Knowing Mathematics
for Teaching

Who Knows Mathematics Well Enough
10 1each Third Grade, and
How Can We Decide?

By Deborah Loewenberg Ball, Heather C. Hill, and Hyman Bass

ith the release of every new international mathe-

matics assessment, concern about U.S. students’

mathematics achievement has grown. Each
mediocre showing by American students makes it plain that
the teaching and learning of mathematics needs improve-
ment. Thus, the country, once more, has begun to turn its
worried attention to mathematics education. Unfortunately,
past reform movements have consisted more of effort than
effect. We are not likely to succeed this time, either, with-
out accounting for the disappointing outcomes of past ef-
forts and examining the factors that contribute to success in
other countries. Consider what research and experience
consistently reveal: Although the typical methods of im-
proving U.S. instructional quality have been to develop cur-
riculum, and—especially in the last decade—to articulate
standards for what students should learn, little improve-
ment is possible without direct attention to the practice of
teaching. Strong standards and quality curriculum are im-
portant. But no curriculum teaches itself, and standards do
not operate independently of professionals’ use of them. To
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implement standards and curriculum effectively, school sys-
tems depend upon the work of skilled teachers who under-
stand the subject matter. How well teachers know mathe-
matics is central to their capacity to use instructional mate-
rials wisely, to assess students’ progress, and to make sound
judgments about presentation, emphasis, and sequencing.

That the quality of mathematics teaching depends on
teachers” knowledge of the content should not be a surprise.
Equally unsurprising is that many U.S. teachers lack sound
mathematical understanding and skill. This is to be ex-
pected because most teachers—like most other adults in
this country—are graduates of the very system that we seek
to improve. Their own opportunities to learn mathematics
have been uneven, and often inadequate, just like those of
their non-teaching peers. Studies over the past 15 years
consistently reveal that the mathematical knowledge of
many teachers is dismayingly thin.' Invisible in chis re-
search, however, is the fact that the mathematical knowl-
edge of most adult Americans is as weak, and often weaker.
We are simply failing to reach reasonable standards of
mathematical proficiency with most of our students, and
those students become the next generation of adults, some
of them teachers. This is a big problem, and a challenge to
our desire to improve.

! For example, Liping Ma’s 1999 book, Knowing and Teaching
Elementary Mathematics, broadened interest in the question of how
teachers need to know mathematics to teach (Ma, 1999). In her study,
Ma compared Chinese and U.S. elementary teachers’ mathematical
knowledge. Producing a portrait of dramatic differences between the
two groups, Ma used her data to develop a notion of “profound
understanding of fundamental mathematics,” an argument for a kind
of connected, curricularly-structured, and longitudinally coherent
knowledge of core mathematical ideas. (For a review of this book, see
the Fall 1999 issue of American Educator, www.aft.org/pubs-
reports/american_educator/fall99/amed1.pdf.)
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What is less obvious is the remedy. One often-proposed
solution is to require teachers to study more mathematics,
either by requiring additional coursework for teachers,? or
even stipulating a subject-matter major.’ Others advocate a
more practice-grounded approach, preparing teachers in the
mathematics they will use on the job. Often, these advocates
call for revamping mathematics methods coursework and
professional development to focus more closely on the
mathematics contained in classrooms, curriculum materials,
and students’ minds. Still others argue that we should draw
new recruits from highly selective colleges, betting that over-
all intelligence and basic mathematics competence will prove
effective in producing student learning. Advocates for this
proposal pointedly eschew formal education courses for
these new recruits, betting that little is learned in schools of
education about teaching mathematics effectively.

At issue in these proposals is the scope and nature of the
mathematical knowledge needed for teaching. Do teachers
need knowledge of advanced calculus, linear algebra, ab-
stract algebra, differential equations, or complex variables in
order to successfully teach high school students? Middle
school students? Elementary students? Or do teachers only
need to know the topics they actually teach to students? Al-
ternatively, is there a professional knowledge of mathematics
for teaching, tailored to the work teachers do with curricu-
lum materials, instruction, and students?

