Over the past five years I have had the privilege of visiting many mathematics classrooms, over 1,000 and counting. People who know me well know I am either talking about mathematics instruction, reading about mathematics instruction, or planning for mathematics instruction. I define myself as an instructional nerd! One of the many perks of my classroom visits is the opportunity to provide feedback to teachers, instructional coaches, and administrators. I use the Instructional Practice Guide for Coaching as my lens for lesson observation and feedback. You can learn more about the coaching tool here.

During my visits, I definitely have noticed some trends in instruction. There are some standards, regardless of the teacher, the school, or the district that seem to be commonly misunderstood. Somehow the intent of these standards is lost during instruction. I do not believe this is ever done intentionally, but could be a byproduct of many factors. Maybe it is because old standards are still lingering in the current curriculum; maybe lessons and/or materials have been recycled or repurposed from before the Common Core State Standards; or maybe there is a lack of understanding of what the standard actually means. Regardless of the reason, I would like us to learn and grow our brains together! I hope through this series of posts, a broader network of math educators will be better equipped to plan for and implement standards-based instruction.

I would like to look more in-depth at two of these standards, starting with my favorite Grade 6 math standard, 6.NS.A.1. It is such a beautiful standard if understood and instructed for understanding! Let’s look at this task from Illustrative Mathematics.

Each of the solution paths shown above relies on visual models over the algorithm for division of a fraction by a fraction. No need for “Keep, Change, Flip” as students are making sense of fraction division through context using models! There are problems where models do not make sense. I mean, who wants to draw a model for 5 2/5 ÷ 3/7? So, if your learning goal is focused on using visual models, be strategic with the number choice used in your problems!

The next standard of interest is 6.G.A.1. The intent of this standard is to have students composing and decomposing figures in order to find the area of composite figures. These Illustrative Mathematics and EngageNY tasks are examples of the type of tasks that students should be engaging in to meet the intent of this standard. Both problems expect students to decompose the given figure into rectangles and/or triangles in order to find the area of the shape. There is no need to require students memorize the area of a trapezoid! They should decompose it into shapes for which they know how to find the area!

The suggestions given here are just a start to figuring out this very challenging profession of teaching students mathematics. I hope my experiences in many middle school classrooms will help grow your brain around these standards and now that you know better, you will do better in ensuring each student learns math at a high level. Next month, Most Misunderstood Middle School Mathematics Standards in Grade 7. Stay tuned and #InstructUP!

Hello this was very helpful. Can you elaborate more on the ratio one. The first one you listed as a “misaligned instruction” Thank you.