors determined their latitude.
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Where the Modeling Progression might lead

As mentioned earlier, modeling in high school becomes more com-
plex and powerful as more mathematics and statistics are used to

!

r(t)%

O!

P=(g(t),!h(t))!

Adapted from Usiskin, Peressini, Marchisotto, & Stanley, 2003,
Mathematics for High School Teachers: An Advanced
Perspective, Pearson Prentice Hall, pp. 469–474.

describe real life circumstances. As students learn more, they learn
to use new concepts to extend simpler models previously studied.
Although a high school modeling problem is not likely to incorporate
all of high school mathematics, there are models that incorporate
many concepts and extend beyond the high school mathematics de-
scribed in the Standards. The motion of communication satellites
around the earth or the motion of an object spinning rapidly in a
circle by holding one end of a string with the other attached to the
object can be modeled as a point traversing a circle. The object (at
point P) is accelerated toward the center (O) of the circular path
and the magnitude of the acceleration is constant.

The position vector �� � joining O and P at time � is given by
�� � � � �� � � �� where �� 1� 0 and �� 0� 1 are unit vectors.
By considering the geometry and the physics of the situation, one
can show that there are functions � � and � � (twice differentiable,
giving the velocity and acceleration vectors of the motion) satisfying
the conditions of the model. Noting the similarities of the conditions
on � and � to the behavior of the trigonometric functions sin �
and cos � one can show that indeed the vector function describes
uniform circular motion for an object P on a circle of radius R and
a constant magnitude of acceleration.F-TF.5 F-TF.5 Choose trigonometric functions to model periodic phe-

nomena with specified amplitude, frequency, and midline.
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