Despite the uproar and the wide array of proposed solu-
tions, the effects of these advocated changes in teachers’
mathematical knowledge on student achievement are un-
proven or, in many cases, hotly contested. Although many
studies demonstrate that teachers’ mathematical knowledge
helps support increased student achievement, the actual na-
ture and extent of that knowledge—whether it is simply
basic skills at the grades they teach, or complex and profes-
sionally specific mathematical knowledge—is largely un-
known. The benefits to student learning of teachers’ addi-

? For example, in the 2001 report, The Mathematical Education of
Teachers, the Conference Board of the Mathematical Sciences,
American Mathematical Society, and Mathematical Association of
America call for prospective elementary teachers to take at least nine
semester-hours on fundamental ideas of elementary school
mathematics; prospective middle-grades math teachers to take at least
21 semester-hours of mathematics, including at least 12 semester-
hours on fundamental ideas of school mathematics appropriate for the
middle grades; and prospective high school mathematics teachers to
complete the equivalent of an undergraduate major in mathematics,
including a 6-hour capstone course connecting their college
mathematics courses with high school mathematics. The report
recommends that prospective teachers take mathematics courses “that
develop a deep understanding of the mathematics they will teach,” and
“a thorough mastery of the mathematics in several grades beyond that
which they expect to teach, as well as of the mathematics in earlier
grades.”

3 NCLB requires that all new middle- and high-school teachers
demonstrate subject-matter competency by 1) passing a state academic
subject test in each of the subjects in which they teach; or 2)
completing an academic major, a graduate degree, coursework
equivalent to an undergraduate academic major, or advanced
certification or credentialing in each of the subjects in which they

teach (Public Law 107-110, Section 9101 [23]).
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Although many studies demonstrate
that teachers’ mathematical
knowledge helps support increased
student achievement, the actual na-
ture and extent of that knowledge—
whether it is simply basic skills at the
grades they teach, or complex and
professionally specific mathematical
knowledge—is largely unknown.

tional coursework, either in mathematics itself or “mathe-
matics methods”—courses that advise ways to teach mathe-
matics to students—are disputed by leading authorities in
the field. Few studies have been successful in pinpointing an
appropriate mathematics “curriculum”—whether it be
purely mathematical, grounded in practice, or both—that
can provide teachers with the appropriate mathematics to
help students learn (Wilson and Berne, 1999). Similarly, we
know too little about the effectiveness of recruits who bypass
traditional schools of education. What is needed are more
programs of research that complete the cycle, linking teach-
ers mathematical preparation and knowledge to their stu-
dents’ achievement.

In this article, we describe one such program of research
that we have been developing for more than a decade. In
1997, building on earlier work (see Ball and Bass, 2003), we
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began a close examination of the actual work of teaching ele-
mentary school mathematics, noting all of the challenges in
this work that draw on mathematical resources, and then we
analyzed the nature of such mathematical knowledge and
skills and how they are held and used in the work of teach-
ing. From this we derived a practice-based portrait of what
we call “mathematical knowledge for teaching”—a kind of
professional knowledge of mathematics different from that
demanded by other mathematically intensive occupations,
such as engineering, physics, accounting, or carpentry. We
then rigorously tested our hypothesis about this “profes-
sional” knowledge of mathematics, first by generating spe-
cial measures of teachers’ professional mathematical knowl-
edge and then by linking those measures to growth in stu-
dents’ mathematical achievement. We found that teachers
who scored higher on our measures of mathematical knowl-
edge for teaching produced better gains in student achieve-
ment. This article traces the development of these ideas and
describes this professional knowledge of mathematics for
teaching.

What Does It Mean To Know
Mathematics for Teaching?

Every day in mathematics classrooms across this country,
students get answers mystifyingly wrong, obtain right an-
swers using unconventional approaches, and ask questions:
Why does it work to “add a zero” to multiply a number by
ten? Why, then, do we “move the decimal point” when we
multiply decimals by ten? And is this a different procedure
or different aspects of the same procedure—changing the
place value by one unit of ten? Is zero even or odd? What is
the smallest fraction? Mathematical procedures that are au-
tomatic for adults are far from obvious to students; distin-
guishing between everyday and technical uses of terms—
mean, similar, even, rational, line, volume—complicates
communication. Although polished mathematical knowl-
edge is an elegant and well-structured domain, the mathe-
matical knowledge held and expressed by students is often
incomplete and difficult to understand. Others can avoid
dealing with this emergent mathematics, but teachers are in
the unique position of having to professionally scrutinize,
interpret, correct, and extend this knowledge.

Having taught and observed many mathematics lessons
ourselves, it seemed clear to us that these “classroom prob-
lems” were also mathematical problems—but not the kind
of mathematical problems found in the traditional disci-
plinary canons or coursework. While it seemed obvious that
teachers had to know the topics and procedures they
teach—factoring, primes, equivalent fractions, functions,
translations and rotations, and so on—our experiences and
observations kept highlighting additional dimensions of the
knowledge useful in classrooms. In keeping with this obser-
vation, we decided to focus our efforts on bringing the na-
ture of this additional knowledge to light, asking what, in
practice, teachers need to know about mathematics to be
successful with students in classrooms.

To make headway on these questions, we have focused on

the “work of teaching” (Ball, 1993; Lampert, 2001). What
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do teachers do in teaching mathematics, and in what ways
does what they do demand mathematical reasoning, insight,
understanding, and skill? Instead of starting with the cur-
riculum they teach, or the standards for which they are re-
sponsible, we have been studying teachers’ work. By “teach-
ing,” we mean everything that teachers do to support the in-
struction of their students. Clearly we mean the interactive
work of teaching lessons in classrooms, and all the tasks that
arise in the course of that. But we also mean planning those
lessons, evaluating students” work, writing and grading as-
sessments, explaining class work to parents, making and
managing homework, attending to concerns for equity, deal-
ing with the building principal who has strong views about
the math curriculum, etc. Each of these tasks involves
knowledge of mathematical ideas, skills of mathematical rea-
soning and communication, fluency with examples and
terms, and thoughtfulness about the nature of mathematical
proficiency (Kilpatrick, Swafford, and Findell, 2001).

To illustrate briefly what it means to know mathematics
for teaching, we take a specific mathematical topic—multi-
plication of whole numbers. One aspect of this knowledge is
to be able to use a reliable algorithm to calculate an answer.
Consider the following multiplication problem:

35
X 25

Most readers will remember how to carry out the steps of
the procedure, or algorithm, they learned, resulting in the
following:

1
2
35
X 25
175
70

875

Clearly, being able to multiply correctly is essential
knowledge for teaching multiplication to students. But this
is also insufficient for teaching. Teachers do not merely do
problems while students watch. They must explain, listen,
and examine students’ work. They must choose useful mod-
els or examples. Doing these things requires additional
mathematical insight and understanding.

Teachers must, for example, be able to see and size up a
typical wrong answer:

35
X 25

175
70
245

Recognizing that this student’s answer as wrong is one step,

to be sure. But effective teaching also entails analyzing the

source of the error. In this case, a student has not “moved
» .

over” the 70 on the second line.

(Continued on page 20)
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Knowing Mathematics
(Continued from page 17)

Sometimes the errors require more mathematical analysis:

1
2
35
X 25
255
80

1055

What has happened here? Teachers may have to look longer
at the mathematical steps that produced this, but most will
be able to see the source of the error.” Of course teachers can
always ask students to explain what they did, but if a teacher
has 30 students and is at home grading students’ homework,
it helps to have a good hypothesis about what might be
causing the error.

But error analysis is not all that teachers do. Students not
only make mistakes, they ask questions, use models, and
think up their own non-standard methods to solve prob-
lems. Teaching also involves explaining why the 70 should
be slid over so that the 0 is under the 7 in 175—that the
second step actually represents 35 X 20, not 35 X 2 as it
appears.

Teaching entails using representations. What is an effective
way to represent the meaning of the algorithm for multiply-
ing whole numbers? One possible way to do it is to use an
area model, portraying a rectangle with side lengths of 35
and 25, and show that the area produced is 875 square units:

| 20 — 5 —|

Figure 1.

F—

Doing this carefully requires explicit attention to units, and
to the difference between linear (i.e., side lengths) and area
measures (Ball, Lubienski, and Mewborn, 2001).
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Connecting Figure 1 to the full partial product version of
the algorithm is another aspect of knowing mathematics for
teaching:

35

X 25
25
150
100

+ 600

875

The model displays each of the partial products—25, 150,
100, and 600—and shows the factors that produce those
products—5 X 5 (lower right hand corner), 20 X 5 (lower
left hand corner), for example. Examining the diagram verti-
cally reveals the two products—700 and 175—from the
conventional algorithm illustrated earlier:

35
X 25

175
70
875

Representation involves substantial skill in making these
connections. It also entails subtle mathematical considera-
tions. For example, what would be strategic numbers to use
in an example? The numbers 35 and 25 may not be ideal
choices to show the essential conceptual underpinnings of
the algorithm. Would 42 and 70 be better? What are the
considerations in choosing a good example for instructional
purposes? Should the numerical examples require regroup-
ing, or should examples be sequenced from ones requiring
no regrouping to ones that do? And what about the role of
zeros at different points in the procedure? Careful advance
thought about such choices is5 a further form of mathemati-
cal insight crucial to teaching.

Note that nothing we have said up to this point involves
knowing about students. Nothing implies a particular way
to teach multiplication or to remedy student errors. We do
not suggest that such knowledge is unimportant. But we do
argue that, in teaching, there is more to “knowing the sub-
ject” than meets the eye. We seek to uncover what that
“more” is. Each step in the multiplication example has in-
volved a deeper and more explicit knowledge of multiplica-

“ Here the student has likely multiplied 5 X 5 to get 25, but then when
the student “carried” the 2, he or she added the 2 to the 3 before
multiplying it by the 5—hence, 5 X 5 again, yielding 25, rather than
(3 X 5) + 2 = 17. Similarly, on the second row, he or she added the 1
to the 3 before multiplying, yielding 4 X 2 instead of (3 X 2) + 1 =7.
* Two-digit factors, with “carries,” present all general phenomena in the
multiplication algorithm in computationally simple cases. The presence
of zero digits in either factor demands special care. The general rules
still apply, but because subtleties arise, these problems are not
recommended for students’ first work. For example, in 42 X 70,
students must consider how to handle the 0. In general, it is preferable
for students to master the basic algorithm (i.e., multiplication problems
with no regrouping) before moving on to problems that present
additional complexities.
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tion than that entailed by simply performing a correct calcu-
lation. Each step points to some element of knowing the
topic in ways central to teaching it.

Our example helps to make plain that knowing mathe-
matics for teaching demands a kind of depth and detail that
goes well beyond what is needed to carry out the algorithm
reliably. Further, it indicates that there are predictable and re-
current tasks that teachers face that are deeply entwined with
mathematics and mathematical reasoning—figuring out
where a student has gone wrong (error analysis), explaining
the basis for an algorithm in words that children can under-
stand and showing why it works (principled knowledge of al-
gorithms and mathematical reasoning), and using mathe-
matical representations. Important to note is that each of
these common tasks of teaching involves mathematical rea-
soning as much as it does pedagogical thinking.

We deliberately chose an example involving concepts of
number and operations. Similar examples can be developed
about most mathematical topics, including the definition of
a polygon (Ball and Bass, 2003), calculating and explaining
an average, or proving the completeness of a solution set to
an elementary mathematics problem. Being able to carry out
and understand multi-step problems is another site for ex-
plicit mathematical insight in teaching. Each of these re-
quires more than being able to answer the question oneself.
The teacher has to think from the learner’s perspective and
to consider what it takes to understand a mathematical idea
for someone seeing it for the first time. Dewey (1902) cap-
tured this idea with the notion of “psychologizing” the sub-
ject matter, seeing the structures of the subject matter as it is
learned, not only in its finished logical form.

It should come as no surprise then that an emergent
theme in our research is the centrality of mathematical lan-
guage and the need for a special kind of fluency with mathe-
matical terms. In both our records from a variety of class-
rooms and our experiments in teaching elementary students,
we see that teachers must constantly make judgments about
how to define terms and whether to permit informal lan-
guage or introduce and use technical vocabulary, grammar,
and syntax. When might imprecise or ambiguous language
be pedagogically preferable and when might it threaten the
development of correct understanding? For example, is it
fair to say to second-graders that they “cannot take a larger
number away from a smaller one” or does concern for math-
ematical integrity demand an accurate statement (for exam-
ple, “with the numbers we know now, we do not have an an-
swer when we subtract a large number from a smaller one”)?
How should a rectangle be defined so that fourth-graders
can sort out which of the shapes in Figure 2 are and are not
called “rectangles,” and why?

The typical concept held by fourth-graders would lead
them to be unsure about several of these shapes, and the
commonly-held “definition”—"a shape with two long sides
and two short sides, and right angles”—does not help them
to reconcile their uncertainty. Students who learn shapes
only by illustration and example often construct images that
are entirely wrong. For example, in a fourth-grade class
taught by Ball, several students believed that “A” in Figure 2
was a rectangle because it was a “box,” and, in an age of

FALL 2005

Figure 2. Candidate shapes: Which are rectangles?

computer graphics, they translated “rectangle” to “box”
without a blink. Teachers need skill with mathematical
terms and discourse that enable careful mathematical work
by students, and that do not spawn misconceptions or er-
rors. Students need definitions that are usable, relying on
terms and ideas they already understand. This requires
teachers to know more than the definitions they might en-
counter in university courses. Consider, for example, how
“even numbers” might be specified for learners in ways that
do not lead students to accept 1%% as even (i.c., it can be
split into two equal parts) and, still, to identify zero as even.
For example, defining even numbers as “numbers that can
be divided in half equally” allows Y4, 1V%, ¥, and all other
fractions to be considered even. Being more careful would
lead to definitions such as, “A number is considered even if
and only if it is the sum of an integer with itself” or, for stu-
dents who do not work with integers yet: “Whole numbers
that can be divided into pairs (or twos) with nothing left
over are called even numbers.” Although expressed in sim-
pler terms, these definitions are similar to a typical defini-
tion taught in number theory: “Even numbers are of the
form 2k, where k is an integer.” They are accessible to ele-
mentary students without sacrificing mathematical precision
or integrity.

In our data, we see repeatedly the need for teachers to
have a specialized fluency with mathematical language, with
what counts as a mathematical explanation, and with how to
use symbols with care. In addition to continuing to probe
the ways in which teachers need to understand the topics of
the school curriculum, and the mathematical ideas to which
they lead, we will explore in more detail how mathemartical
language—its construction, use, and cultivation—is used in
the work of teaching.
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Knowing mathematics
for teaching demands

a kind of depth and detail
that goes well beyond
what is needed to
carry out

the algorithm

reliably.

Measuring Mathematical
Knowledge for Teaching

Using the methods described above, we could have contin-
ued simply to explore and map the terrain of mathematical
knowledge for teaching. Because such work is slow and re-
quires great care, we examined only a fraction of the possible
topics, grade levels, and mathematical practices teachers
might know. However, we believe that on/y developing
grounded theory about the elements and definition of math-
ematical knowledge for teaching is not enough. If we argue
for professional knowledge for teaching mathematics, the
burden is on us to demonstrate that improving this knowl-
edge also enhances student achievement. And, as the current
debates over teacher preparation demonstrate, there are le-
gitimate competing definitions of mathematical knowledge
for teaching and, by extension, what “teacher quality” means
for mathematics instruction. To test our emerging ideas, and
provide evidence beyond examples and logical argument, we
developed (and continue to refine) large-scale survey-based
measures of mathematical knowledge for teaching.

Our two main questions were: Is there a body of mathe-
matical knowledge for teaching that is specialized for the
work that teachers do? And does it have a demonstrable ef-
fect on student achievement? To answer these questions, we
needed to build data sets that would allow us to test our hy-
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potheses empirically. This required us to pose many items to
a large number of teachers; to control for the many factors
that are also likely to contribute to students’ learning and
detect an effect of what we hypothesized as “mathematical
knowledge for teaching,” large data sets were essential. An-
ticipating that samples of a thousand or more teachers might
be required to answer our questions, however, we quickly
saw that interviews, written responses, and other forms of
measuring teachers’ mathematical knowledge would not do,
and we set out to try to develop multiple-choice measures,
the feasibility of which others doubted and we ourselves
were unsure.
Our collaborators experienced in educational mea-
surement informed us that the first step in construct-
ing any assessment is to set out a “domain map,” or
a description of the topics and knowledge to be
measured. We chose to focus our initial work
within the mathematical domains that are es-
pecially important for elementary teaching:
number and operations. These are important
both because they dominate the school curricu-
lum and because they are vital to students’ learn-
ing. In addition, we chose the domain of patterns, func-
tions, and algebra because it represents a newer strand of the
K-6 curriculum, thus allowing for investigation of what
teachers know about this topic now, and perhaps how
knowledge increases over time, as better curriculum and
professional development become available and teachers
gain experience in teaching this domain. We have since
added geometry items and expanded our measures upward
through middle school content.

Once the domains were specified, we invited a range of ex-
perts to write assessment items—mathematics educators,
mathematicians, professional developers, project staff, and
classroom teachers. We asked for items that posed questions
related to the situations that teachers face in their daily work,
written in multiple-choice format to facilitate the scoring and
scaling of large numbers of teacher responses. We strove to
produce items that were ideologically neutral; for example,
rejecting any items where a “right” answer might indicate an
orientation to “traditional” or “reform” teaching. Finally, we
defined mathematical content knowledge for teaching as
being composed of two key elements: “common” knowledge
of mathematics that any well-educated adult should have
and mathematical knowledge that is “specialized” to the work
of teaching and that only teachers need know. We tried to
capture both of these elements in our assessment.

To measure common knowledge of mathematics, we de-
veloped questions that, while set in teaching scenarios, still
require only the understanding held by most adults. Figure 3
presents one such item:

Ms. Dominguez was working with a new textbook and she no-

ticed that it gave more attention to the number 0 than her old

book. She came across a page that asked students to determine

if a few statements about 0 were true or false. Intrigued, she

showed them to her sister who is also a teacher, and asked her

what she thought.
(Continued on page 43)
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Knowing Mathematics
(Continued from page 22)

Which statement(s) should the sisters select as being true?
(Mark YES, NO, or I'M NOT SURE for each item below.)

Yes No I'm not sure
a) 0 isan even number. 1 2 3
b) 0 is not really a number. 1 2 3
It is a placeholder in
writing big numbers.
¢) The number 8 can be 1 2 3

written as 008.

Figure 3. Item measuring common content knowledge

To measure the more specialized knowledge of mathemat-
ics, we designed items that ask teachers to show or represent
numbers or operations using pictures or manipulatives, and
to provide explanations for common mathematical rules
(e.g., why any number is divisible by 4 if the number
formed by the last two digits is divisible by 4).

Figure 4 shows an item that measures specialized content
knowledge. In this scenario, respondents evaluate three differ-
ent approaches to multiplying 35 X 25 and determine
whether any of these is a valid general method for multiplica-
tion. Any adult should know how to multply 35 X 25 (see
our earlier example), but teachers are often faced with evaluat-
ing unconventional student methods that produce correct an-
swers, but whose generalizability or mathematical validity are
not immediately clear. For teachers to be effective, they must
be able to size up mathematical issues that come up in class—
often fluently and with little time.

Imagine that you are working with your class on multiplying

large numbers. Among your students’ papers, you notice that
some have displayed their work in the following ways:

Student A Student B Student C
35 35 35
X 25 X 25 X 25
125 175 25
+ 75 + 700 150
875 875 100
+ 600
875

Which of these students is using a method that could be used
to multiply any two whole numbers?

Method would work ~ Method would NOT
for all whole work for all whole I’'m not sure
numbers numbers
a) Method A 1 2 3
b) Method B 1 2 3
¢) Method C 1 2 3

Figure 4. Item measuring specialized content knowledge
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The claim that we can measure
knowledge that is related to high-
quality teaching requires solid

evidence.

Although students are mentioned in this item, the question
does not actually tap respondents’ knowledge of students, or
of how to teach multiplication to students. Instead, it asks a
mathematical question about alternate solution methods,
which represents an important skill for effective teaching.

base on teaching and learning mathematics, analyses
of curriculum materials, examples of student work,
and personal experience, we have developed over 250 multi-
ple-choice items designed to measure teachers’ common and
specialized mathematical knowledge for teaching. Many
dozens more are under development. Building a good item
from start (early idea stage) to finish (reviewed, revised, cri-
tiqued, polished, pilot-tested, and analyzed) takes over a
year, and is expensive. However we regarded this as an essen-
tial investment—a necessary trade-off for the ease, reliability,
and economy of a large-scale multiple-choice assessment.
Our aim is to identify the content knowledge needed for
effective practice and to build measures of that knowledge
that can be used by other researchers. The claim that we can
measure knowledge that is related to high-quality teaching
requires solid evidence. Most important for our purposes is
whether high performance on our items is related to effec-
tive instruction. Do teachers’ scores on our items predict
that they teach with mathematical skill, or that their stu-
dents learn more, or better?

Based on our study of practice as well as the research
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Is There Knowledge of Mathematics for
Teaching? What Do Our Studies Show?

We were fortunate to be involved in a study that would
allow us to answer this question. The Study of Instructional
Improvement, or SII, is a longitudinal study of schools en-
gaged in comprehensive school reform efforts. As part of
that study, we collected student scores on the mathematics
portion of the Terra Nova (a reliable and valid standardized
test) and calculated a “gain score”—or how many points
they gained over the course of a year. We also collected in-
formation on these students’ family background—in partic-
ular their socioeconomic status, or SES—for use in predict-
ing the size of student gain scores. And importantly, we also
included many of our survey items—including those in Fig-
ures 3 and 4—on the teacher questionnaire. Half of these
items measured “common” content knowledge and half
measured “specialized” content knowledge. Teachers who
participated in the study by answering these questions al-
lowed us to test the relationship between their knowledge
for teaching mathematics and the size of their students’ gain
on the Terra Nova.

The results were clear: In the analysis of 700 first- and
third-grade teachers (and almost 3,000 students), we found
that teachers’ performance on our knowledge for teaching
questions—including both common and specialized content
knowledge—significantly predicted the size of student
gain scores, even though we controlled for things
such as student SES, student absence rate,
teacher credentials, teacher experience, and
average length of mathematics lessons
(Hill, Rowan, and Ball, 2005). The stu-
dents of teachers who answered more items
correctly gained more over the course of a year
of instruction.

Comparing a teacher who achieved an average score on
our measure of teacher knowledge to a teacher who was in
the top quartile, the students of the above-average teacher
showed gains in their scores that were equivalent to that of an
extra two to three weeks of instruction. Moreover, the size of
the effect of teachers’ mathematical knowledge for teaching
was comparable to the size of the effect of socioeconomic sta-
tus on student gain scores. This was a promising finding be-
cause it suggests that improving teachers’ knowledge may be
one way to stall the widening of the achievement gap as poor
children move through school. The research literature on the
effect of SES on student achievement indicates that there
tends to be a significant achievement gap when students first
enter school and that many disadvantaged children fall fur-
ther and further behind with each year of schooling. Our
finding indicates that, while teachers’ mathematical knowl-
edge would not by itself overcome the existing achievement
gap, it could prevent that gap from growing. Thus, our re-
search suggests that one important contribution we can make
toward social justice is to ensure that every student has a
teacher who comes to the classroom equipped with the math-
ematical knowledge needed for teaching.

This result naturally led us to another question: Is teach-
ers mathematical knowledge distributed evenly across our
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Teachers’ performance on our
knowledge for teaching questions—
including both common and
specialized content knowledge—
significantly predicted the size of

student gain scores.

sample of students and schools, regardless of student race
and socioeconomic status? Or, are minority and higher-
poverty students taught by teachers with less of this knowl-
edge? Our data show only a very mild relationship between
student SES and teacher knowledge, with teachers of higher-
poverty students likely to have less mathematical knowledge.
The relationship with students’ race, however, was stronger.
In the third grade, for instance, student minority status and
teacher knowledge were negatively correlated, at —.26. That
is, higher-knowledge teachers tended to teach non-minority
students, leaving minority students with less knowledgeable
teachers who are unable to contribute as much to students’
knowledge over the course of a year. We find these results
shameful. Unfortunately, they are also similar to those found
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elsewhere with other samples of schools and teachers (Hill
and Lubienksi, in press; Loeb and Reininger, 2004). They
also suggest that a portion of the achievement gap on the
National Assessment of Educational Progress and other stan-
dardized assessments might result from teachers with less
mathematical knowledge teaching more disadvantaged stu-
dents. One strategy toward narrowing this gap, then, could
be investing in the quality of mathematics content knowl-
edge among teachers working in disadvantaged schools. This
suggestion is underscored by the comparable effect sizes of
teachers’ knowledge and students’ socioeconomic status on
achievement gains.

Another arena for testing our ideas is in professional de-
velopment. If there is knowledge of mathematics for teach-
ing, as our studies suggest, then it should be possible for
programs to help teachers acquire such knowledge. To probe
this, we investigated whether elementary teachers learned
mathematical knowledge for teaching in a relatively tradi-
tional professional development setting—the summer work-
shop component of California’s K-6 mathematics profes-
sional development institutes—and, if so, how much and
what those teachers learned (Hill and Ball, 2004). We ex-
plored whether our measures of teachers’ content knowledge
for teaching could be deployed to evaluate a large public
program rigorously. We found that teachers did learn con-
tent knowledge for teaching mathematics as a result of at-
tending these institutes. We also found that greater perfor-
mance gains on our measures were related to the length of
the institutes and to curricula that focused on proof, analy-
sis, exploration, communication, and representations (Hill
and Ball, 2004). In addition to these specific findings, this
study set the stage for future analyses of the conditions
under which teachers learn mathematical content for teach-
ing most effectively.

One of the most pressing issues currently before us is
whether specialized knowledge for teaching mathematics ex-
ists independently from common content knowledge—the
basic skills that a mathematically literate adult would pos-
sess. Analyses of data from large early pilots of our surveys
with teachers (Hill and Ball, 2004) suggest that the answer
may be yes. Often we found that results for the questions
representing “specialized” knowledge of mathematics (e.g.,
Figure 4) were separable statistically from results on the
“common” knowledge items (e.g., Figure 3). In other words,
correctly answering the kind of question in Figure 4 seemed
to require knowledge over and above that entailed in an-
swering the other kind correctly (e.g., Figure 3). This sug-
gests that there is a place in professional preparation for con-
centrating on teachers’ specialized knowledge. It may even
support a claim by the profession to hold a sort of applied
mathematical knowledge unique to the work of teaching. If
this finding bears out in further research, it strengthens the
claim that effective teaching entails a knowledge of mathe-
matics above and beyond what a mathematically literate
adult learns in grade school, a liberal arts program, or even a
career in another mathematically intensive profession such
as accounting or engineering. Professional education of
some sort—whether it be pre-service or on the job—would
be needed to support this knowledge.
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Conclusions

Our work has already yielded tentative answers to some of
the questions that drive current debates about education pol-
icy and professional practice. Mathematical knowledge for
teaching, as we have conceptualized and measured it, does
positively predict gains in student achievement (Hill, Rowan,
and Ball, 2005). More work remains: Do different kinds of
mathematical knowledge for teaching—specialized knowl-
edge or common knowledge, for example, or knowledge of
students and content together—contribute more than others
to student achievement? The same can be said for building a
knowledge base about effective professional development.
Historically, most content-focused professional development
has been evaluated locally, often with perceptual measures
(e.g., do teachers believe that they learned mathematics?)
rather than true measures of teacher and student learning (see
Wilson and Berne, 1999). Developing rigorous measures,
and having significant numbers of professional developers use
them, will help to build generalizable knowledge about
teachers’ learning of mathematics. We emphasize that this
must be a program of research across a wide sector of the
scholarly community; many studies are required in order to
make sense of how differences in program content might af-
fect teachers, teaching, and student achievement.

These results represent progress on producing knowledge
that is both credible and usable. In the face of this, the neg-
ative responses we have received from some other education
professionals are noteworthy. Testing teachers, studying
teaching or teacher learning, at scale, using standardized
student achievement measures—each of these draws sharp
criticism from some quarters. Some disdain multiple-choice
items, claiming that nothing worth measuring can be mea-
sured with such questions. Others argue that teaching, and
teacher learning, are such fine-grained complex endeavors
that large-scale studies cannot probe or uncover anything
worth measuring. Still others claim that we are “deskilling”
or “deprofessionalizing” teachers by “testing” them. We
argue that these objections run counter to the very core of
the critical agenda we face as a professional community.

Until and unless we, as educators, are willing to claim
that there is professional knowledge that matters for the
quality of instruction and can back that claim with evidence,
we will continue to be no more than one voice among many
competing to assert what teachers should know and how
they might learn that, and why. Our claims to professional
knowledge will be no more than the weak claim that we are
professionals and deserve authority because we say so, not
because we can show that what we know stands apart from
what just anyone would know. Isolating aspects of knowing
mathematics different from that which anyone who has
graduated from sixth grade would know, and demonstrating
convincingly that this knowledge matters for students” learn-
ing, is to claim skil/ in teaching, not to deskill it. Making
these arguments, too, is part of the challenge we face as we
seek to meet the contemporary challenges to our jurisdic-
tional authority.

Our research group’s experience in working from and
with problems of professional practice, testing and refining
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them with tools that mediate the power of our own convic-
tions and common sense, is one example of the work of try-
ing to build knowledge that is both credible and useful to a
range of stakeholders. Many more examples exist and can be
developed. Doing so is imperative in the current environ-
ment in which demands for education quality are made in a
climate of distrust and loss of credibility. Meeting this chal-
lenge is a professional responsibility. Doing so successfully is
essential to our survival as a profession. L]
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